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It is known that Turing systems in two dimensions produce spotted, striped, and
labyrinthine patterns. In three dimensions, a greater variety of patterns is possible.
By numerical simulation of the FitzHugh–Nagumo type of reaction-diffusion system, we
have obtained not only lamellar, hexagonal and spherical structures (BCC and FCC)
but also gyroid, Fddd, and perforated lamellar structures. The domains of these three
structures constitute interconnected regular networks, a characteristic occurring in three
dimensions. Moreover, we derive the Lyapunov functional by reducing the system, and
we evaluate this functional by introducing the asymptotic solutions of each structure by
the mode-expansion method and direct simulation of the time evolution equation.
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1. Introduction

Nature presents a fascinating diversity of patterns in plants, animals, and
other natural formations in response to complex physico-chemical processes [1, 2].
Among such processes, Turing systems have received special attention since Turing
showed that a coupled reaction-diffusion equation with two components admits
spatially periodic solutions if certain conditions are satisfied [3]. This mechanism
is now called “diffusion-driven instability” or “Turing instability” [2]. For the past
five decades, Turing patterns have been studied numerically and analytically as
examples of dissipative structures far from equilibrium [4]. It is well known that
most of pattern formations not only in various biological phenomena [2] but also in
chemical and physical systems [4] have been related to the Turing mechanism.

The first experimental evidence of Turing structure was reported in 1990 by
Castets et al. [6], who observed a sustained standing non-equilibrium chemical pat-
tern in an open chemical reactor with a chloride-iodide-malonic acid (CIMA) reac-
tion. There has been increasing interest in the development of simple and plausible
mathematical models that could describe these pattern formations [4, 5, 7].

The forms and variations of patterns generated by Turing systems have been
studied analytically and numerically by investigating the conditions for instabilities.
On the other hand, chemical experiments have confirmed both theoretical and
numerical results and provided insight into the chemical dynamics of dissipative
structures [5].
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Although a lot of investigations thus far have been restricted to the one or two
dimensions, there are few studies for Turing patterns in three dimensions. De Wit
et al. [8,9] and Leppanen et al. [10] numerically found spherical domains in a body-
centered cubic (BCC) lattice, hexagonally packed cylinders, and both lamellar and
distorted lamellar structures. However, these structures in three dimensions are
essentially related to structures in two dimensions.

In the present paper, we shall discuss three-dimensional Turing patterns in the
FitzHugh–Nagumo type of reaction-diffusion model following our previous studies
[11, 12]. Apart from lamellar and hexagonal structures that are simple generaliza-
tions of two-dimensional patterns, we have obtained gyroid, Fddd, BCC, and perfo-
rated lamellar structures. In this line of research, we explore the three-dimensional
Turing patterns by a large number of computer simulations on the cubic domain
Ω = [0, L]3 using not only various control parameters but also mesh size since the
three-dimensional Turing patterns obtained depend strongly on the domain size L.

Because three or four different patterns are obtained at the same control pa-
rameter (see Fig. 1), the stability analysis of obtained patterns is one of the most
fundamental problems. In this line of research we therefore address this problem
also. Here we derive a Lyapunov functional considering the reduction of the sys-
tems, and we evaluate the functional by introducing the approximate solutions of
domains by two methods (the mode-expansion method and direct simulation in the
time evolution equation).

Fig. 1. Six stationary solutions. The meanings of L, G, Fd, P, H, B, and Fc are given in

the text.

2. The model

Turing [3] showed that two diffusive chemicals reacting with each other locally
could generate spatially heterogeneous patterns in a uniform field. The resulting
system is written as ⎧⎪⎪⎨

⎪⎪⎩
∂u

∂t
= Du∇2u + f(u, v),

∂v

∂t
= Dv∇2v + g(u, v),

(1)
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where u and v are the concentrations of two substances that differ in diffusivity.
Here we assume that v diffuses faster than u, and hence Dv is larger than Du.

Turing [3] said that if, in the absence of diffusion (effectively Du = Dv = 0),
u(t) and v(t) of the corresponding ODEs tend to a linear stable uniform steady
state, then under certain conditions spatially inhomogeneous patterns can evolve
by diffusion-driven instability if Du �= Dv. This novel concept is called “diffusion-
driven instability” or “Turing instability” [2].

We focus on the following the FitzHugh–Nagumo type of reaction-diffusion
system [13, 14] with

f(u, v) = u − u3 − v,

g(u, v) = γ(u − αv − β),
(2)

where the constants α, β, γ,Du and Dv are all positive. This set of equations has
been studied as a model of impulse propagation along nerve axons (Dv = 0.0) [15]
as well as a model of the Belousov–Zhabotinsky chemical reaction α, β, γ,Du and
Dv (Du ≥ Dv) [16]. Therefore, it is well known that the reaction diffusion system
(1) and (2) shows a variety of spatio-temporal patterns. Of course, the oscillatory
phenomena and traveling wave occur in certain parameter regions. Here the pa-
rameters are restricted to fulfill the following conditions where Turing instability
occurs.

One equilibrium solution (u0, v0) is given by u0 − u3
0 − v0 = 0 and u0 − αv0 −

β = 0. The linear stability analysis of the uniform solution is carried out. Put
(u − u0, v − v0) ∼ exp(ikx + λt). The solution becomes unstable if the following
eigenvalue λ is positive,

λ2 + {(Du + Dv)k2 − (3u2
0 + αγ − 1)}λ + (Duk2 + 3u2

0 − 1)(Dvk2 + αγ) + γ = 0.

(3)

Solving this, we obtain the critical wave number

k2
c =

1 − 3u2
0

2Du
− αγ

2Dv
, (4)

and the bifurcation threshold is given by

{Dv(1 − 3u2
0) − αγDu}2

4DuDv
+ αγ(1 − 3u2

0) − γ > 0.

In a three-dimensional system, the wave number is of the form

∣∣�k∣∣ =
2π

L

√
n2

x + n2
y + n2

z,

where L is the domain size and nx, ny, nz are the wave number indices.
There are several other choices of reaction terms f and g, such as the

Brusselator [17] and the Gray–Scott models [18], which behave in ways similar
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to the model proposed above. De Wit et al. [8, 9] and Leppanen et al. [10] studied
three-dimensional Turing patterns using the Brusselator [17] and the Gray–Scott
[18] types of reaction-diffusion systems, respectively.

3. Three-dimensional Turing patterns

We calculated the model given by equations (1) with (2) in three dimensions
numerically. The space is divided into N3 mesh points (N = 32), and periodic
boundary conditions are imposed. To solve the equation, we used the simple Eu-
ler explicit method. To remove the anisotropy in discretizing the Laplacian, we
employed a 27-point difference scheme [19].

In most simulations, we chose these parameters: Du = 5.0 × 10−5, Dv =
5.0×10−3, γ = 26.0, and α = 0.50. The parameter β is set as the control parameter.
We also examined different parameter sets: Du = 5.0 × 10−5, Dv = 5.0 × 10−4,
γ = 4.0, and α = 0.50, but the obtained results remained qualitatively the same.
We also checked the dependency of the results on mesh size in the dividing space.
We tested in the domains of N = 50 and N = 64, and the results were identical.

Although the domain size is not related to the Turing patterns obtained in two
dimensions, the domain size is the critical point to determine Turing patterns in
three dimensions. In our previous paper [11], we selected L = 1.7×10−1 (the linear
dimension of the system is equal to δx = 5.3 × 10−3) as the domain size L.

Here, to explore the variety of obtained patterns, we perform computer simu-
lations using not only various control parameters but also various domain size L.
We change the domain size by 2.0 × 10−5 from L = 1.0 × 10−1 to L = 2.5 × 10−1.

We start with the unstable uniform solution (u0, v0) on which a small random
perturbation is superimposed). To remove trapping at the metastable state, we
introduce a Gaussian noise source ξ = ξ(�x, t) to (1) such that⎧⎪⎪⎨

⎪⎪⎩
∂u

∂t
= Du∇2u + f(u, v) + ξu,

∂v

∂t
= Dv∇2v + g(u, v) + ξv,

(5)

where the first and second moments of ξ are defined as

〈ξ(�x, t)〉 = 0,

〈ξ(�x, t)ξ(�x ′, t′)〉 = A2ξ(�x − �x ′)ξ(t − t′).

The angular brackets denote an average and A is the intensity of the noise. Noise
is added at every time step to each lattice site of the systems.

The asymptotic stationary solutions obtained are summarized in Fig. 1. This
diagram was obtained by changing the five sets of random initial conditions for
a given value of β and for a given mesh size. Note that three or four different
structures coexist. The abbreviations L, H, and B refer to lamellar, hexagonal, and
BCC structures, respectively. The remaining four structures, G, Fd, P, and Fc, are
analyzed below.
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Fig. 2. (a)–(d) The structural evolution of domain for β = 0.04 and L = 1.709 × 10−1

(δx = 5.34 × 10−3), (e) the Bragg position of the structure. For the clarity, the

domains in (a) represent the isosurface of u = 0.08, whereas those in the (b)–(d)

isosurface of u = 0.05. (e) The radius of the spheres is proportional to the relative

peak intensity. In this figure, as well as in Figs. 3–6 (b), the Bragg point at the

origin is omitted.

Fig. 3. (a) Fddd structure for β = 0.04 and L = 1.626 × 10−1 (δx = 5.08 × 10−3)

represented by the isosurface of u = 0.05 and (b) are the same as those in Fig. 2

(e). The Bragg points on the same plane are connected by a line. Note that the

quasi-proper hexagon and the two rectangles are parallel to each other.

To clarify the structures in Figs. 2–6, we carried out Fourier transformation of
the asymptotic values of u and v. We evaluated the scattering intensity that has
the following main peaks (in units of 2π/N apart from the origin O = (0, 0, 0)).

Fig. 2 displays the formation of G and the peaks. Fig. 2 (a)–(d) show the
isosurfaces of u. The distribution of v follows the one of u. Fig. 2 (e) shows the
peaks of distribution of Fig. 2 (d). It is well known that a gyroid structure can be
approximated by the following level set equation:

0 = 8(1 − η)[sin 2x sin z cos y + sin 2y sinx cos z + sin 2z sin y cos z]

− 4η[cos 2x cos 2y + cos 2y cos 2z + cos 2z cos 2x] − ζ,
(6)

where η and ζ are the parameters [20]. The peak positions evaluated numerically
are identical to the reciprocal lattice vector obtained from equation (6), by which
we identify G with a gyroid structure.

The asymptotic domain structure of Fd and the peak positions are shown in
Fig. 3. We omitted the peaks with smaller intensities than ten thousands part of
the largest intensities of peaks. In Yamada et al. [21], the structures with peaks in
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Fig. 4. (a) Perforated lamellar structure for β = 0.04 and L = 1.626 × 10−1

(δx = 6.32 × 10−3) represented by the isosurface of u = 0.05 and (b) the Bragg

position with intensities. The details of (b) are the same as those in Fig. 2 (e).

Fig. 5. (a) BCC structure for β = 0.085 and L = 2.022 × 10−1 (δx = 6.32 × 10−3)

represented by the isosurface of u = 0.05 and (b) the Bragg position with

intensities. The details of (b) are the same as those in Fig. 2 (e).

Fig. 3 (b) were identified as Fddd structures. Thus we conclude that this structure
is an Fddd structure.

The stationary structure of P is displayed in Fig. 4 together with the Bragg
peak positions. The intensities of the higher-order peaks decreased more slowly
than those of the Fddd structure. This layer structure has holes in each layer and
is identified as a so-called perforated lamellar structure.

We have examined the positions of holes in each layer of this structure. It is
evident from this figure that the holes are located at the same position every two
layers.

The spherical domains are distinguished by the arrangement of the spheres.
The stationary structure of B is displayed in Fig. 5 together with the Bragg position.
In Fig. 5 the spheres are located in the center of the body in the fundamental unit.
Thus this is a BCC structure.

The stationary structure of Fc is displayed in Fig. 6 together with the Bragg
positions. In Fig. 6, the spheres are located at the center of the face in the funda-
mental unit. Thus this is an FCC structure.
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Fig. 6. (a) FCC structure for β = 0.085 and L = 1.146 × 10−1 (δx = 3.58 × 10−3)

represented by the isosurface of u = 0.05 and (b) the Bragg position with

intensities. The details of (b) are the same as those in Fig. 2 (e).

4. Stability analysis of asymptotic solutions

As mentioned above, several structures can coexist for a fixed set of parameters.
Hereafter, we explore one of the basic questions to arise in the determination of the
most stable structures.

Equations (1) and (2) are the nonequilibrium system. The general method
for stability analysis of patterns obtained by nonequilibrium systems is to observe
the motion of the planar interface separating between two different structures. If
one of the structures invades the other, one may conclude that the former is more
stable than the latter. However, to carry out this simulation, one needs to provide
a sufficient large system for numerical simulations. This is beyond our computer
facilities.

Here, we employ another method to evaluate the stability of obtained struc-
tures, in which we derive an approximate Lyapunov functional for equations (1)
and (2) used in [11, 12].

4.1. Stability analysis using a mode expansion method
In the limit γ,Dv → ∞ with γ/Dv finite, one may formally put ∂v/∂t = 0 in

(1), so that the variable v can be eliminated. We thus obtain

∂u

∂t
= −δF

δu
, (7)

where

F{u} =
∫

d�r

[
Du

2
(
�∇u

)2 − u2

2
+

u4

4

]

+
γ

2Dv

∫
d�r

∫
d�r ′G(�r, �r ′)(u(�r, t) − β)(u(�r ′, t) − β).

(8)

The Green function is defined through(
−∇2 +

αγ

Dv

)
G(�r, �r ′) = δ(�r − �r ′). (9)

Since γ/Dv is positive, the functional F plays the role of a Lyapunov functional for
the reduced equation (7). This method was first introduced by Ohta [22].
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Although the Lyapunov functional (8) is an approximation for the original
reaction-diffusion equations of (1) and (2) in the limit of γ,Dv → ∞, we attempt
to investigate the relative stability of Turing structures by this form.

Here we also approximate the asymptotic solutions by using mode expansion
for the variable u which was used in [21]. By expanding of equation (6), a gyroid
solution can be approximately expressed a

u(�r, t) = u0 +

⌊
12∑

m=1

am(t)ei�qm·�r +
6∑

n=1

bn(t)ei�pn,�r + c.c

⌋
, (10)

where am(t) and bn(t) is real amplitude. c.c. refers to a complex conjugate. The
fundamental reciprocal lattice vectors as

�q1 = CQ(2,−1, 1), �q2 = CQ(−2, 1, 1), �q3 = CQ(−2,−1, 1),

�q4 = CQ(2, 1, 1), �q5 = CQ(−1,−2, 1), �q6 = CQ(1,−2, 1),

�q7 = CQ(−1, 2, 1), �q8 = CQ(1, 2, 1), �q9 = CQ(1,−1,−2),

�q10 = CQ(1, 1,−2), �q11 = CQ(−1, 1,−2), �q12 = CQ(−1,−1,−2),

�p1 = Cp(2, 2, 0), �p2 = Cp(2,−2, 0), �p3 = Cp(0, 2, 2),

�p4 = Cp(0,−2, 2), �p5 = Cp(2, 0, 2), �p6 = Cp(−2, 0, 2),

where the coefficients are chosen as CQ = Q/
√

6, CP = P/(2
√

2) so that |�qi| = Q,
|�pi| = P and Q2 = 3P 2/4.

Lamellar, hexagonal, BCC, and Fddd structures obtained by using parameters
near Turing bifurcation can be represented as substructures composed of combina-
tions whose reciprocal vectors are contained in the 18 modes of a gyroid.

Note that the approximation of asymptotic solution of Fddd is less accuracy
because the intensity of higher harmonics is not necessarily negligible, and the
asymptotic solution of perforated lamellar cannot be expressed by the 18 modes of
equation (10) since the intensity of the modes gradually changes.

Nevertheless, substituting equation (8) into (10) and ignoring the higher har-
monics, we obtain the Lyapunov functional in terms of the amplitudes and mag-
nitudes of the reciprocal vectors, Fmode = F ({am}, {bn}, P ). This explicit form is
too lengthy to be written here. Through the minimization of Fmode with respect
to am, bn and P , we may determine the most stable structure for fixed parameters
in the reduced system (7). The result is summarized in Fig. 7.

4.2. Stability analysis of the direct simulation of the time evolution
equation

In the previous section we evaluated the stability of the asymptotic domains
by using the mode-expansion method. However, one cannot use this method to
evaluate the stability of perforated lamellar. In this section, therefore, we carry out
direct numerical simulation of the Lyapunov functional equation (8).

It should be noted that the most stable period of structures is unknown before
the equation is solved. Therefore, we have to repeat simulations by changing the



3D Turing Patterns and Stability 75

Fig. 7. Phase diagram in the γ−β plane. The most stable regions for lamellar, hexagonal,

gyroid and BCC are indicated by L, H, G, and S, respectively.

Fig. 8. The lowest values of the Lyapunov functional introducing lamellar (white circle).

Gyroid (square) and perforated lamellar (black circle) structures for γ = 26.0.

The lines for the gyroid and perforated lamellar are terminated at some value β,

beyond which these stable solutions do not exist.

domain size to find the optimal size, i.e., that which gives us the lowest values for
the Lyapunov functional equation (8) to introduce each structure. We evaluate the
three solutions of lamellar, gyroid, and perforated lamellar as patterns to investigate
the most stable structure in the range where the perforated lamellar domain is
obtained. Substituting these solutions into the Lyapunov functional equation (8),
the lowest value of each structure can be calculated. Fig. 8 displays the results for
Du = 5.0×10−5, Dv = 5.0×10−3, α = 0.5, and γ = 26. The horizontal and vertical
axes are the control parameter β and the value of the Lyapunov functional per unit
volume, respectively. It is evident from this figure that there is no range where the
value of the Lyapunov functional per unit volume of the perforated lamellar is the
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lowest. Therefore, we may judge that perforated lamellar is not the most stable
structure in the case where Du = 5.0×10−5, Dv = 5.0×10−3, α = 0.5, and γ = 26.

5. Discussion

We have studied Turing patterns arising in the FitzHugh–Nagumo type
reaction-diffusion equation in three dimensions. Apart from lamellar and hexagonal
structures, which are simple generalizations of two-dimensional patterns, we have
obtained gyroid, Fddd, BCC, FCC, and perforated lamellar structures. Except for
the BCC and FCC structures, the domains consist of interconnected networks that
are characteristic of three dimensions.

It is emphasized that the domain size is to be one of the important factors in
three-dimensional patterns, because there are more varieties of structures in three-
dimensions than that in two dimensions and the fundamental periods of structures
are a little bit different among them. To prevent the dependency on domain size, we
need to provide a sufficient large system for numerical simulation. That is beyond
our computer facilities. That is why we here focus on the fundamental periodic
patterns of each structure.

This paper has also addressed the stability analysis of the obtained domains.
We employ a method to derive approximately the Lyapunov functional equation (8)
for equations (1) and (2) following the manner in [23]. Evaluating the Lyapunov
functional of each structure using the mode-expansion method the theoretical phase
diagram shown in Fig. 7. Moreover, by using the direct simulations of Lyapunov
functional introducing obtained distributions, we conformed there are no parameter
range in Du = 5.0×10−5, Dv = 5.0×10−3, α = 0.5, and γ = 26 where a perforated
lamellar would be the most stable structure.
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