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In this paper, two component reaction-diffusion systems with a specific bistable
nonlinearity are concerned. The systems have the bifurcation structure of pitch-fork type
of traveling front solutions with opposite velocities, which is rigorously proved and the
ordinary differential equations describing the dynamics of such traveling front solutions
are also derived explicitly. It enables us to know rigorously precise information on the
dynamics of traveling front solutions. As an application of this result, the imperfection
structure under small perturbations and the dynamics of traveling front solutions on
heterogeneous media are discussed.
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1. Introduction

Reaction-diffusion systems have been widely treated to describe various phe-
nomena such as chemical reaction and pattern formation in biology. The typical
examples of them in 1-dimensional problem are the two-components activator-
inhibitor systems of the form

{
ετut = ε2uxx + f(u, v),

vt = Dvxx + g(u, v),
t > 0, x ∈ R, (1.1)

where ε, τ , D are all positive, and f(u, v) = u(1 − u)(u − a) − v and g(u, v) =
u − γ1v + γ2 for constants 0 < a < 1

2 , γ1 > 0 and γ2. The type of this equation
has been extensively studied to consider localized patterns such as pulse and front
solutions ([3], [12]). When the nonlinearity of (1.1) is mono-stable with suitable
conditions, (1.1) has traveling pulse solutions (e.g. [10]). On the other hand, when
the nonlinearity is bistable, traveling front solutions exist in (1.1).

Here we assume (1.1) is bistable and odd symmetric with respect to a middle
unstable equilibrium, that is, f and g may be replaced by

f(u, v) = u− u3 − v, g(u, v) = u− γv (1.2)
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with a positive constant γ > γ0 ≡ 2
3
√

3
. For small ε > 0, there exist a stable

stationary front solution for large τ and two stable traveling front solutions with
opposite velocities for small τ . Thus, we can observe bifurcation phenomena with
respect to τ ([6], [13] and [18]). In [11], Kokubu et al. show the bifurcation of the
stationary front into traveling fronts is supercritical as τ decreases (see Fig. 5.2)
when γ is sufficiently large by using the method of Lyapunov–Schmidt. This sit-
uation corresponds to the case that v is almost flat, that is, (1.1) with (1.2) will
be close to a single equation. And they do not discuss the dynamics of these so-
lutions. After that a similar problem is studied by several authors. In particular,
Hagberg and Meron in the series of papers [7], [8] and [9] discuss a front bifurcation
as stated above using matched asymptotic expansions when D is sufficiently small
or γ is sufficiently large and get the same results in [11]. But their analysis is very
formal and not quite rigorous.

In this paper, we consider the two-component system of (1.1) with

f(u, v) =
(
u+

1
2

)(
1
2
− u

)(
u− 1

2
v

)
, g(u, v) = u− v. (1.3)

The system (1.1) with (1.3) has two stable equilibria
(± 1

2 ,± 1
2

)
and one unstable

one (0, 0). Since the system (1.1) with (1.3) is symmetric with respect to (0, 0), this
has a front solution with the velocity 0 connecting two stable equilibria

(± 1
2 ,± 1

2

)
.

Here we use g(u, v) = u− v in place of g(u, v) = u− γv
(
γ > 1

2

)
simply, because its

analysis is the same as the case g(u, v) = u− v. For concrete examples of (1.2) and
(1.3), the reader refers [15] and [18]. The construction of the front solution will be
stated in Section 2. Let the front solution S(x). Here we note that S(x) exists for
any τ > 0 because the stationary solution S(x) is independent of τ in (1.1). We
consider S(x) as the trivial solution. Then we can show the bifurcation point is
τ(ε) = τ0 +O(ε) = 1

4
√

2D
+O(ε) such that traveling front solutions, say S±(x− ct),

with velocities c of opposite directions appear and S(x) is unstable for τ < τ(ε).
On the other hand, for τ > τ(ε), S(x) is a stable stationary solution and there
are no traveling solutions in the neighborhood of S(x). Thus, we find that the
bifurcation structure is a super-critical pitchfork type, which is completely deter-
mined by eigenfunctions and the adjoint eigenfunctions of the linearized operator
with respect to S(x). Furthermore we can give more precise information about the
dynamics of front solutions, which means that for τ < τ(ε), the unstable station-
ary front solution S(x) plays the role of a separator between stable traveling front
solutions S±(x− ct).

For the system (1.1) with (1.2) or more general one, we can construct eigen-
functions and adjoint eigenfunctions rigorously (see Section 4). But unfortunately
we can not determine the sign of M1 in Section 2 explicitly, which gives the di-
rection of the bifurcation. But for the system (1.1) with (1.3) we can construct
all necessary eigenfunctions and find the signs of M1 and M2 (see Theorem 3.3).
Then we obtain the complete bifurcation diagram explicitly and front dynamics is
also rigorously analyzed according to the method stated in [1]. By virtue of this,
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the dynamics of traveling front solutions on inhomogeneous media is analytically
shown as an application (cf. [5], [14], [16] and [17]). Thus, this paper provides a nice
example in which we can calculate all necessary things analytically and explicitly
in order to study the bifurcation diagram and the dynamics of solutions.

This paper is organized as follows: First, we construct a stationary front so-
lution in Section 2. In Section 3, some general theories to study the bifurcation
structure and the dynamics are explained by according to the method in [1]. We
shall construct eigenfunctions and adjoint ones for the system (1.1) with (1.3) in
Section 4. In Section 5, important constants M1 and M2 which will determine the
type of bifurcation structure are calculated. In Section 6, by using the information
obtained in Section 5, we analyze the imperfection structure under small perturba-
tions and the dynamics of traveling front solutions on inhomogeneous media.

The results of this paper are available to the study of interaction of front
solutions. We will show repulsive interaction and the occurrence of oscillatory
dynamics of interacting two fronts in the forthcoming paper [2].

2. Construction of a stationary front solution

In this section, we shall construct a stationary front solution satisfying

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 = ε2uxx + f(u, v),

0 = Dvxx + g(u, v),
x ∈ R,

(u, v)(±∞) =
(
∓1

2
,∓1

2

)
,

(2.1)

where

f(u, v) =
(
u+

1
2

)(
1
2
− u

)(
u− 1

2
v

)
, g(u, v) = u− v.

We impose u(0) = 0 because (2.1) is translation free. Since f(u, v) = −f(−u,−v),
g(u, v) = −g(−u,−v) hold, the solution of (2.1) is necessarily an odd function.
Hence, it suffices to consider (2.1) only on R+ := (0,∞). Thus the problem (2.1)
is reduced to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 = ε2uxx + f(u, v),

0 = Dvxx + g(u, v),
x ∈ R+,

(u, v)(0) = (0, 0), (u, v)(∞) =
(
−1

2
,−1

2

)
.

(2.2)

By using the singular perturbation technique ([4], [6]), we construct the solu-
tion of (2.2) as the asymptotic expansions with respect to ε.
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First, consider the outer approximations. Let us expand as u = U0(x) +
εU1(x) + · · · , v = V0(x) + εV1(x) + · · · and substitute them into (2.2). Then we
first obtain from the terms ε0⎧⎪⎪⎪⎨

⎪⎪⎪⎩
f(U0, V0) = 0,

DV ′′
0 + g(U0, V0) = 0,

x ∈ R+,

V0(0) = 0, V0(∞) = −1
2
.

(2.3)

Then they are solved as U0(x) = − 1
2 and V0(x) = − 1

2

(
1 − e−x/

√
D
)
.

The terms ε1 lead⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−1

2
(1 + V0(x))U1 = 0,

DV ′′
1 + U1 − V1 = 0,

x ∈ R+,

V1(0) = V1(∞) = 0.

(2.4)

(2.4) leads U1(x) = V1(x) = 0.
Next, we consider the inner expansions in the neighborhood of x = 0. Let

expand by using the following form
{
u(x) = U0(x) + εU1(x) + · · · +W0(ξ) + εW1(ξ) + · · · ,
v(x) = V0(x) + εV1(x) + · · · + ε2Y0(ξ) + ε3Y1(ξ) + · · · , (2.5)

where ξ := x/ε and substitute (2.5) into (2.2). Equating the terms of ε0, we have⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ẅ0 + f(U0(0) +W0, 0) = 0,

DŸ0 +W0 = 0,
ξ ∈ R+,

W0(0) =
1
2
, W0(∞) = 0,

Y0(∞) = Ẏ0(∞) = 0

(2.6)

and the solutions of (2.6)

W0(ξ) =
1
2

(
1 − tanh

ξ

2
√

2

)
, Y0(ξ) = − 1

D

∫ ∞

ξ

∫ ∞

z

W0(s) ds dz,

where Ẇ means dW
dξ and so on.

From the terms of ε1, we have

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ẅ1 + fu(U0(0) +W0, 0)W1 = −fv(U0(0) +W0)V ′
0(0)ξ,

DŸ1 +W1 = 0,
ξ ∈ R+,

W1(0) = W1(∞) = 0,

Y1(∞) = Ẏ1(∞) = 0.

(2.7)
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Here we imposed the boundary condition Ẏ1(∞) = 0 in order that a solution Y1(ξ)
must decay to 0 as ξ → ∞. Note that V0(x) = V0(εξ) = εV ′

0(0)ξ + O(ε2) holds.
Then we have

W1(ξ) = −1
2
V ′

0(0)Ẇ0(ξ)
∫ ξ

0

(Ẇ0(z))−2

∫ ∞

z

Ẇ0(s)sW0(s)(1 −W0(s)) ds dz,

Y1(ξ) = − 1
D

∫ ∞

ξ

∫ ∞

z

W1(s) ds dz.

Thus, the approximate solution of (2.2), say (u0(x; ε), v0(x; ε)), is given by

u0(x; ε) := −1
2

+W0(x/ε) + εW1(x/ε),

v0(x; ε) := V0(x) + ε2Y0(x/ε) + ε3Y1(x/ε).

The existence of an exact solution of (2.2) is guaranteed by the singular perturba-
tion technique ([6]).

Theorem 2.1. For a small positive ε, there exist solutions of (2.2), say
(u+(x; ε), v+(x; ε)), such that

‖u+( · ; ε) − u0( · ; ε)‖X1
ρ,ε(R+) + ‖v+( · ; ε) − v0( · ; ε)‖X1

ρ,1(R+) = o(ε)

as ε ↓ 0, where

Xk
ρ,ε(R+) :=

⎧⎨
⎩u ∈ Ck(R+); ‖u‖Xk

ρ,ε(R+) :=
k∑
j=0

sup
x∈R+

∣∣∣∣∣eρx
(
ε
d

dx

)j
u(x)

∣∣∣∣∣ <∞
⎫⎬
⎭

(k = 0, 1, 2, . . . ) and ρ > 0 is a sufficiently small constant independent of ε.

In [6], we construct traveling front solutions with the velocity c on the whole in-
terval R. There the transversal condition is important to match solutions smoothly
at the origin. Here we assume f and g being odd symmetric and consider station-
ary front solutions (with the velocity 0), which implies these solutions are also odd
symmetric and there is no necessity to match them smoothly at the origin. As we
have seen in the above, the solutions (u+(x; ε), v+(x; ε)) are described by the two
different scales x and x/ε. Note that the solutions have a sharp transition layer
in a small neighborhood of x = 0. Apart from the neighborhood of x = 0, outer
approximations, which are functions of x, are good ones. But the outer ones do not
approximate the solution in the neighborhood of x = 0 because the solutions have
a sharp transition layer at x = 0. Indeed, the slope of u+(x; ε) at x = 0 becomes
O(1/ε) as ε→ 0. Then we must modify these outer approximations by adding func-
tions of x/ε, which describe a sharp boundary layer at x = 0. In the form of the
approximate solutions (u0(x; ε), v0(x; ε)), −1/2, V0(x) are outer approximations,
and W0(x/ε), W1(x/ε), Y0(x/ε), Y1(x/ε) are modified functions.
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More precisely, we have the following expression to the solutions
(u+(x; ε), v+(x; ε)):

⎧⎨
⎩
u+(x; ε) = −1

2
+ ε2E1(x) +W0(x/ε) + εW1(x/ε) + ε2E2(x/ε),

v+(x; ε) = V0(x) + ε2E3(x) + ε2Y0(x/ε) + ε3Y1(x/ε) + ε4E4(x/ε),
x ∈ [0,∞),

where Ej(x) = Ej(x; ε) ∈ X2
ρ1,1(R+) uniformly in a small positive ε for some posi-

tive constant ρ1 (j = 1, 2, 3, 4). These expressions are very convenient to calculate
L2-inner product of these functions (see Sections 4 and 5).

Finally, we note that a solution of (2.1) is an odd function. Then we find a
solution of (2.1) is represented as

(u(x; ε), v(x; ε)) =

{
(u+(x; ε), v+(x; ε)), x ∈ [0,∞),

(−u+(−x; ε),−v+(−x; ε)), x ∈ (−∞, 0].

3. General theory on the dynamics of front solutions and the bifurca-
tion diagram

In this section, we shall give general theory in order to analyze the dynam-
ics of a single front solution of (1.1) in the neighborhood of a bifurcation point
according to [1].

We write (1.1) in the form

ut = L(u; τ), (3.1)

where u := (u, v) and

L(u; τ) :=

⎛
⎝ ε

τ
uxx +

1
ετ
f(u, v)

Dvxx + g(u, v)

⎞
⎠.

As shown in the previous section, (3.1) has a stationary front solution, say S(x)
for any τ > 0. Let L(τ) be the linearized operator with respect to S(x), that is,
L(τ) := L′(S(x); τ). Note that 0 is necessarily the eigenvalue of L(τ) associated
with the eigenfunction Sx. We assume the following:
(H1) There exists τ(ε) > 0 such that L := L(ε) := L(τ(ε)) is degenerate in Jordan

block type. Namely, there exists a function Ψ(x) satisfying LΨ = −Sx and
the generalized eigenspace with respect to 0 is spanned by Sx and Ψ .

(H2) Let Σ0 be the spectrum of L. Then Σ0 is given by Σ0 = Σ1 ∪ Σ2, where
Σ1 := {0} and Σ2 ⊂ {z ∈ C; Re(z) < −γ0} for a constant γ0 > 0.
Let X := L2(R) and Q, R be the projections corresponding to the spectral
sets Σ1 and Σ2, respectively.

(H3) X0 := QX is spanned by Sx and Ψ , that is, X0 = span{Sx,Ψ}.
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(H1) will be shown in Section 4.1, and (H2) is given in [13] for more general
nonlinearities f and g. Here we note that (H1) also holds for more general non-
linearities f and g as in [13]. (H3) emphasizes that the dimension of the generalized
eigenspace associated with 0 eigenvalue is just 2, which holds for our problems by
solving eigenvalue problems with respect to L(τ(ε)) in Section 4.1. Let L∗ be the
adjoint operator of L. L∗ has also the same properties. That is, there exist Φ∗

and Ψ∗ satisfying L∗Φ∗ = 0 and L∗Ψ∗ = −Φ∗. These functions Φ∗ and Ψ∗ are
constructed in Sections 4.2 and 4.3, respectively.

Proposition 3.1. These eigenfunctions are uniquely determined by the nor-
malization 〈Ψ , Sx〉2 = 0, 〈Sx,Ψ∗〉2 = 1 and 〈Ψ ,Ψ∗〉2 = 0, where 〈 · , · 〉2 denotes
the inner product in X. Note that 〈Ψ ,Φ∗〉2 = 1 and 〈Sx,Φ∗〉2 = 0 hold.

This is shown in Proposition 4.1 in [1]. In the problem (1.1) with (1.3), we
note that Ψ(x), Φ∗(x) and Ψ∗(x) can be taken as even functions by the symmetry
of f and g. The normalization stated in Proposition 3.1 will be done in Section 4.4.

We consider (3.1) in the neighborhood of τ = τ(ε) and put τ = τ(ε) + η for
small η. Then (3.1) is written as

ut = L(u) + ηG(u; η), (3.2)

where L(u) := L(u, τ(ε)) and ηG(u; η) := L(u; τ(ε) + η) − L(u).
Define Ξ (x; r) := S(x) + rΨ(x) and (κ(l)u)(x) := u(x − l) and M(r∗) :=

{κ(l)Ξ ( · ; r); l ∈ R, |r| < r∗}.
Theorem 3.2. For a small positive ε, there exist positive constants C0, r∗,

η∗ and a neighborhood UN of M(r∗) such that if the initial data u(0) ∈ UN , then
there exist functions l(t), r(t) such that the solution u of (3.1) satisfies

‖u(t) − κ(l(t))Ξ ( · ; r(t))‖∞ ≤ C0(|r(t)|2 + |η|)

for |η| < η∗ as long as |r(t)| < r∗. l(t) and r(t) are estimated as

l̇ = r +O(|r|2 + |η|2), ṙ = O(|r|2 + |η|2).

Theorem 3.2 indicates that the movement of a front like solution u is essential-
ly governed by l(t), r(t) and r(t) gives the velocity. Here we note that the Landau
symbol O means to be estimated by constants independent of small r and η, which
may depend on ε. We take in this paper η to be sufficiently small by fixing ε

small enough.
The explicit form of the equations of l(t) and r(t) is given as follows. Define

functions ζ1 and ζ2 in X1 := RX by

Lζ1 +
1
2
F ′′(S(x))Ψ · Ψ + Ψx = 0, Lζ2 +G0(S(x)) = 0
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and constants⎧⎨
⎩
M1 := 〈∂xζ1,Φ

∗〉2 + 〈F ′′(S)Ψ · ζ1,Φ
∗〉2 +

1
6
〈F ′′′(S)Ψ3,Φ∗〉2,

M2 := 〈∂xζ2,Φ∗〉2 + 〈F ′′(S)Ψ · ζ2,Φ∗〉2 + 〈G′
0(S)Ψ ,Φ∗〉2,

(3.3)

where

F (u) =

⎛
⎝ 1
ετ(ε)

f(u(x), v(x))

g(u(x), v(x))

⎞
⎠,

G(u; η) =

⎛
⎝− 1

ε(τ(ε) + θη)2
{ε2uxx + f(u(x), v(x))}

0

⎞
⎠

for 0 < θ < 1 and

G0(u) = G(u; 0) =

⎛
⎝− 1

ετ2(ε)
{ε2uxx + f(u(x), v(x))}

0

⎞
⎠

for u = u(x) = (u(x), v(x)).

Theorem 3.3. Let l(t) and r(t) be the functions stated in Theorem 3.2.
Then for |η| < η∗,

l̇ = r +O
(|r|3 + |η|3/2),

ṙ = K(r; η) +O(|r|4 + |η|2)

hold as long as |r(t)| < r∗, where K(r; η) := M1r
3 +M2ηr.

4. Construction of eigenfunctions

In this section, we construct explicitly eigenfunctions Ψ , Φ∗ and Ψ∗ stated in
the previous section for the system (1.1) with (1.3) together with the bifurcation
point τ(ε).

Let S(x) := t(u(x; ε), v(x; ε)) be the stationary front solution constructed in
Section 2. Then L and L∗ are

L =

⎛
⎜⎜⎝

ε

τ(ε)
d2

dx2
+

1
ετ(ε)

fu(u, v)
1

ετ(ε)
fv(u, v)

gu(u, v) D
d2

dx2
+ gv(u, v)

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

ε

τ(ε)
d2

dx2
+

1
ετ(ε)

(
−3u2 + uv +

1
4

)
1

ετ(ε)

(
1
2
u2 − 1

8

)

1 D
d2

dx2
− 1

⎞
⎟⎟⎠
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and

L∗ =

⎛
⎜⎜⎝

ε

τ(ε)
d2

dx2
+

1
ετ(ε)

(
−3u2 + uv +

1
4

)
1

1
ετ(ε)

(
1
2
u2 − 1

8

)
D
d2

dx2
− 1

⎞
⎟⎟⎠,

where u = u(x; ε) and v = v(x; ε).
In the following subsections, eigenfunctions will be constructed by asymptotic

expansions. As eigenfunctions are not unique, we construct them with the same
order of the trivial eigenfunction Sx(x), say O

(
1
ε

)
. Though they are all approxi-

mations, the existence of rigorous eigenfunctions with respect to the constructed
approximate functions is shown by the standard implicit function theorem. As
we stated in Section 3, Ψ , Φ∗ and Ψ∗ can be taken as even functions. Then we
construct them only on the half interval R+.

4.1. Construction of Ψ
We first construct the eigenfunction Ψ satisfying LΨ = −Sx. Let Ψ(x) =

t(ψ1(x), ψ2(x)). Then ψ1 and ψ2 satisfy

⎧⎪⎪⎨
⎪⎪⎩
ε2

d2

dx2
ψ1 +

(
−3u2 + uv +

1
4

)
ψ1 +

(
1
2
u2 − 1

8

)
ψ2 = −ετ(ε)ux,

D
d2

dx2
ψ2 + ψ1 − ψ2 = −vx

(4.1)

where u = u(x; ε) and v = v(x; ε). Since Ψ(x) is an even function, it suffices to
consider (4.1) in R+ with the boundary conditions

dψ1

dx
(0) = 0, ψ1(∞) = 0,

dψ2

dx
(0) = 0, ψ2(∞) = 0. (4.2)

First, let us consider outer solutions. Expanding ψj(x) = ψ0
j (x)+ εψ1

j (x)+ · · ·
(j = 1, 2), τ(ε) = τ0 +O(ε) and substituting them into (4.1) with (4.2), we have

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−1
2
(1 + V0(x))ψ0

1 = 0,

D
d2ψ0

2

dx2
+ ψ0

1 − ψ0
2 =

1
2
√
D
e
− x√

D , x ∈ R+,

ψ0
2(0) = A0, ψ0

2(∞) = 0,

with an unknown constant A0 from the coefficients of ε0. A0 is determined later.
Here we note that the front solution S(x) is approximated by (u0(x; ε), v0(x; ε)) as
in Theorem 2.1. Solving the above equations, we have

ψ0
1(x) = 0, ψ0

2(x) =
(
A0 − x

4D

)
e
− x√

D . (4.3)
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Similarly, we have the equation of ψ1
j (x) as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−1
2
(1 + V0(x))ψ1

1 = 0,

D
d2ψ0

2

dx2
+ ψ1

1 − ψ1
2 = 0, x ∈ R+,

ψ1
2(0) = A1, ψ1

2(∞) = 0

with an unknown constant A1 and the solution

ψ1
1(x) = 0, ψ1

2(x) = A1e
− x√

D . (4.4)

Next, we consider inner approximations. Expand

⎧⎪⎨
⎪⎩
ψ1(x) = ψ0

1(x) + εψ1
1(x) + · · · + 1

ε
p0

(x
ε

)
+ p1

(x
ε

)
+ · · · ,

ψ2(x) = ψ0
2(x) + εψ1

2(x) + · · · + εq0

(x
ε

)
+ ε2q1

(x
ε

)
+ · · · ,

and substitute into (4.1) with (4.2). Then we get the equations of pj and qj
(j = 1, 2) as follows (ξ = x/ε).

The equation of p0, q0 is derived from the coefficients of ε−1 as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p̈0 +
(
−3W 2

0 + 3W0 − 1
2

)
p0 = 0,

Dq̈0 + p0 = 0,
ξ ∈ R+,

ṗ0(0) = 0, p0(∞) = 0,

q0(∞) = 0, q̇0(∞) = 0.

One solution of the above equation is

p0(ξ) = Ẇ0(ξ), q0(ξ) = − 1
D

∫ ∞

ξ

∫ ∞

z

p0(s) ds dz. (4.5)

The boundary condition at x = 0 stated in (4.2) requires

dψ0
2

dx
(0) + q̇0(0) = 0

and then A0 is determined by A0 = − 3
4
√
D

because q̇(0) = 1
D

∫∞
0
p0(s) ds =

1
D

∫∞
0
Ẇ0(s) ds = − 1

2D .
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We have the equation from the terms of ε0 as
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p̈1 +
(
−3W 2

0 + 3W0 − 1
2

)
p1 = r(ξ; τ0),

Dq̈1 + p1 = 0,
ξ ∈ R+,

ṗ1(0) = 0, p1(∞) = 0,

q1(∞) = 0, q̇1(∞) = 0,

(4.6)

where r(ξ; τ0) := −τ0Ẇ0+ 3
8
√
D
W0(W0−1)+ ξ

2
√
D
Ẇ0

(− 1
2 +W0

)
+6W1

(
W0− 1

2

)
Ẇ0.

The existence of the solution p1 in (4.6) requires the solvability condition

∫ ∞

0

Ẇ0r(ξ; τ0) dξ = 0. (4.7)

The lowest order τ0 of the bifurcation point τ(ε) is determined by (4.7). We first
obtain the value of τ0. From (2.7), W1 satisfies the equation⎧⎪⎨

⎪⎩
Ẅ1 +

(
−3W 2

0 + 3W0 − 1
2

)
W1 = − ξ

4
√
D
W0(1 −W0), ξ ∈ R+,

W1(0) = W1(∞) = 0.
(4.8)

Differentiating (4.8) with respect to ξ and putting q := Ẇ1, we have⎧⎪⎨
⎪⎩
q̈ +

(
−3W 2

0 + 3W0 − 1
2

)
q = r1(ξ), ξ ∈ R+,

q̇(0) = q(∞) = 0.
(4.9)

where r1(ξ) := 6W1

(
W0 − 1

2

)
Ẇ0 − 1

4
√
D
W0(1 −W0) + ξ

2
√
D

(
W0 − 1

2

)
Ẇ0. Since Ẇ0

is a solution of the homogeneous equation of (4.9), the solvability condition

∫ ∞

0

r1(ξ)Ẇ0 dξ = 0 (4.10)

has to hold for the existence of q in (4.9). (4.10) leads to

6
∫ ∞

0

W1

(
W0 − 1

2

)
(Ẇ0)2 dξ =

1
4
√
D

∫ ∞

0

W0(1 −W0)Ẇ0 dξ

− 1
2
√
D

∫ ∞

0

ξ

(
W0 − 1

2

)
(Ẇ0)2 dξ

=
1

4
√
D

×
(
− 1

12

)
− 1

2
√
D

×
(
− 1

48

)

= − 1
96
√
D
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because W0(ξ) = 1
1+eξ/

√
2 . By using this calculation for (4.7), we have

0 = −τ0
∫ ∞

0

(Ẇ0)2 dξ +
3

8
√
D

∫ ∞

0

W0(W0 − 1)Ẇ0 dξ

+
1

2
√
D

∫ ∞

0

ξ

(
W0 − 1

2

)
(Ẇ0)2 dξ + 6

∫ ∞

0

W1

(
W0 − 1

2

)
(Ẇ0)2 dξ

= −
√

2
24
τ0 +

3
8
√
D

× 1
12

+
1

2
√
D

(
− 1

48

)
− 1

96
√
D

= −
√

2
24
τ0 +

1
96
√
D
,

which leads to

τ0 =
1

4
√

2D
. (4.11)

Note that
√

2Ẇ0 = W0(W0 − 1). We find that r(ξ; τ0) = r1(ξ) for ξ ∈ R+.
Compare (4.6) with (4.9), we can take p1(ξ) = q(ξ) = Ẇ1(ξ). Then q1 is given
by p1 as

q1(ξ) = − 1
D

∫ ∞

ξ

∫ ∞

z

p1(s) ds dz =
1
D

∫ ∞

ξ

W1(z) dz.

Similarly dψ1
2

dx (0) + q̇1(0) = 0 has to hold by the boundary condition (4.2). Then
the constant A1 is determined by A1 = 1√

D

∫∞
0
p1(s) ds = − 1√

D
W1(0) = 0.

Thus, we can construct eigenfunctions of (4.1), (4.2) in R+ together with
τ(ε) as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

τ(ε) = τ0 +O(ε),

ψ1(x; ε) = ε2E1(x) +
1
ε
p0

(x
ε

)
+ p1

(x
ε

)
+ εE2(x/ε),

ψ2(x; ε) = ψ0
2(x) + ε2E3(x) + εq0

(x
ε

)
+ ε2q1

(x
ε

)
+ ε3E4(x/ε),

for x ∈ [0,∞) which are rigorously proved by the implicit function theorem as in
Theorem 2.1, where Ej(x) = Ej(x; ε) ∈ X2

ρ1,1(R+) uniformly in a small positive ε
for some positive constant ρ1 (j = 1, 2, 3, 4). (4.1) is an eigenvalue problem with
unknown value τ(ε). First, we construct solutions (ψ1, ψ2) for arbitrarily fixed
τ and then using the relation 〈Ψ , Sx〉2 = 0 in Proposition 3.1 we can determine
the eigenvalue τ(ε) uniquely (refer the relation (4.7) to determine τ0). Since the
function (ψ1(x; ε), ψ2(x; ε)) is an even function, we can easily extend this into the
whole interval R. This shows (H1) in Section 3.
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4.2. Construction of Φ∗

In this subsection, we construct an eigenfunction Φ∗ satisfying L∗Φ∗ = 0. Since
Φ∗ is an even function, the problem becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε2
d2

dx2
φ∗1 +

(
−3u2 + uv +

1
4

)
φ∗1 + ετ(ε)φ∗2 = 0,

ετ(ε)D
d2

dx2
φ∗2 +

(
1
2
u2 − 1

8

)
φ∗1 − ετ(ε)φ∗2 = 0,

dφ∗1
dx

(0) = 0, φ∗1(∞) = 0,

dφ∗2
dx

(0) = 0, φ∗2(∞) = 0,

(4.12)

where u = u(x; ε), v = v(x; ε) and Φ∗(x) = t(φ∗1(x), φ
∗
2(x)).

Similarly to the previous subsection, we first expand Φ∗(x) as outer solutions

{
φ∗1(x) = φ∗,01 (x) + εφ∗,11 (x) + · · · ,
φ∗2(x) = φ∗,02 (x) + εφ∗,12 (x) + · · ·

and substitute them into (4.12). Then we have

φ∗,01 (x) = 0, φ∗,02 (x) = A∗
0e

− x√
D , φ∗,11 (x) = 2τ0φ

∗,0
2 (x)/(1 + V0(x)), (4.13)

where A∗
0 is an arbitrary constant to be fixed later. φ∗,12 (x) is also determined

similarly.
Next we expand Φ∗(x) as inner solutions

⎧⎪⎨
⎪⎩
φ∗1(x) = εφ∗,11 (x) + · · · + 1

ε
p∗0
(x
ε

)
+ p∗1

(x
ε

)
+ · · · ,

φ∗2(x) = φ∗,02 (x) + εφ∗,12 (x) + · · · + q∗0
(x
ε

)
+ εq∗1

(x
ε

)
+ · · ·

and substitute them into (4.12). Then we have from the coefficients of ε−1 terms

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

p̈∗0 +
(
−3W 2

0 + 3W0 − 1
2

)
p∗0 = 0,

τ0Dq̈
∗
0 +

(
1
2

(
W0 − 1

2

)2

− 1
8

)
p∗0 = 0,

ξ ∈ R+,

ṗ∗0(0) = p∗0(∞) = 0,

q̇∗0(0) = q∗0(∞) = 0,

(4.14)

(ξ = x/ε) and the solution p∗0(ξ) = B∗
0Ẇ0(ξ) for an arbitrary constant B∗

0 . From
the equation of q of (4.14), we have B∗

0 = 0, which leads q∗0(ξ) = 0 and hence
p∗0(ξ) = 0.
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The equations from terms of ε0 are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

p̈∗1 +
(
−3W 2

0 + 3W0 − 1
2

)
p∗1 = 0,

τ0Dq̈
∗
1 +

(
1
2

(
W0 − 1

2

)2

− 1
8

)
p∗1 = 0,

ξ ∈ R+,

ṗ∗1(0) = p∗1(∞) = 0,

q∗1(∞) = q̇∗1(∞) = 0.

(4.15)

p∗1 is given by p∗1(ξ) = B∗
1Ẇ0(ξ) with an arbitrary constant B∗

1 . We take B∗
1 = 1.

Then q∗1 is solved as

q∗1(ξ) =
1

2τ0D

∫ ∞

ξ

(
W 3

0 (s)
3

− W 2
0 (s)
2

)
ds.

The condition dφ∗,0
2
dx (0) + q̇∗1(0) = 0 leads A∗

0 = 1
24τ0

√
D

.
Thus, we have Φ∗ as⎧⎪⎨

⎪⎩
φ∗1(x; ε) = εφ∗,11 (x) + ε2E1(x) + p∗1

(x
ε

)
+ εE2(x/ε),

φ∗2(x; ε) = φ∗,02 (x) + εφ∗,12 (x) + ε2E3(x) + εq∗1
(x
ε

)
+ ε2E4(x/ε),

x ∈ [0,∞),

where Ej(x) = Ej(x; ε) ∈ X2
ρ1,1(R+) uniformly in a small positive ε for some

positive constant ρ1 (j = 1, 2, 3, 4). We can easily extend them into the whole
interval R.

4.3. Construction of Ψ∗

Let us obtain the eigenfunction Ψ∗ = t(ψ∗
1 , ψ

∗
2) satisfying L∗Ψ∗ = −Φ∗, which

is the solution of⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ε2
d2ψ∗

1

dx2
+
(
−3u2 + uv +

1
4

)
ψ∗

1 + ετ(ε)ψ∗
2 = −ετ(ε)φ∗1,

ετ(ε)D
d2ψ∗

2

dx2
+
(

1
2
u2 − 1

8

)
ψ∗

1 − ετ(ε)ψ∗
2 = −ετ(ε)φ∗2.

(4.16)

Since Ψ∗ is an even function, we impose the boundary condition

dψ∗
1

dx
(0) = ψ∗

1(∞) = 0,
dψ∗

2

dx
(0) = ψ∗

2(∞) = 0 (4.17)

and consider (4.16) on R+.
First, we construct outer approximations. Let expand{

ψ∗
1(x) = ψ∗,0

1 (x) + εψ∗,1
1 (x) + · · · ,

ψ∗
2(x) = ψ∗,0

2 (x) + εψ∗,1
2 (x) + · · ·

and plug them into (4.16).
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The equation with respect to ε0 is

−1
2
(1 + V0(x))ψ

∗,0
1 = 0,

which leads to ψ∗,0
1 (x) = 0. Then the equation with respect to ε1 is

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−1
2
(1 + V0(x))ψ

∗,1
1 + τ0ψ

∗,0
2 = 0,

D
d2ψ∗,0

2

dx2
− ψ∗,0

2 = −φ∗,02 ,

x ∈ R+,

ψ∗,0(0) = A∗
1, ψ∗,0(∞) = 0.

(4.18)

A∗
1 is determined later. We have

ψ∗,0
2 (x) =

{
A∗

1 +
x

48τ0D

}
e
− x√

D , ψ∗,1
1 (x) =

2τ0ψ
∗,0
2 (x)

1 + V0(x)

from (4.18) and φ∗,02 (x) = − 1
24τ0

√
D
e−x/

√
D. ψ∗,1

2 (x) is also determined similarly.
Next we consider inner expansions by

⎧⎪⎨
⎪⎩
ψ∗

1(x) = εψ∗,1
1 (x) + · · · + 1

ε
p̂0

(x
ε

)
+ p̂1

(x
ε

)
+ · · · ,

ψ∗
2(x) = ψ∗,0

2 (x) + εψ∗,1
2 (x) + · · · + q̂0

(x
ε

)
+ εq̂1

(x
ε

)
+ · · ·

and plug them into (4.16). The coefficients of ε−1 leads to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

¨̂p0 +
(
−3W 2

0 + 3W0 − 1
2

)
p̂0 = 0,

τ0D ¨̂q0 +
(

1
2

(
W0 − 1

2

)2

− 1
8

)
p̂0 = 0,

ξ ∈ R+

with ˙̂p0(0) = p̂0(∞) = 0, ˙̂q0(0) = q̂0(∞) = 0. Then p̂0(ξ) = B∗
2Ẇ0(ξ) is obtained

with an arbitrary constant B∗
2 and the equation of q̂0 leads to B∗

2 = 0 (p̂0(ξ) = 0)
and q̂0(ξ) = 0.

The equation with respect to ε0 is

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

¨̂p1 +
(
−3W 2

0 + 3W0 − 1
2

)
p̂1 = 0,

τ0D ¨̂q1 +
(

1
2

(
W0 − 1

2

)2

− 1
8

)
p̂1 = 0,

ξ ∈ R+
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with ˙̂p1(0) = p̂1(∞) = 0, q̂1(∞) = ˙̂q1(∞) = 0. p̂1 is solved as p̂1(ξ) = B∗
3Ẇ0(ξ)

with an arbitrary constant B∗
3 . We take B∗

3 = 1. Then from the equation of q̂1,
we have

q̂1(ξ) =
1

2τ0D

∫ ∞

ξ

(
1
3
W 3

0 (s) − 1
2
W 2

0 (s)
)
ds.

A∗
1 is determined such that dψ∗,0

2
dx (0) + ˙̂q1(0) = 0, which leads to A∗

1 = 1
16τ0

√
D

and

ψ∗,0
2 (x) =

{
1

16τ0
√
D

+ x
48τ0D

}
e−x/

√
D. Thus, Ψ∗ is constructed as

⎧⎪⎨
⎪⎩
ψ∗

1(x; ε) = εψ∗,1
1 (x) + ε2E1(x) + p̂1

(x
ε

)
+ εE2(x/ε),

ψ∗
2(x; ε) = ψ∗,0

2 (x) + εψ∗,1
2 (x) + ε2E3(x) + εq̂1

(x
ε

)
+ ε2E4(x/ε),

x ∈ [0,∞),

where Ej(x) = Ej(x; ε) ∈ X2
ρ1,1(R+) uniformly in a small positive ε for some

positive constant ρ1 (j = 1, 2, 3, 4). We can easily extend them into the whole
interval R.

4.4. Normalization of eigenfunctions
We shall normalize eigenfunctions according to Proposition 3.1. Let Ψ0 =

t(ψ0,1, ψ0,2), Φ∗
0 = t(φ∗0,1, φ

∗
0,2) and Ψ∗

0 = t(ψ∗
0,1, ψ

∗
0,2) be the constructed eigen-

functions in the previous subsections. Then eigenfunctions are given by

Ψ = Ψ0 + k1Sx, Φ∗ = k2Φ∗
0 , Ψ∗ = k2Ψ∗

0 + k3Φ∗
0

with constants k1, k2 and k3. Substituting them into the normalization stated in
Proposition 3.1, we have

k1 = −〈Sx,Ψ0〉2
‖Sx‖2

2

, k2 =
1

〈Sx,Ψ∗
0 〉2

, k3 =
−k1 − k2〈Ψ0,Ψ∗

0 〉2
〈Ψ0,Φ∗

0 〉2
.

Here, we summarize the approximate eigenfunctions for x ∈ [0,∞) obtained in the
previous subsections for convenience:

τ(ε)= τ0 +O(ε), τ0 =
1

4
√

2D
,

S(x)=
(
u(x)
v(x)

)
=

⎛
⎝ −1

2
+ε2E1(x)+W0(x/ε)+εW1(x/ε)+ε2E2(x/ε)

V0(x)+ε2E3(x)+ε2Y0(x/ε)+ε3Y1(x/ε)+ε4E4(x/ε)

⎞
⎠,

Sx(x)=
(
ux(x)
vx(x)

)
=

⎛
⎝ε2E5(x)+

1
ε
Ẇ0(x/ε)+Ẇ1(x/ε)+εE6(x/ε)

V ′
0(x)+ε2E7(x)+εẎ0(x/ε)+ε2E8(x/ε)

⎞
⎠,

W0(ξ)=
1

1+eξ/
√

2
, V0(x)=−1

2

(
1−e−x/

√
D
)
, Y0(ξ)=−

∫ ∞

ξ

∫ ∞

z

W0(s)did,
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Ψ0(x)=
(
ψ0,1(x)
ψ0,2(x)

)
=

⎛
⎝ ε2E9(x)+

1
ε
p0(x/ε)+p1(x/ε)+εE10(x/ε)

ψ0
2(x)+ε2E11(x)+εq0(x/ε)+ε2q1(x/ε)+ε3E12(x/ε)

⎞
⎠,

Φ∗
0 (x)=

(
φ∗0,1(x)
φ∗0,2(x)

)
=

(
εφ∗,11 (x)+ε2E13(x)+p∗1(x/ε)+εE14(x/ε)

φ∗,02 (x)+εφ∗,12 (x)+ε2E15(x)+εq∗1(x/ε)+ε2E16(x/ε)

)
,

Ψ∗
0 (x)=

(
ψ∗

0,1(x)
ψ∗

0,2(x)

)
=

(
εψ∗,1

1 (x)+ε2E17(x)+ p̂∗1(x/ε)+εE18(x/ε)

ψ∗,0
2 (x)+εψ∗,1

2 (x)+ε2E19(x)+εq̂∗1(x/ε)+ε2E20(x/ε)

)
,

where Ej(x) = Ej(x; ε) ∈ X2
ρ1,1(R+) uniformly in a small positive ε for some posi-

tive constant ρ1 (j = 1, 2, . . . , 20). Then we can calculate

‖Sx‖2
2 = 2

∫ ∞

0

{
1
ε
Ẇ0

(x
ε

)}2

dx+ 2
∫ ∞

0

(V ′
0(x))2 dx+O(ε)

=
√

2
12ε

+
1

4
√
D

+O(ε),

〈Sx,Ψ0〉2 =
2
ε2

∫ ∞

0

p0

(x
ε

)
Ẇ0

(x
ε

)
dx+

2
ε

∫ ∞

0

p1

(x
ε

)
Ẇ0

(x
ε

)
dx

+
2
ε

∫ ∞

0

p0

(x
ε

)
Ẇ1

(x
ε

)
dx+ 2

∫ ∞

0

V ′
0(x)ψ0

2(x) dx+O(ε)

=
√

2
12ε

+ 4
∫ ∞

0

Ẇ0(ξ)Ẇ1(ξ) dξ +
7

16D
+O(ε),

which leads to k1 = −1 +O(ε).
Similarly, we have

〈Sx,Ψ∗
0 〉2 =

2
ε

∫ ∞

0

p̂∗1
(x
ε

)
Ẇ0

(x
ε

)
dx+ 2

∫ ∞

0

V ′
0(x)ψ∗,0

2 (x) dx+O(ε)

=
√

2
12

− 7
192τ0

√
D

+O(ε),

k2 =
1

〈Sx,Ψ∗
0 〉2

=
192τ0

√
D

16
√

2τ0
√
D − 7

+O(ε) = −8
√

2 +O(ε)

by using τ0 = 1
4
√

2D
.

Let us obtain the value of k3. Calculating

〈Ψ0,Ψ∗
0 〉2 =

2
ε

∫ ∞

0

p0

(x
ε

)
p̂∗1
(x
ε

)
dx+ 2

∫ ∞

0

ψ0
2(x)ψ∗,0

2 (x) dx+O(ε)

=
√

2
12

− 25
32 × 12τ0

√
D

+O(ε),



134 S.-I. Ei, H. Ikeda and T. Kawana

〈Ψ0,Φ∗
0 〉2 =

2
ε

∫ ∞

0

p0

(x
ε

)
p∗1
(x
ε

)
dx+ 2

∫ ∞

0

ψ0
2(x)φ∗,02 (x) dx+O(ε)

=
√

2
12

− 7
192τ0

√
D

+O(ε),

we have

k1 + k2〈Ψ0,Ψ∗
0 〉2 =

−11
32
√

2τ0
√
D − 14

+O(ε)

and

k3 =
11 × 192τ0

√
D

2(16
√

2τ0
√
D − 7)2

+O(ε) =
44
√

2
3

+O(ε).

Thus, eigenfunctions satisfying the normalization stated in Proposition 3.1 are
explicitly constructed.

5. Constants M1 and M2 defined in Section 3

In order to obtain the values of M1 and M2, the functions ζ1 and ζ2 are
necessary. Here we remind the definitions of the functions:

ζ1, ζ2 ∈ X1 = {u ∈ L2(R); 〈u,Φ∗〉2 = 〈u,Ψ∗〉2 = 0},
Lζ1 +

1
2
F ′′(S(x))Ψ · Ψ + Ψx = 0, (5.1)

Lζ2 +G0(S(x)) = 0. (5.2)

Let ζ1(x) = t
(
ζ̃1(x), ζ̃2(x)

)
and Ψ(x) = t(ψ1(x), ψ2(x)). Then (5.1) is

⎧⎪⎪⎨
⎪⎪⎩
ε2
dζ̃1
dx2

+ fuζ̃1 + fv ζ̃2 +
ετ(ε)

2
{fuuψ2

1 + 2fuvψ1ψ2 + fvvψ
2
2} + ετ(ε)

dψ1

dx
= 0,

D
dζ̃2
dx2

+ guζ̃1 + gv ζ̃2 +
1
2
{guuψ2

1 + 2guvψ1ψ2 + gvvψ
2
2} +

dψ2

dx
= 0.

(5.3)
Here, we note that

fu =
1
4
−3u2(x)+u(x)v(x), fv =

1
2

(
u(x)+

1
2

)(
u(x)− 1

2

)
, gu = 1, gv =−1,

fuu =−6u(x)+v(x), fuv =u(x), fvv = guu = guv = gvv = 0.

Proposition 5.1. The function ζ1(x) is odd.

Proof. The inhomogeneous terms of (5.1) are odd functions. Therefore, ζ1 is
written by ζ1 = O(x) + αSx, where O(x) is an odd function and α is an arbitrary
constant. ζ1 ∈ X1 = RX = {〈u,Φ∗〉2 = 〈u,Ψ∗〉2 = 0} implies α = 0. �
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It suffices to consider (5.3) on R+ with ζ1(0) = 0. First, we consider outer
solutions by expanding⎧⎨

⎩
ζ̃1(x; ε) = ζ̃0

1 (x) + εζ̃1
1 (x) + · · · ,

ζ̃2(x; ε) = ζ̃0
2 (x) + εζ̃1

2 (x) + · · · .

From the lowest order terms, we have ζ̃0
1 (x) = 0 and

D
dζ̃0

2

dx2
− ζ̃0

2 = − x

4D
√
D
e
− x√

D , x ∈ R+

with ζ̃0
2 (0) = ζ̃0

2 (∞) = 0. It leads to

ζ̃0
2 (x) =

(
1

16D
√
D
x+

x2

16D2

)
e
− x√

D .

Similarly, we can calculate ζ̃1
1 and ζ̃1

2 . Especially, ζ̃1
1 is solved as ζ̃1

1 (x) = 0 and
ζ̃1
2 is so with the boundary conditions ζ̃1

2 (0) = Ã1 and ζ̃1
2 (∞) = 0, in which Ã1 is

determined later.
Next, we consider in a neighborhood of x = 0 and expand

⎧⎪⎨
⎪⎩
ζ̃1(x; ε) = ζ̃0

1 (x) + εζ̃1
1 (x) + · · · + 1

ε
p̃0

(x
ε

)
+ p̃1

(x
ε

)
+ · · · ,

ζ̃2(x; ε) = ζ̃0
2 (x) + εζ̃1

2 (x) + · · · + εq̃0

(x
ε

)
+ ε2q̃1

(x
ε

)
+ · · · .

Since ζ̃0
1 = ζ̃1

1 = 0, we have from terms of ε−1

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

¨̃p0 +
(
−3W 2

0 + 3W0 − 1
2

)
p̃0 = 0,

D ¨̃q0 + p̃0 = 0,
ξ ∈ R+,

p̃0(0) = p̃0(∞) = 0,

q̃0(0) = q̃0(∞) = 0,

which leads to p̃0(ξ) = q̃(ξ) = 0.
Terms of order ε0 gives

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

¨̃p1 +
(
−3W 2

0 + 2W0 − 1
2

)
p̃1 = 0,

D ¨̃q0 + p̃0 = 0,
ξ ∈ R+,

p̃1(0) = p̃1(∞) = 0,

q̃1(∞) = ˙̃q1(∞) = 0.

(5.4)

Here we used the relation p1(ξ) − Ẇ1(ξ) = 0. Clearly we have p̃1(ξ) = q̃1(ξ) = 0.
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The boundary condition of ζ̃1
2 (0) = Ã1 is determined by ζ̃1

2 (0) + q̃1(0) = 0,
which implies Ã1 = 0.

Thus, ζ1 is given by⎧⎪⎨
⎪⎩
ζ̃1(x; ε) = ε2E1(x) + εE2

(x
ε

)
,

ζ̃2(x; ε) = ζ̃0
2 (x) + εζ̃1

2 (x) + ε2E3(x) + ε3E4

(x
ε

)
,
x ∈ [0,∞), (5.5)

where Ej(x) = Ej(x; ε) ∈ X2
ρ1,1(R+) uniformly in a small positive ε for some

positive constant ρ1 (j = 1, 2, 3, 4). We can easily extend them into the whole
interval R.

On the other hand, we have ζ2(x) = 0 because of G0(S(x)) = 0 in (5.2).
Finally, we shall obtain the values of M1 and M2 according to the definitions

in Section 3.
M1 is given by

M1 = 〈∂xζ1,Φ
∗〉2 + 〈F ′′(S)Ψ · ζ1,Φ

∗〉2 +
1
6
〈F ′′′(S)Ψ3,Φ∗〉2.

The first term in the definition of M1 is calculated as

〈∂xζ1,Φ
∗〉2

= 〈∂xζ1, k2Φ∗
0 〉2

= 2k2

∫ ∞

0

(
∂xζ̃1φ

∗
0,1 + ∂xζ̃2φ

∗
0,2

)
dx

= 2k2

{
O(ε) +

(∫ ∞

0

∂xζ̃
0
2 (x)φ∗,02 (x) dx+O(ε)

)}

= 2k2

∫ ∞

0

(
1

16D
√
D

+
1

16D2
x− x2

16D2
√
D

)
e
− x√

D · 1
24τ0

√
D
e
− x√

D dx+O(ε)

= 2k2 · 1
16D

√
D

·
√
D

2
1

24τ0
√
D

+O(ε)

= 2(−8
√

2 +O(ε)) · 1
16 × 6

√
2D

+O(ε)

= − 1
6D

+O(ε)

by noting τ0 = 1
4
√

2D
.

Similarly, 〈F ′′(S)Ψ · ζ1,Φ∗〉2 is calculated. Now, we have

S(x) =
(
u(x)
v(x)

)
=

⎛
⎝−1

2
+ ε2E1(x) +W0(x/ε) + εW1(x/ε) + ε2E2(x/ε)

V0(x) + ε2E3(x) + ε2E4(x/ε)

⎞
⎠,

Ψ(x) = Ψ0(x) + k1Sx(x) = Ψ0(x) − Sx(x) +O(ε)

=

(
εE5(x) + εE6(x/ε)

ψ0
2(x) − V ′

0(x) + εE7(x) + εE8(x/ε)

)
,



Dynamics of Fronts 137

ζ1(x) =

(
ε2E9(x) + εE10(x/ε)

ζ̃0
2 (x) + εE11(x) + ε2E12(x/ε)

)
,

Φ∗(x) = k2Φ∗
0 (x) = k2

(
εφ∗,11 (x) + ε2E13(x) + p∗1(x/ε) + εE14(x/ε)

φ∗,02 (x) + εE15(x) + εE16(x/ε)

)

for x ∈ [0,∞), where Ej(x) = Ej(x; ε) ∈ X2
ρ1,1(R+) uniformly in a small positive ε

for some positive constant ρ1 (j = 1, 2, . . . , 16). Since

F ′′(S)Ψ · ζ1 =
1

ετ(ε)

(
fup · ψ1ζ̃1 + fuv · ψ1ζ̃2 + fvu · ψ2ζ̃1 + fvv · ψ2ζ̃2

0

)

=
1

ετ(ε)

(
(−6u+ v) · ψ1ζ̃1 + u · ψ1ζ̃2 + u · ψ2ζ̃1

0

)

holds, we have

〈F ′′(S)Ψ · ζ1,Φ
∗〉2

=
〈

1
ετ(ε)

(
(−6u+ v) · ψ1ζ̃1 + u · ψ1ζ̃2 + u · ψ2ζ̃1

0

)
, k2

(
φ∗0,1
φ∗0,2

)〉
2

=
2k2

ετ(ε)

∫ ∞

0

(
(−6u+ v) · ψ1ζ̃1 + u · ψ1ζ̃2 + u · ψ2ζ̃1

)
φ∗0,1 dx

=
2k2

ετ(ε)
·O(ε2) = O(ε),

because∫ ∞

0

(−6u+ v)ψ1ζ̃1φ
∗
0,1 dx =

∫ ∞

0

(−6u+ v)
{
εE17(x) + εE18

(x
ε

)}
×
{
ε2E19(x) + εE20

(x
ε

)}
φ∗0,1 dx

= O(ε2),∫ ∞

0

uψ1ζ̃2φ
∗
0,1 dx =

∫ ∞

0

(
−1

2
+W0

(x
ε

)
+ εE21

(x
ε

))

×
{
εE22(x) + εE23

(x
ε

)}{
ζ̃0
2 (x) + εE24(x) + ε2E25

(x
ε

)}
×
{
εφ∗,01 (x) + Ẇ0

(x
ε

)
+ ε2E26(x) + εE27

(x
ε

)}
dx

= ζ̃0
2 (0)

∫ ∞

0

(
−1

2
+W0(ξ)

)
Ẇ0(ξ)E27(ξ) dξ ·O(ε) +O(ε2)

= O(ε2)
(
ζ̃0
2 (0) = 0

)
,
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0

uψ2ζ̃1φ
∗
0,1 dx =

∫ ∞

0

(
−1

2
+W0

(x
ε

)
+ εE28

(x
ε

))

×
{
ψ0

2(x) − V ′
0(x) + εE29(x) + εE30

(x
ε

)}
×
{
ε2E31(x) + εE32

(x
ε

)}
φ∗0,1 dx

= O(ε2),

where Ej(x) = Ej(x; ε) ∈ X2
ρ1,1(R+) uniformly in a small positive ε for some posi-

tive constant ρ1 (j = 17, 18, . . . , 32).
We shall show 1

6 〈F ′′′(S)Ψ3,Φ∗〉2 = O(ε). It is calculated as

1
6
〈F ′′′(S)Ψ3,Φ∗〉2 =

1
6

〈⎛⎝ −6
ετ(ε)

ψ3
1 +

3
ετ(ε)

ψ2
1ψ2

0

⎞
⎠, k2

(
φ∗0,1
φ∗0,2

)〉
2

=
k2

ετ(ε)

∫ ∞

0

(−2ψ3
1 + ψ2

1ψ2)φ∗0,1 dx

=
k2

ετ(ε)

(
2
∫ ∞

0

ε3
(
E33(x) + E34

(x
ε

))3

φ∗0,1 dx

+
∫ ∞

0

ε2
(
E35(x) + E36

(x
ε

))2

ψ2φ
∗
0,1 dx

)

=
k2

ετ(ε)
O(ε2) = O(ε),

where Ej(x) = Ej(x; ε) ∈ X2
ρ1,1(R+) uniformly in a small positive ε for some posi-

tive constant ρ1 (j = 33, 34, 35, 36). Thus, we have

M1 = − 1
6D

+O(ε). (5.6)

Next, we consider M2 = 〈∂xζ2,Φ∗〉2 + 〈F ′′(S)Ψ · ζ2,Φ∗〉2 + 〈G′
0(S)Ψ ,Φ∗〉2. It

suffices to obtain 〈G′
0(S)Ψ ,Φ∗〉2 because of ζ2 = 0. Since

G′
0(S)Ψ = − 1

ετ2(ε)

(
ε2∂2

xψ1 + fu · ψ1 + fv · ψ2

0

)

= − 1
ετ2(ε)

(−ετ(ε)ux
0

)

=
1

ετ(ε)

(
Ẇ0

(x
ε

)
+ E37

(x
ε

)
0

)
,
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we have

〈G′
0(S)Ψ ,Φ∗〉2 =

1
ετ(ε)

〈(
Ẇ0

(x
ε

)
+ E38

(x
ε

)
0

)
, k2Φ∗

0

〉
2

=
2k2

ετ(ε)

∫ ∞

0

{
Ẇ0

(x
ε

)
+ E39

(x
ε

)}
×
{
εφ∗,11 (x) + ε2E40(x) + Ẇ0

(x
ε

)
+ εE41

(x
ε

)}
dx

=
2k2

ετ(ε)

∫ ∞

0

Ẇ0

(x
ε

)2

dx+O(ε)

=
2k2

τ(ε)

∫ ∞

0

Ẇ0(ξ)2 dξ +O(ε)

=
2k2

τ0

√
2

24
+O(ε)

= − 4
3τ0

+O(ε),

where Ej(x) = Ej(x; ε) ∈ X2
ρ1,1(R+) uniformly in a small positive ε for some posi-

tive constant ρ1 (j = 37, 38, . . . , 41). Thus, M2 is given

M2 = − 4
3τ0

+O(ε). (5.7)

Thus we have the theorem:

Theorem 5.2. The constants M1 and M2 defined in (3.3) are given by

M1 = − 1
6D

+O(ε), M2 = − 4
3τ0

+O(ε)

for a small positive ε.

Then we easily find the dynamics of solutions for the lowest order reduced
ODE ṙ = M1r

3 + M2ηr as in Fig. 5.1. For η > 0, r = 0 is stable, while when
η < 0, r = 0 becomes unstable and r = ±√−M2η/M1 are stable. This means that
r = 0 is the separator between two stable stationary solutions for η < 0. Note that
r corresponds to the velocity of traveling front solutions. Then we have

Corollary 5.3. Fix a small positive ε arbitrarily. Since both M1 and M2

are negative, the bifurcation structure in the neighborhood of τ = τ(ε) (τ(0) = τ0)
is a super-critical pitchfork type as in Fig. 5.2. That is, the stationary front solution
S(x; ε) which corresponds to the branch with c = 0 in Fig. 5.2 is stable for τ > τ(ε)
while it is unstable for τ < τ(ε) and there appear stable traveling front solutions, say

S±(x− ct; ε) with c = ±
√

−M2η
M1

as in Fig. 5.2, where η = τ − τ(ε). Furthermore

for τ < τ(ε), the unstable stationary solution S(x; ε) plays the role of a separator
between stable traveling front solutions S±(x− ct; ε).
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Fig. 5.1. Dynamics of solutions of ṙ = M1r
3 + M2ηr.

Fig. 5.2. Bifurcation structure of solutions of (1.1) with (1.3) with respect to the velocity,

say c of traveling fronts. Solid lines denote stable solutions and broken one does

unstable solutions.

6. Application to the dynamics of front solutions with small pertur-
bations

In this section, we will consider

{
ετut = ε2uxx + f(u, v) + λh1(x, u, v),

vt = Dvxx + g(u, v) + λh2(x, u, v),
t > 0, x ∈ R (6.1)

with (1.3) and sufficiently small |λ| as an application to perturbed systems.
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First, we will give the general theorem on the dynamics of front solutions.
(6.1) is written as

ut = L(u) + ηG(u; η) + λA(η)H(x,u),

where A(η) :=
(

1
ε(τ(ε)+η)

0
0
1

)
and H(x,u) :=

(
h1(x,u,v)
h2(x,u,v)

)
.

Then quite similarly to Section 3, we have

Theorem 6.1. Let l(t) and r(t) be the functions stated in Theorem 3.2.
Then for |η| < η∗, |r| < r∗ and |λ| < λ∗,

l̇ = r − λ〈A(η)H(x+ l, S(x)),ψ∗〉2 +O(|r|3 + |η|3/2 + |λ|2),
ṙ = K(r; η) + λ〈A(η)H(x+ l, S(x)),φ∗〉2 +O(|r|4 + |η|2 + |λ|2)

hold as long as |r(t)| < r∗, where K(r; η) := M1r
3 +M2ηr.

The proof of this theorem is quite similar to that of Theorem 4.1 in [1] by
replacing ηg(u) in [1] with ηG(u; η) + λA(η)H(x,u). We note to take η and λ

sufficiently small by fixing small ε > 0.

6.1. Imperfection of bifurcation diagram
First, we consider the following problems with small constant perturbation to

analyze the dynamics of solutions more precisely:{
ετut = ε2uxx + f(u, v),

vt = Dvxx + g(u, v) + λ,
t > 0, x ∈ R (6.2)

with (1.3) and sufficiently small |λ|. Then Theorem 6.1 leads (6.2) to

Corollary 6.2. Let l(t) and r(t) be the functions stated in Theorem 3.2.
Then for |η| < η∗, |r| < r∗ and |λ| < λ∗,

l̇ = r +
8
√
D

9
λ+O(|r|3 + |η|3/2 + |λ|2),

ṙ = K(r; η) − 16
√
D

3
λ+O(|r|4 + |η|2 + |λ|2)

hold as long as |r(t)| < r∗ as the dynamics of front in (6.2), where K(r; η) :=
M1r

3 +M2ηr.

This corollary is easily shown by the application of Theorem 6.1 for the case
that H(x,u) =

(
0
1

)
. Then the equations in Theorem 6.1 become

l̇ = r − λ〈1, ψ∗
2〉2 +O(|r|3 + |η|3/2 + |λ|2),

ṙ = K(r; η) + λ〈1, φ∗2〉2 +O(|r|4 + |η|2 + |λ|2)
and the direct calculations give Corollary 6.2.

Corollary 6.2 shows the imperfection of the pitch-fork bifurcation diagram for
front solutions when λ is not zero (Fig. 6.1).
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Fig. 6.1. Bifurcation structure of solutions of (6.2) with (1.3) with respect to the velocity,

say c of traveling fronts. Solid lines denote stable solutions and broken one does

unstable solutions. (a) λ > 0, (b) λ < 0.

6.2. Dynamics on heterogeneous media
Next, we consider the problem on heterogeneous media as follows:

{
ετut = ε2uxx + f(u, v) + λh(x),

vt = Dvxx + g(u, v),
t > 0, x ∈ R (6.3)

with (1.3) and sufficiently small |λ|. Then Theorem 6.1 leads (6.3) to

Corollary 6.3. Let l(t) and r(t) be the functions stated in Theorem 3.2.
Then for |η| < η∗, |r| < r∗ and |λ| < λ∗,

l̇ = r − λ

ετ(ε)
〈h(x+ l), ψ∗

1〉2 +O(|r|3 + |η|3/2 + |λ|2),

ṙ = K(r; η) +
λ

ετ(ε)
〈h(x+ l), φ∗1〉2 +O(|r|4 + |η|2 + |λ|2)

hold as long as |r(t)| < r∗, where K(r; η) := M1r
3 +M2ηr.

Now, we assume λ = Λτ(ε)|η|3/2 and change the scales by r =
√|η|R and

T =
√|η| t for negative η. Then the equations of l and r in Corollary 6.3 become

lT = R− Λ
ε
|η|〈h(x+ l), ψ∗

1〉2 +O(|η|),

RT =
√

|η|
{

(M1R
2 −M2)R+

Λ
ε
〈h(x+ l), φ∗1〉2

}
+O(|η|)
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and the lowest order equations are

⎧⎨
⎩
lT = R,

RT =
√

|η|
{

(M1R
2 −M2)R+

Λ
ε
〈h(x+ l), φ∗1〉2

}
.

(6.4)

Here, we note that terms K(r; η) and λ
ετ(ε) 〈h(x+ l), φ∗1〉2 are balanced in the scale

of λ = Λτ(ε)|η|3/2 since 〈h(x+ l), φ∗1〉2 is O(ε) as shown below. In other scales of λ,
K(r; η) or λ

ετ(ε) 〈h(x+ l), φ∗1〉2 is dominant and the dynamics will be almost trivial.
In order to consider behaviors of fronts in detail, we assume h(x) = H(x), the

Heaviside function defined by H(x) = 0 for x < 0 and H(x) = 1 for x > 0. Since

φ∗1(x) = −8
√

2

{
Ẇ0

(x
ε

)
+

ε

12
√
d

e−x/
√
D

1 + V0(x)

}
+ ε2E1(x) + εE2

(x
ε

)
(x > 0)

and φ∗1(x) is an even function, we can easily calculate

H2(l) :=
1
ε
〈H(x+ l), φ∗1〉2 =

1
ε

∫ ∞

−l
φ∗1(x) dx

= 4
√

2
{(

1 − 1
3

log 2
)
±
(

1 − 2W0

( |l|
ε

)
− 1

3
log

2
1 + e−|l|/√D

)}
+O(ε)

(6.5)
for l > 0 and l < 0, respectively and (6.4) becomes

{
lT = R,

RT =
√|η| {(M1R

2 −M2)R+ ΛH2(l)}.
(6.6)

The graph of H2(l) is as Fig. 6.2.

Fig. 6.2. The graph of H2(l) with D = 0.5 and ε = 0.07.
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First we consider the case Λ > 0, which implies the jump-up case at x = 0.
We should find there appears a negative part in the graph of H2(l) for l < 0. This
implies in (6.6) that if R(0) is positive but sufficiently small, R(T ) can become
negative before l(T ) arrives at l = 0 as in Fig. 6.4. Since R(T ) corresponds to the
velocity of front solution of (6.3), this means the front solution can be reflected by
the inhomogeneity λH(x). In fact, (6.6) has an unstable equilibrium P ∗ = (l∗(ε), 0)
satisfying H2(l∗(ε)) = 0 and l∗(ε) < 0 when Λ > 0. Fig. 6.3 is a conceptual figure
of the flow of (6.6) around P ∗ in (l, R) plane.

Fig. 6.3. The flow of (6.6) when Λ > 0 in (l, R) phase plane.

We can also observe in (6.3) that if the initial velocity of a front solution
is very small, the front solution goes back even if the initial velocity is positive
as in Fig. 6.5. This is a remarkable fact because the inhomogeneity λH(x) is
nonnegative and it is intuitively expected that such a nonnegative inhomogeneity
merely enhances the velocity of the front solution. Thus, the result of the dynamics
is different from intuitive considerations, which shows the importance to know the
precise information of eigenfunctions.

For the case Λ < 0 (λ < 0), which implies the jump-down case at x = 0, we
easily find the front solution is always reflected by the inhomogeneity λH(x) as
in Fig. 6.6.

Finally, we briefly show an occurrence of oscillating behaviors by the in-
homogeneity when h(x) := H(x) − a for 0 < a < 1. Then

H2(l) :=
1
ε
〈h(x+ l), φ∗1〉2 =

1
ε

{
(1 − a)

∫ ∞

−l
φ∗1(x) dx− a

∫ −l

−∞
φ∗1(x) dx

}

= 4
√

2
{

(1 − 2a)
(

1 − 1
3

log 2
)
±
(

1 − 2W0

( |l|
ε

)
− 1

3
log

2
1 + e−|l|/√D

)}
+O(ε)
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Fig. 6.4. The dynamics of solutions of (6.6) for Λ > 0 (Λ = 2.0 and l(0) = −1.5). Solid

lines denote l(T ) and broken lines do R(T ). (a) The case when R(0) is not so

small (R(0) = 0.1). (b) The case when R(0) is positive but sufficiently small

(R(0) = 0.08).

Fig. 6.5. The dynamics of front solutions of (6.3) for λ > 0 (λ = 3.0 × 10−3, which

corresponds to the value λ = Λτ0|η|3/2). u component is described. (a) The

case when the initial velocity is not so small. (b) The case when the initial

velocity is positive but sufficiently small.
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Fig. 6.6. (a) The dynamics of solutions of (6.6) for Λ < 0 (Λ = −2.0). Solid lines denote

l(T ) and broken lines do R(T ). (b) The dynamics of front solutions of (6.3)

for λ < 0 (λ = −3.0 × 10−3, which corresponds to the value λ = Λτ0|η|3/2).

u component is described.

for l > 0 and l < 0, respectively. Since H2(+∞) = 8
√

2
(
1− 1

3 log 2
)
(1− a) > 0 and

H2(−∞) = −8
√

2
(
1− 1

3 log 2
)
a < 0, a negatively large Λ < 0 implies the occurrence

of oscillating motions in (6.6). In fact, an oscillating motion of front solutions for
reaction-diffusion system (6.3) is observed as in Fig. 6.7.

Fig. 6.7. The oscillating motion of front solutions of (6.3) for λ < 0 and h(x) = H(x)−0.5

with the same value of λ as Fig. 6.6. u component is described.

More detailed analysis of front solutions by using the reduced ODE (6.6) will
be mentioned in the forthcoming paper ([2]).
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