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Global behavior of B models is discussed. When the source term for new B cells equals
zero, the system has a conservation quantity. It implies the structurally unstability. It
suggests that lack of the source of new B cells may unstabilize the immune system. When
the B model incorporates autoimmunity, it loses symmetry. The asymmetry suggests
the transition from a tolerant state to autoimmune state is more likely than the inverse
transition. Effect of dose of antigen is also considered.
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1. Introduction

In this paper, we consider the qualitative analysis of B cell models for an
application to autoimmune disease.

De Boer, Perelson, and Kevrekidis [1] consider the behavior of immune network
interaction with various kinds of models. One of them is the B model, which
describes the interaction between B cell clones. It is one of the simplest models
and is used as a measure of more complicated models, for example, the AB model,
which incorporates the antibodies as well as the B cells. B models are investigated
also in [3], for example. Perelson and Weisbuch [2] deal with mathematical models
in immunology, which include B models and AB models.

Sulzer and van Hemmen [4] consider a strategy to treat autoimmunity. They
consider the effect of controlled dose of antigen using the models based on the AB
models. They suggest that repeated injection of antigen according to monitored
autoantibody titer is effective to the transit from an autoimmune state to a tolerant
state, or the healthy state.

In this paper, we consider a situation similar to that of [4]. We here use B
models instead of AB models. Since B models are simple, we can deal with them
rigorously, and the observation of the phase space is clear.

In Section 2, we introduce B models and its application to autoimmunity.
In Section 3, we consider the qualitative analysis of the B models with two

clones. We mainly deal with the cases where there are no recruitment of new B
cells. In these cases, the system has a conservation quantity. We can prove the
existence of homoclinic, heteroclinic, and periodic orbits using the conservation
quantity. We compare the B model with autoimmunity to that without it. The
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flow of the former is more complicated than the latter. The results suggest the
deficiency of recruitment of new B cells may unstabilize the immune system.

In Section 4, we observe the effect of invasions of antigen. We consider two
cases: invasions of antigen at a tolerant state and at an autoimmune state. If
there is no recruitment of new B cells, injection at a tolerant state can change the
state both to an autoimmune state and to the neutral state, while injection at a
autoimmune state can change it only to the neutral state.

Transition to the neutral state can be prevented for positive m because positive
m stabilize the system. We can expect that small m can explain the transition from
a tolerant state to autoimmune state by repeated invasions of antigen.

Because of the simplicity of the models, transition from an autoimmune state
to a tolerant state, as described in [4], is not explained by this model. However
we can expect that the consideration of B models will be a guide to observation of
more complicated models. The asymmetry of the model suggests transition from
an autoimmune state to a tolerant state (recovery from autoimmunity) is more
unlikely than the reverse transition (onset of autoimmunity).

2. B models and autoimmunity

First we introduce a B model developed in [1]. Let Bi(t) be the population of
B cell clone i (i = 1, 2) at time t. The proliferation of B cells is determined by the
amount of stimulation h in accordance to the activation function

f(h) =
h

h+ θ1

θ2
h+ θ2

, (1)

where positive constants θ1 and θ2 satisfy θ1 � θ2. The function f(x) is increas-
ing for 0 < h <

√
θ1θ2 and decreasing for h >

√
θ1θ2. The activation attains the

maximum at the intermediate stimulation h =
√
θ1θ2. Then the dynamics of Bi is

described by the equation

dBi

dt
= m+Bi(pf(hi) − d), (2)

where m is a source term for new B cells from the bone marrow, p and d are the
proliferation rate and the death rate of B cells, respectively.

If we consider a two-clone model, where B1 reacts with B2 and B2 reacts with
B1, we have h1 = B2 and h2 = B1. Thus we have a two-clone B model

dB1

dt
= m+B1(pf(B2) − d),

dB2

dt
= m+B2(pf(B1) − d).

(3)

The qualitative features of (3) are investigated also in [1]. For estimated parameter
values, system (3) has five equilibria Q0(q0, q0), Q1(q1, q1), Q2(q3, q2), Q3(q2, q3),
and Q4(q4, q4), where q0 < q1 < q4 and q2 < q3. Three of them, Q0, Q1, and Q4, lie
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on the diagonal B1 = B2, and the others, Q2 and Q3, lie on points symmetric with
respect to the diagonal. The equilibria Q0, Q2, and Q3 are locally asymptotically
stable, and the others are unstable. (See also Section 3.)

We now consider autoimmunity with a B model. Suppose B1 is autoreactive
clone and B2 is anti-idiotype of B1. Then B1 reacts with self-antigen and B2, and
B2 reacts with B1. We assume that the self-antigen u is constant. The assumption
can be due to the homeostasis. Autoimmune disease generally has a long period
symptom, and the autoimmune reaction can be expected not to be large. Thus we
assume u is small. Then the system becomes

dB1

dt
= m+B1(pf(B2 + u) − d),

dB2

dt
= m+B2(pf(B1) − d).

(4)

If u is small and the other parameters are estimated values as in (3), (4) also has
five equilibria P0, P1, P2, P3, and P4, which correspond to Q0, Q1, Q2, Q3 and Q4,
respectively. We can then show that P2 and P3 are locally asymptotically stable
similarly to [1]. For the parameter values near that used in [1] and small u, we can
show that P0 is locally asymptotically stable and P1 and P4 are unstable.

According to [4], we call P0 a neutral steady state, P2 an autoimmune steady
state, and P3 a tolerant steady state. At the autoimmune steady state, autoreactive
B cells (B1) are susceptible to stimulation, and have large population in contrast
to its anti-idiotype.

3. Qualitative analysis of models

In this section, we explore the global behavior of the solution of (4). We here
assume that m = 0. The assumption meas that there is no recruitment of new B
cells. This may be an ideal case, but it is a base for the consideration for the case
m > 0.

We here deal with a general form of f including the function (1). Let α > 0 be
a constant and f(x) be a continuously differentiable function on [0,∞) satisfying
the following conditions:
1. f(0) = 0,
2. f ′(x) > 0 for 0 < x < α,
3. f ′(x) < 0 for α < x,
4. limx→∞ f(x) = 0.
We put M = f(α), and fix positive constants d and p such that 0 < d < pM . Then
there exist two constants βi (i = 1, 2) such that f(βi) = d/p and 0 < β1 < α < β2.

Let u be a nonnegative constant such that u < β1. We consider the following
model whose variables are B1 and B2:⎧⎪⎪⎨

⎪⎪⎩

dB1

dt
= B1(pf(B2 + u) − d)

dB2

dt
= B2(pf(B1) − d).

(5)
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We investigate the qualitative properties for this model in the two case u = 0 and
u > 0 separately. This model has the following five equilibria:

P0(0, 0), P1(β1, β1 − u), P2(β2, β1 − u), P3(β1, β2 − u), P4(β2, β2 − u).

The equilibrium P0(0, 0) is clearly asymptotically stable. We calculate the Jacobi
matrix in general form:

(
pf(B2 + u) − d pB1f

′(B2 + u)
pB2f

′(B1) pf(B1) − d

)
(6)

The diagonal elements are zero at P1, P2, P3 and P4. Considering the signature
of f ′(βi)’s, we conclude that P2 and P3 are neutrally stable and that P1 and P4

are saddle points. Vectors tangential at P1 to the stable manifold have elements of
opposite sign and vectors tangential at P1 to the unstable manifold have elements
of same sign. Vectors tangential at P4 to the stable manifold have elements of
same sign and vectors tangential at P4 to the unstable manifold have elements of
opposite sign.

We show that this model has a conservation quantity. We define a two variable
function G(B1, B2) by

G(B1, B2) =
∫ B1

β1

pf(ξ1) − d

ξ1
dξ1 −

∫ B2

β1−u

pf(ξ2 + u) − d

ξ2
dξ2. (7)

Proposition 1. G(B1, B2) is a conservation quantity for the system (5).

Proof. When (B1, B2) moves along the differential equation (5), we have

dG

dt
=

(pf(B1) − d)
B1

dB1

dt
− (pf(B2 + u) − d)

B2

dB2

dt

=
(pf(B1) − d)

B1
B1(pf(B2 + u) − d) − (pf(B2 + u) − d)

B2
B2(pf(B1) − d)

= 0. �

This propositon shows that trajectories of the model lie in the curves
G(B1, B2) = C where C’s are constants.

We investigate the values of G(B1, B2). We calculate partial derivatives of
G(B1, B2) as follows:

∂G

∂B1
=
pf(B1) − d

B1
,

∂G

∂B2
= −pf(B2 + u) − d

B2
.

Then we have that ∂G/∂B1 is positive if β1 < B1 < β2, is negative if B1 > β2 or
B1 < β1, and is zero if B1 = β1, β2, and that ∂G/∂B2 is negative if β1 − u < B2 <

β2 − u, is positive B2 > β2 − u, B2 < β1 − u and is zero if B2 = β1 − u, β2 − u.
In the region (β1,∞)×(0, β2−u), G(B1, B2) is monotonically decreasing along

any radial direction from the equilibrium point P2(β2, β1 − u), and in the region
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(0, β2)×(β1−u,∞), G(B1, B2) is monotonically increasing along any radial direction
from the equilibrium point P3(β1, β2 − u).

Let L be a positive constant such that pf(x) ≤ d/2 for x ≥ L. Then for
B1 ≥ L, we have

G(B1, B2) ≤
∫ L

β1

pf(ξ) − d

ξ
dξ − d

2

∫ B1

L

dξ

ξ
−

∫ B2

β1−u

pf(ξ + u) − d

ξ
dξ

= −d
2

log
(
B1

L

)
+

∫ L

β1

pf(ξ) − d

ξ
dξ −

∫ B2

β1−u

pf(ξ + u) − d

ξ
dξ.

From this, for a fixed B2 > 0 we have

lim
B1→∞

G(B1, B2) = −∞.

Similarly, for a fixed B1 > 0 we have

lim
B2→∞

G(B1, B2) = ∞,

for a fixed B2 > 0 we have

lim
B1→+0

G(B1, B2) = −∞,

and for a fixed B1 > 0 we have

lim
B2→+0

G(B1, B2) = ∞.

When (B1, B2) approaches the origin, G(B1, B2) can tend to any real number as
t→ ∞.

We determine the phase portrait of this system in two cases separately. We
note that in both cases, clearly, there exists a heteroclinic orbit from P1 to P0.

3.1. The case u = 0
We consider the existence of heteroclinic orbits and homoclinic orbits.

Proposition 2. There exists a heteroclinic orbit from P1 to P4. This hetero-
clinic orbit is a line segment {(B1, B2) | B1 = B2, β1 < B1 < β2} as a curve.

Proof. Since u = 0, the set {(B1, B2) | G(B1, B2) = 0} in (β1, β2)× (β1, β2) is
exactly equal to {(B1, B2) | B1 = B2} in the region. Since vectors tangential at P1

to the unstable manifold have elements of same sign, the desired heteroclinic orbits
exists. �

We investigate the behavior of the solution extending the unstable manifolds
of P4, and show the existence of other heteroclinic orbits.

Proposition 3. There exists a heteroclinic orbit from P4 to P1 which lies at
the right side of P2. Similarly, there exists a heteroclinic orbit from P4 to P1 which
lies at the left side of P3.
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Proof. We take a point (B0
1 , B

0
2) on the unstable manifold of P4 in the rect-

angle (β2,∞) × (β1, β2). The solution (B1(t), B2(t)) with initial point (B0
1 , B

0
2)

moves in lower right direction, and moves lower left direction, and moves in up-
per left direction as t increase from 0. Finally, one of the following happens: it
reaches the line segment {(β1, B2) | 0 < B2 < β1 − u}, or reaches the line segment
{(B1, β1 − u) | β1 < B1 < β2} or tends to P1 as t → ∞. The value of G(B1, B2)
on the line segment {(β1, B2) | 0 < B2 ≤ β1 − u} is monotonically increasing as
B2 increase, that on the line segment {(B1, β1 − u) | β1 ≤ B1 ≤ β2} is also mono-
tonically increasing and the value of G(B1, B2) at P1 is the same as that of P4 by
Proposition 2. Then the above solution must tend to P1 as t → ∞. Another case
is similar. �

As for closed trajectories, the following holds.

Proposition 4. In the regions surrounded by heteroclinic orbits, each solu-
tion is a closed trajectory surrounding one equilibrium if it does not coincide with
the equilibrium. There exists no closed trajectory outside the regions.

3.2. The case u > 0
When u > 0, the heteroclinic orbits in the case of u = 0 disappear, and

homoclinic orbits appear.

Proposition 5. Let u > 0. Then there exists a homoclinic orbit from P1

to P1 surrounding P2, and a homoclinic orbit from P4 to P4 surrounding P3. The
solution moves clockwise on the first orbit, and moves anticlockwise on the sec-
ond orbit.

Proof. Since the vectors tangential at P1 to the unstable manifold have ele-
ments of same sign, we can take a point (B1

1 , B
1
2) on the unstable manifold in the

region (β1, β2)×(β1−u, β2−u). The solution with initial point (B1
1 , B

1
2) moves in up-

per right direction while it stays in the region (β1, β2)×(β1−u, β2−u). The value of
G(B1, B2) on the line segment {(β2, B2) | β1−u ≤ B2 ≤ β2−u} is monotonically de-
creasing as B2 increases and that on the line segment {(B1, β2−u) | β1 ≤ B1 ≤ β2}
is monotonically decreasing as B1 decreases. Since

G(β2, β2 − u) −G(β1, β1 − u)

=
∫ β2

β1

pf(ξ) − d

ξ
dξ −

∫ β2−u

β1−u

pf(ξ + u) − d

ξ
dξ

=
∫ β2

β1

(pf(ξ) − d)
(

1
ξ
− 1
ξ − u

)
dξ

< 0,

the solution reaches the line segment {(β2, B2) | β1 −u < B2 < β2 −u}. After that
the solution moves in lower right direction, and moves in lower left direction. As in
the proof of Proposition 3, the solution must tend to P1 as t → ∞. Another case
is similar. �
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The system has another heteroclinic orbit.

Proposition 6. There exists a heteroclinic orbit from P4 to P0 lies in the
right side of the homoclinic orbit surrounding P2.

Proof. We take a point (B2
1 , B

2
2) on the unstable manifold of P4 in the region

(β2,∞) × (β1 − u, β2 − u). It is clear that the solution with initial point (B2
1 , B

2
2)

tends to P0 as t→ ∞.

As for closed trajectories, the following holds.

Proposition 7. In the regions surrounded by homoclinic orbits, each solu-
tion is a closed trajectory surrounding one equilibrium if it does not coincide with
the equilibrium. There exists no closed trajectory outside the regions.

Note 3.1. There exists a backward orbit extending stable manifold of P1 in
upper left direction and a backward orbit extending stable manifold of P4 in upper
right directions. They separate the behaviour of the solutions drastically.

Note 3.2. The model which we consider in this section has a conservative
quantity. But if the system has a source, the property of the system changes. Let
m be a sufficiently small positive number. We consider the following model:⎧⎪⎪⎨

⎪⎪⎩

dB1

dt
= m+B1(pf(B2 + u) − d)

dB2

dt
= m+B2(pf(B1) − d).

(8)

Put ψ(B1, B2) = 1/(B1B2). Then

∂

∂B1
{ψ · (m+B1(pf(B2 + u) − d))} +

∂

∂B2
{ψ · (m+B2(pf(B1) − d))}

= −m(B1 +B2)
B2

1B
2
2

< 0.

This shows that the system has a Durac function. There exists no closed curves
and homoclinic curves in the phase space of the above model.

4. Effect of invasions of antigen

In this section, we consider effect of additional antigen using the results in
Section 3. First we assume m = 0, then the autoimmune and tolerant steady
states, P2 and P3, are not asymptotically stable. However, inside the homoclinic
orbits, all orbits are periodic. Hence we say the state is autoimmune when the orbit
lies inside the homoclinic orbit which has the autoimmune steady state inside. The
tolerant state can be defined similarly.

We will consider whether the invasion of antigen changes the state from one
to another. We denote the density of the antigen by V . We introduce a model
incorporating the invations of antigen. The antigen stimulates B1 with the same
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affinity as B2 and u, and it decays proportionally to B1 with rate k. We here
consider the situation where the source m of B cells is equal to 0. It may be an
ideal situation, but it is useful to see how the state can be changed. We thus have
the equations, which is a B model version of the system in [4],

dB1

dt
= B1(pf(B2 + u+ V ) − d),

dB2

dt
= B2(pf(B1) − d),

dV

dt
= −kB1V.

(9)

Because V decays to 0 as t → ∞, the solution of (9) approaches the closed orbit
defined by (5) as t→ ∞.

Assume that there is no additional antigen in the body, i.e. V = 0. Then B1

and B2 are governed by (5). The injection of antigen changes the orbit. After the
injection at t = t0, B1, B2, and V are changed according to (9). We consider how
the injection affect the dynamics. For this purpose, we choose a closed orbit of
model (5), which describes the dynamics without V , and take a point (B0

1 , B
0
2) on

the orbit. Then we compare the orbit of (9) with initial condition

B1(t0) = B0
1 , B2(t0) = B0

2 , V (t0) = V 0

to the original one.
Since we here deal with numerical computation, we must define the function

form of f and determine the parameter values. We use the function (1) and the
parameter values

p = 1.0, d = 0.5, θ1 = 10, θ2 = 100, u = 3.0, k = 0.01.

These values are those estimated in [1] except u, k, θ1, and θ2. We use the values
θ1, θ2 in [4] for better display of graphs of orbits. Since Sulzer and van Hammen
[4] uses a different form of the function f and the roots β1 and β2 are about twice
bigger than ours, we change the value u from 7 to 3. Then we have numerical values

β1 = 13.0, α = 31.7, β2 = 77.0,

where pf(h) − d > 0 if β1 < h < β2 and f(h) takes the maximum at h = α. Note
that from the previous discussion, we can see the change of values does not affect
the qualitative behavior of the solutions.

Before considering the effect of the injection, we review a global figure of the
phase space for (5) with u > 0 (Fig. 1). The system has two homoclinic orbits. One
connects P1 to itself. On the orbit, (B1, B2) moves clockwise. The other connects
P4 to itself. On it, (B1, B2) moves counter-clockwise. Inside these homoclinic
orbits, the solutions of (5) form periodic orbits as mentioned in Section 3. Note
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Fig. 1. The global behavior of the solutions of (5) when u �= 0.

Fig. 2. The effect of injection for the autoimmune state.

that the shift between the tolerance and autoimmune states occurs when the orbit
moves across one of the homoclinic orbits.

First we consider the case where a closed orbit of model (5) lies inside the
homoclinic orbit in the region {(B1, B2) ∈ IntR2

+; B1 > B2 − u}. This case
corresponds to the autoimmune state. Fig. 2 shows the shift of orbits by the
injection of antigen at (B0

1 , B
0
2).
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Fig. 3. The orbit tends to (0, 0) after the injection

The injection affects the orbit in accordance with the value B2 at the injection.
The injection at (B0

1 , B
0
2) with B0

2 near 10 implies the increase of B1 (Fig. 2 (a),
(b)). The increase results in increase of amplitude when (B0

1 , B
0
2) lies on right side

of the orbit (Fig. 2 (a)) and in decrease of amplitude when it lies on the left side
(Fig. 2 (b)). Fig. 2 (c) shows injection does not immediately affect the orbit because
the change of B1, keeping B2 unchanged, affects the orbit little, but after that the
remaining antigen affects the orbit like in the case (b). Note that (B1(t), B2(t))
moves clockwise on this orbit. Fig. 2 (d) shows that the injection does not affects
the orbit.

The change of state occurs only when the orbit is enlarged by the injection.
The change actually occurs when the amplitude of the orbit is large and the antigen
is injected when (B1, B2) is on the right side of the orbit (Fig. 3). But the state
changes to the neutral state (0, 0), not to a tolerant state. We can see from the
observation above that it is unlikely that a state changes from an autoimmune state
to a tolerance state.

Next we consider the transition from a tolerance state. Assume the orbit origi-
nally lies inside the homoclinic orbit in the region {(B1, B2) ∈ IntR2

+; B1 < B2−u}.
Fig. 4 shows the shift of orbit by the injection of the antigen. When B2+u > α,

the injection prevents B1 from increasing. Since u = 3 and α � 31.7, the orbits
shifts to left after the injection in Fig. 4 (a), (b), (c). Consequently the altered
orbit lies inside the original one in case (a), and it lies outside the original in case
(b) and (c).

The enlargement of the orbit by the injection is likely to occur in this case.
The outside shift of the orbit can result in a transition from the tolerance state
toward the autoimmune state (Fig. 5). The trajectory finally approaches to the
neutral state (0, 0).

We see that the state can move from a tolerant region to a autoimmune state
and it remains in the autoimmune state approaching the closed orbit, when the
antigen titer V 0 is large. Then the remaining antigen moves the orbit across the
homoclinic orbit (Fig. 6).
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Fig. 4. The effect of injection for the tolerant state.

Fig. 5. The shifted orbit first runs near the autoimmune orbit and finally approaches

(0, 0).

Next we consider the case m > 0. Then we have equations

dB1

dt
= m+B1(pf(B2 + u+ V ) − d),

dB2

dt
= m+B2(pf(B1) − d),

dV

dt
= −kB1V.

(10)
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Fig. 6. The orbit shifts to the autoimmune state.

Fig. 7. The effect of the injection for nonzero m.

In this case, the orbit can be attracted to the equilibria P2 or P3. Fig. 7 (a) shows,
if m is not small, the orbit is attracted to P3 and the transition is prevented.
Conversely if m is small, the orbit can be attracted to P2 after the transition from
the tolerance domain to the autoimmune domain (Fig. 7 (b)).

5. Discussion

In our model, the lack of birth of new B cells (m = 0) makes the system
structurally unstable. Small perturbations, such as the invasion of the antigen,
can change the orbit of the solution. After the perturbation, the solution changes
periodically along a closed orbit. Because the effect of a perturbation remains
forever, repeated perturbations can move the orbit extensively and can result in the
transition of states. Hence this model suggests that the immune system becomes
unstable when m = 0.

If m = 0, the trajectory is likely to approaches to (0, 0) after the transition.
It means that the autoimmunity vanishes. The case m = 0 may correspond to
the case where few kinds of epitopes are involved and the source of the B cells is
deficient.

The positive value of m, for example, may keep the orbit from approaching
to (0, 0) after the transition. Fig. 7 shows that the orbit after the injection can
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Fig. 8. The orbit shifts from the sink of P2 to that of P3 by the injection.

approach both the tolerant and autoimmune steady states. If m is small, the
attraction to P3 is then so weak that the effect of a perturbation remains long.
Repeated perturbations therefore can shift the orbit from near P3 to the sink of P2.
Fig. 8 shows the transition by the injection from the sink of P3 to that of P2. We
can see that the attraction to P2 is very small and the trajectory approaches to P2

very slowly. This may express an onset of an autoimmune disease. Small m may
correspond to the case where many kinds of epitopes are involved and the source
of B cells is deficient. The results also show that the autoimmune disease might be
hard to recover from in this case.

The asymmetry of the model makes the difference of probability between the
transition from a tolerance state to an autoimmune state and the inverse transition.
The discussions in Sections 3 and 4 show that the flow has a tendency to move from
the region {(B1, B2) | B1 < B2 −u} to {(B1, B2) | B2 −u < B1}. (See also Fig. 1.)
This suggests difficulty of treatment of autoimmune diseases.

Sulzer and van Hemmen [4] suggest that the controlled dose can shift the state
from an autoimmune state to a tolerant state. But our model does not explain such
a transition. The difference may come form a simplicity of our model. Our model
is essentially two dimensional (B1 and B2), and the trajectory is restricted in the
low dimensions. It may be a reason why our model cannot explain the shift from
the autoimmune state to the tolerant state but to (0, 0). We note that the effect of
the injection of antigen in the autoimmune state is large when B1 is large in our
model. This suggests the controlled dose of antigen according to the auto-antibody
titer in [4] is effective.
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