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EXPONENTIAL DECAY ESTIMATES OF THE
EIGENVALUES FOR THE NEUMANN-POINCARÉ

OPERATOR ON ANALYTIC BOUNDARIES
IN TWO DIMENSIONS

KAZUNORI ANDO, HYEONBAE KANG AND YOSHIHISA MIYANISHI

ABSTRACT. We show that the eigenvalues of the Neumann-
Poincaré operator on analytic boundaries of simply con-
nected bounded planar domains tend to zero exponentially
fast, and the exponential convergence rate is determined by
the maximal Grauert radius of the boundary. We present
a few examples of boundaries to show that the estimate is
optimal.

1. Introduction. The Neumann-Poincaré (NP) operator is an in-
tegral operator defined on the boundary of a bounded domain. It nat-
urally arises when solving the Dirichlet and Neumann boundary value
problems for the Laplacian in terms of layer potentials. As the name
suggests, its study goes back to Neumann [19] and Poincaré [22]. It
was a central object in the Fredholm theory of integral equations and
the theory of singular integral operators. The notion of the ‘double
layer operator’ is also commonly used for the NP operator, see [8, 13].

In this paper, we consider spectral properties of the NP operator.
There was some work on spectral properties of the NP operator in the
1950s (see, for example, [23] and the references therein). More recently,
we have seen rapidly growing interest in spectral properties of the NP
operator, due to its connection to plasmon resonance and cloaking by
anomalous localized resonance, see e.g., [15, 16, 17] and the references
therein. In fact, in the quasi-static limit, the plasmon resonance takes
place at the eigenvalues of the NP operator [3, 5], and the anomalous
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localized resonance takes place at the accumulation point of eigenvalues
[1, 4].

Recently, there has been considerable progress in the spectral theory
of the NP operator. In [12], Poincaré’s variational problem was revisit-
ed with the modern language of mathematics. Among other findings of
the paper is that the NP operator can be symmetrized by introducing
a new, but equivalent, inner product to H−1/2 space, the Sobolev −1/2
space. This is a quite important discovery for the spectral theory of
the NP operator. The NP operator, as a self-adjoint operator, has
only two types of spectra: the continuous spectrum and the discrete
spectrum (see, for example, [26]). If a given domain has a smooth
boundary, then the NP operator is compact and has only eigenvalues
accumulating to 0. If the boundary has a corner, then the NP operator
is a singular integral operator and may have a continuous spectrum. We
refer to [7, 10, 20, 21] for recent developments on NP spectral theory
on planar domains with corners. We also mention that a spectral radius
of the NP operator was obtained in [24].

As mentioned above, if the domain has a smooth, C1,α, α > 0,
to be precise, boundary, then the NP operator is compact and has
eigenvalues converging to 0. Here and afterwards, the NP spectrum
is an abbreviation of the spectrum of the NP operator. In the recent
paper [18], a quantitative estimate of the decay rate of NP eigenvalues
was obtained: Let {λj} be the NP eigenvalues arranged in such a way
that |λ1| = |λ2| ≥ |λ3| = |λ4| ≥ · · · . It is proven that, if the boundary
of the domain is Ck, k ≥ 2, then

(1.1) |λn| = o(nα) as n→ ∞,

for any α > −k + 3/2. If, in particular, the boundary is C∞ smooth,
then NP eigenvalues decay faster than any algebraic order. On the
other hand, the NP eigenvalues on the ellipse of the long axis a and the
short axis b are known to be

(1.2) ±1

2

(
a− b

a+ b

)n

, n = 1, 2, . . . .

Therefore, it is suspected that NP eigenvalues on analytic boundaries
tend to 0 exponentially fast. We prove it in this paper.

We show that, if the boundary is analytic, then NP eigenvalues
converge to 0 exponentially fast, and the exponential convergence rate is
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determined by the modified maximal Grauert radius. See Theorem 3.1
for the precise statement of the result and subsection 2.2 for the
definition of the modified maximal Grauert radius. We do not know if
the convergence rate is optimal in general. However, we show that it
is optimal on domains like disks, ellipses and limaçons of Pascal. It is
worth emphasizing that the main theorem is proven using the Weyl-
Courant min-max principle and a Paley-Wiener type lemma (Lemma
3.2).

This paper is organized as follows. In Section 2, we review symme-
trization of the NP operator, define the modified maximal Grauert
radius (and tube), and show that the integral kernel of the NP operator
admits analytic continuation to the modified maximal Grauert tube.
Section 3 presents and proves the main result of this paper. Section 4
provides some examples to show that the modified maximal Grauert
radius yields the best possible bound for the convergence.

2. Preliminaries.

2.1. The NP operator and symmetrization. Throughout, we
assume that Ω is a bounded planar domain whose boundary, ∂Ω, is
analytic. The single layer potential of a function φ on ∂Ω is defined by

S∂Ω[φ](x) =
1

2π

∫
∂Ω

ln |x− y|φ(y) dσ(y), x ∈ R2,

where dσ is the length element of ∂Ω. The NP operator on ∂Ω is
defined by

K∂Ω[φ](x) =
1

2π

∫
∂Ω

⟨y − x, νy⟩
|x− y|2

φ(y) dσ(y), x ∈ ∂Ω,

where νy is the outward unit normal vector at y ∈ ∂Ω. The relation
between the NP operator and the single layer potential is given by the
jump relation for which we refer, for example, to [2]. It is well known
that Plemelj’s symmetrization principle (also known as Calderón’s
identity) holds:

(2.1) S∂ΩK∗
∂Ω = K∂ΩS∂Ω,

where K∗
∂Ω is the L2(∂Ω)-adjoint of K∂Ω.
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We denote by Hs = Hs(∂Ω), s ∈ R, the usual Sobolev space on
∂Ω, and its norm is denoted by ∥ · ∥s. The single layer potential S∂Ω

as an operator on ∂Ω maps H−1/2(∂Ω) into H1/2(∂Ω). It may not be
invertible. In fact, there is a domain Ω in two dimensions such that

S∂Ω : H−1/2(∂Ω) −→ H1/2(∂Ω)

has a kernel of dimension 1, see [25]. However, we may redefine S∂Ω

on its kernel so that the redefined operator, which we still denote by
S∂Ω, is invertible from H−1/2(∂Ω) onto H1/2(∂Ω), see [4, Section 2].
Define

(2.2) ⟨φ,ψ⟩H := −⟨φ,S−1
∂Ω [ψ]⟩

for φ,ψ ∈ H0 := {φ ∈ H1/2 : ⟨φ,S∂Ω[1]⟩ = 0}, equipped with the inner
product ⟨·, ·⟩H. Here and afterwards, ⟨·, ·⟩ denotes the H1/2 − H−1/2

duality product.

It is known that ⟨·, ·⟩H is, in fact, an inner product onH0 and induces
the norm equivalent to ∥ · ∥1/2, namely, there are constants C1 and C2

such that

(2.3) C1∥φ∥1/2 ≤ ∥φ∥H ≤ C2∥φ∥1/2

for all φ ∈ H0, see [9]. Then, K∂Ω is a self-adjoint operator on H0. In
fact, we have the following from (2.1):

⟨φ,K∂Ω[ψ]⟩H = −⟨φ,S−1
∂ΩK∂Ω[ψ]⟩ = −⟨φ,K∗

∂ΩS−1
∂Ω [ψ]⟩ = ⟨K∂Ω[φ], ψ⟩H.

Thus, as a self-adjoint compact operator on a Hilbert space, K∂Ω has
eigenvalues converging to 0. It is known that all eigenvalues lie in
(−1/2, 1/2), see [11]. It is worth mentioning that 1/2 is an eigenvalue
of K∂Ω of multiplicity 1 if we consider K∂Ω as an operator on H1/2, not
on H0.

2.2. Maximal Grauert radius. Let S1 be the unit circle and Q :
S1 → ∂Ω ⊂ C a regular real analytic parametrization of ∂Ω. Such a
parametrization exists since ∂Ω is real analytic. Hereon, we identify R2

with the complex plane C. Then, Q admits an extension as an analytic
function from an annulus

(2.4) Aε := {τ ∈ C : e−ε < |τ | < eε}



EIGENVALUE EXPONENTIAL DECAY ESTIMATES 477

for some ε > 0 onto a tubular neighborhood of ∂Ω in C. Let

(2.5) q(t) := Q(eit), t ∈ R× i(−ε, ε).

Then, q is an analytic function from R × i(−ε, ε) onto a tubular
neighborhood of ∂Ω. Moreover, q is a 2π-periodic function, namely,
q(t+2π) = q(t). The supremum, denoted by ε∗, of the collection of such
ε is called the maximal Grauert radius of q, and the set R× i(−ε∗, ε∗)
the maximal Grauert tube.

In this paper, we consider the numbers ε such that q satisfies an
additional condition:

(G) if q(t) = q(s) for t ∈ [−π, π) × i(−ε, ε) and s ∈ [−π, π), then
t = s.

It is worth emphasizing that condition (G) is weaker than univalence.
It only requires that q attain values q(s), s ∈ [−π, π), only at s.
Condition (G) is imposed for the integral kernel of the NP operator
to be analytically continued, see (2.9). We will see that this condition
yields an optimal convergence rate of the NP operator in examples
in Section 4. Note that the only points ∂Ω, to which the function
q : R× i(−ε, ε) → C maps, are those on the real line.

Since Q is one-to-one on ∂Ω, the extended function is univalent in
Aε if ε is sufficiently small. Therefore, condition (G) is fulfilled if ε is
small. We denote the supremum of such an ε by εq. We emphasize that
εq may differ depending on the parametrization q, see Example 4.3 in
Section 4. Let

(2.6) ε∂Ω := sup
q
εq,

where the supremum is taken over all regular real analytic parametriza-
tion q of ∂Ω. We call ε∂Ω the modified maximal Grauert radius of ∂Ω.
The set R× i(−ε∂Ω, ε∂Ω) is called the modified maximal Grauert tube,
which we denote by G∂Ω.

2.3. Analytic extension of the NP operator. Let q be a regular
real analytic parametrization on [−π, π) of ∂Ω. For x, y ∈ ∂Ω, let
x = q(t) and y = q(s). Then the outward unit normal vector νy is
given by −iq′(s)/|q′(s)| in the complex form. So we have

⟨y − x, νy⟩ =
1

|q′(s)|
ℜ
[
(q(s)− q(t))(−iq′(s))

]
,
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and hence,

⟨y − x, νy⟩
|x− y|2

=
−1

2i|q′(s)|

[
q′(s)

q(t)− q(s)
− q′(s)

q(t)− q(s)

]
.

Therefore, we have

K∂Ω[φ](q(t)) =
−1

4πi

∫ 2π

0

[
q′(s)

q(t)− q(s)
− q′(s)

q(t)− q(s)

]
φ(q(s)) ds.

Define

(2.7) Kq(t, s) :=
−1

4πi

[
q′(s)

q(t)− q(s)
− q′(s)

q(t)− q(s)

]
and

(2.8) Kq[f ](t) :=

∫ π

−π

Kq(t, s)f(s) ds, −π ≤ t ≤ π.

Then, we have the relation

Kq[φ ◦ q](t) = K∂Ω[φ](q(t)).

For each fixed s ∈ R, Kq(t, s) as a function of the t variable has an
analytic continuation to R× i(−εq, εq) \ (s+ 2πZ), which is given by

(2.9) Kq(t, s) :=
−1

4πi

[
q′(s)

q(t)− q(s)
− q′(s)

q(t)− q(s)

]
.

We emphasize that q(t) is analytic by the Schwarz reflection principle.
Therefore, due to condition (G), Kq(t, s) is a meromorphic function in
R× i(−εq, εq) with the singularity on s+ 2πZ. Moreover, it can easily
be seen that

(2.10) lim
t→s

[
q′(s)

q(t)− q(s)
− q′(s)

q(t)− q(s)

]
=

−q′(s)q′′(s) + q′(s)q′′(s)

2|q′(s)|2
.

Note that q′(s) ̸= 0. This means that Kq(t, s) has a removable
singularity at t = s. Thus, for each fixed s ∈ R, Kq(t, s) has an
analytic continuation (as a function of the t variable) in R× i(−εq, εq),
and the extended function is 2π-periodic, namely,

(2.11) Kq(t+ 2π, s) = Kq(t, s).



EIGENVALUE EXPONENTIAL DECAY ESTIMATES 479

Define the space H0 by

(2.12) H0 := {f : f = φ ◦ q, φ ∈ H0}.

We emphasize that H0 is the collection of 2π-periodic functions
equipped with the inner product inherited from H0:

⟨f, g⟩H = ⟨φ,ψ⟩H,

where f = φ ◦ q and g = ψ ◦ q for φ,ψ ∈ H0.

In the next section, we study the spectrum of Kq on the space H0.

3. The main result. Let {λn}∞n=1 be the eigenvalues of the NP
operator K∂Ω on H0, or equivalently, of Kq on H0 as defined in (2.8).
Since eigenvalues of the NP operator in two dimensions are symmetric
with respect to the origin (see, e.g., [6, 23], as well as [7]), we may
assume that eigenvalues are enumerated in the following manner:

(3.1)
1

2
> |λ1| = |λ2| ≥ |λ3| = |λ4| ≥ · · · .

The next theorem is the main result of this paper.

Theorem 3.1. Let Ω be a bounded planar domain with the analytic
boundary ∂Ω and ε∂Ω the modified maximal Grauert radius of ∂Ω. Let
{λn}∞n=1 be the eigenvalues of the NP operator K∂Ω on H0 enumerated
as (3.1). For any ε < ε∂Ω, there is a constant C such that

(3.2) |λ2n−1| = |λ2n| ≤ Ce−nε

for all n.

The remainder of this section is devoted to proving Theorem 3.1.

We first emphasize that the operator Kq is symmetric on H0. In
fact, we have

⟨f,Kq[g]⟩H = ⟨φ,K∂Ω[ψ]⟩H = ⟨K∂Ω[φ], ψ⟩H = ⟨Kq[f ], g⟩H ,

where f = φ◦q and g = ψ◦q for φ,ψ ∈ H0. Since the kernel Kq(t, s) of
the operator Kq is 2π-periodic with respect to the t variable, it admits
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the Fourier series expansion:

(3.3) Kq(t, s) =
∑
k∈Z

aqk(s)e
ikt, aqk(s) =

1

2π

∫ π

−π

Kq(t, s)e
−iktdt.

We obtain the following lemma.

Lemma 3.2. Suppose that Ω is a bounded planar domain with the
analytic boundary, and let q be a regular real analytic parametrization
on [−π, π) of ∂Ω. For any 0 < ε < εq, there is a constant C such that

(3.4) |aqk(s)| ≤ Ce−ε|k|

for all integers k and s ∈ [−π, π).

Proof. If k > 0, then we take a rectangular contour R with the
clockwise orientation in R× i(−εq, εq):

R=R1∪R2∪R3∪R4 := [−π, π]∪ [π, π−iε]∪ [π−iε,−π−iε]∪ [−π−iε,−π].

Since Kq(t, s) is analytic in G∂Ω and 2π-periodic with respect to the t
variable, we have

0 =

∫
R

Kq(t, s)e
−iktdt =

{∫
R1

+

∫
R2

+

∫
R3

+

∫
R4

}
Kq(t, s)e

−iktdt

=

{∫
R1

+

∫
R3

}
Kq(t, s)e

−iktdt,

which implies that

2πaqk(s) =

∫
R1

Kq(t, s)e
−iktdt

= −
∫
R3

Kq(t, s)e
−iktdt

= −
∫ −π−iε

π−iε

Kq(t, s)e
−iktdt.

Since

(3.5) |Kq(t, s)| ≤ C0, s ∈ R, t ∈ R3,
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it follows immediately

(3.6) |aqk(s)| ≤ C0e
−εk.

We emphasize that the constant C0 > 0 is independent of k and s ∈ R.
If k < 0, we can prove (3.4) by taking the rectangular contour

R = [−π, π] ∪ [π, π + iε] ∪ [π + iε,−π + iε] ∪ [−π + iε,−π].

The estimate (3.4) for k = 0 is obvious. Thus, the lemma follows. �

We now recall the Weyl-Courant min-max principle (see, for exam-
ple, [14] for a proof).

Theorem 3.3 (the Weyl-Courant min-max principle). Let T be a
compact symmetric operator on a Hilbert space, whose eigenvalues
{κn}∞n=1 are arranged as

|κ1| ≥ |κ2| ≥ · · · ≥ |κn| ≥ · · · .

If S is an operator of rank less than or equal to n, then

∥T − S∥ ≥ |κn+1|.

Proof of Theorem 3.1. Suppose that ε < ε∂Ω, and let q be a regular
real analytic parametrization of ∂Ω such that ε < εq ≤ ε∂Ω. Using the
Fourier expansion of Kq(t, s) given in (3.3), we define

Sn(t, s) =
∑

|k|≤n−1

aqk(s)e
ikt

and

Sn[f ](t) =

∫ π

−π

Sn(t, s)f(s)ds.

Then, Sn is of rank at most 2n − 1 on H0. Thus, it follows from the
Weyl-Courant min-max principle that

(3.7) ∥Kq − Sn∥ ≥ |λ2n|.

Let f ∈ H0. It holds that

(3.8) ∥f∥21/2 ≈
∑
k

(1 + |k|)|f̂(k)|2,
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where f̂(k) is the kth Fourier coefficient of f , namely,

f̂(k) =
1

2π

∫ π

−π

f(s)e−iksds.

Note that

(Kq − Sn)[f ](t) =
∑
|k|≥n

eikt
∫ π

−π

aqk(s)f(s) ds.

Since ∣∣∣∣ ∫ π

−π

aqk(s)f(s) ds

∣∣∣∣ ≤ ∥f∥1/2∥aqk∥−1/2,

it follows from the Cauchy-Schwarz inequality that

∥(Kq − Sn)[f ]∥21/2 ≤ C∥f∥21/2
∑
|k|≥n

(1 + |k|)∥aqk∥
2
−1/2

for some constant C. Note that

(3.9) ∥aqk∥−1/2 ≤ ∥aqk∥L2 ≤ Ce−ε|k|

for all 0 < ε < εq, which is a consequence of (3.4). It follows that, if
0 < ε < ε′ < εq, then∑

|k|≥n

(1 + |k|)∥aqk∥
2
−1/2 ≤ C1

∑
|k|≥n

(1 + |k|)e−2ε′|k|

≤ C2

∑
|k|≥n

e−2ε|k| ≤ C3e
−2εn,

and hence,

(3.10) ∥(Kq − Sn)[f ]∥1/2 ≤ Ce−εn∥f∥1/2.

We then obtain (3.2) from (2.3), (3.7) and (3.10). This completes the
proof. �

It is worth mentioning that the exponential decay of the eigenvalues
for Kq can also be shown by using the Chebyshev expansion of Kq(t, s).
The Chebyshev expansion has been used in [14] to study eigenvalues
of operators with real analytic symmetric kernels. Using this method,
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it can be shown that (3.2) holds for all ε such that

(3.11) ε < ε0 := log

(
1

π

(
ε∂Ω +

√
π2 + ε2∂Ω

))
.

This result is weaker than Theorem 3.1 since ε0 < ε∂Ω. Thus, we omit
the details.

4. Examples. Theorem 3.1 shows that (3.2) holds for all ε < ε∂Ω.
In this section we present a few examples of domains to show that this
result is optimal in the sense that ε∂Ω is the smallest number with such
a property.

Example 4.1 (Circles). Suppose that ∂Ω is a circle. Then, it can
easily be seen that Kq(t, s) ≡ 1, and hence, ε∂Ω = +∞. Thus, (3.2)
shows that, for any number β > 0, there is a constant C such that

|λ2n| ≤ Cβn

for all n. Indeed, it is known that 0 is the only eigenvalue of the NP
operator on H0.

Example 4.2 (Ellipses). Suppose that ∂Ω is the ellipse given by

∂Ω :
x2

a2
+
y2

b2
= 1, a > b > 0.

A parametrization of ∂Ω is given by

q(t) = a cos t+ ib sin t =
a+ b

2
eit +

a− b

2
e−it, t ∈ [−π, π).

Note that q admits analytic continuation to the entire complex plane,
and hence, the maximal Grauert radius is ∞.

In order to compute the modified maximal Grauert radius ε∂Ω,
suppose that q(t) = q(s), where t ∈ [−π, π) × iR and s ∈ [−π, π).
Nontrivial solutions of this equation are given by

eit =
a− b

a+ b
e−is,

which implies that

e−ℑt =
a− b

a+ b
,
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and hence,

(4.1) εq = log
a+ b

a− b
.

Therefore, from Theorem 3.1, we have the exponential decay estimate

(4.2) |λ2n−1| = |λ2n| ≤ Cβn for any β >
a− b

a+ b
.

In view of (1.2), we see that the number a− b/a+ b in (4.1) is
optimal. This means, in particular, that condition (G) is necessary for
the definition of the modified maximal Grauert radius in this paper.

Example 4.3 (Pascal’s limaçons). Let A be a number such that
0 < A < 1/2. The limaçon of Pascal ∂ΩA is defined by

(4.3) ∂ΩA : w = z +Az2, z = eit, t ∈ [−π, π).

See Figure 1 for the limaçon with A = 0.4.

A = 0.4

x

y

FIGURE 1.

Let us first compute eigenvalues of the NP operator on ∂ΩA. In
order to do so, we recall that the polar equation of an ellipse with one
focus at the origin is, up to similarity,

r =
1

1 + e cos θ

where e is the eccentricity. We denote the ellipse by ∂Ee. In complex
notation, ∂Ee is given by

w = f(z) :=
z

1 + e(z + z−1)/2
=

2

e+ 2z−1 + ez−2
, |z| = 1.
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Let h be the Möbius transformation defined by

(4.4) h(w) :=
−ew + 2

2w
.

Then, we have

(4.5) h(f(z)) = z−1 +
e

2
z−2.

This is the limaçon with A = e/2. In short, we have

(4.6) h(∂E2A) = ∂ΩA.

According to [23, page 1195], eigenvalues of the NP operator are
invariant under the Möbius transformations, and hence, NP operators
on ∂E2A and ∂ΩA have identical eigenvalues. In view of (1.2), we see
that eigenvalues of the NP operator on ∂ΩA are

(4.7) ±1

2

(
1−

√
1− 4A2

1 +
√
1− 4A2

)n

.

A straightforward parametrization of the limaçon ∂ΩA is given by

(4.8) q(t) := eit +Ae2it, t ∈ [−π, π).

This shows that q can be analytically extended to the entire complex
plane. To find εq we suppose q(t) = q(s) for some t ∈ [−π, π) × iR
and s ∈ [−π, π). Then, non-trivial solutions are eit = −eis − 1/A, and
hence, e−ℑt = |eis + 1/A|. Therefore, we have

εq = inf
s
log

∣∣∣∣eis + 1

A

∣∣∣∣ = log

(
1

A
− 1

)
.

Thus, we infer from Theorem 3.1 that

|λ2n−1| = |λ2n| ≤ Cβn for any β >
A

1−A
.

It can be seen from (4.7) that this estimate is not optimal since

1−
√
1− 4A2

1 +
√
1− 4A2

<
A

1−A
.

However, we may use another parametrization of ∂ΩA to obtain an
optimal estimate. In fact, let e = 2A, and
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a :=
1

1− e2
, b := a

√
1− e2

so that

g(z) =
a+ b

2
z +

a− b

2
z−1 + ae, |z| = 1,

is a complex parametrization of ∂Ee. Using the Möbius transformation
h in (4.4), define

(4.9) q1(t) := h(g(eit)).

Then, (4.6) shows that q1(t), t ∈ [−π, π), is a parametrization of ∂ΩA.

If q1(t) = q1(s), then g(e
it) = g(eis). Therefore, as shown in Exam-

ple 4.2, we have

εq1 = log
a+ b

a− b
= log

1 +
√
1− 4A2

1−
√
1− 4A2

,

which yields an optimal estimate.

It is worth mentioning that all three above examples show that (3.2)
holds even for ε = ε∂Ω, while Theorem 3.1 only shows that it holds for
ε < ε∂Ω. It is interesting to show that (3.2) holds even for ε = ε∂Ω in
general.

We now present one more example of a curve on which the NP eigen-
values are unknown.

Example 4.4 (Transcendental curves). We consider the transcenden-
tal curve

∂Ω : w = eAz, |z| = 1, 0 < |A| < π.

(See Figure 2.)

A = i

x

y

FIGURE 2.
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An obvious parametrization of ∂Ω is given by

q(t) := exp(Aeit), t ∈ [−π, π).

If q(t) = q(s) for some t ∈ [−π, π)×iR and s ∈ [−π, π), then non-trivial
solutions are given by

Aeit = Aeis + i2πn, n ∈ Z (n ̸= 0).

It then follows that

εq = inf
n,s

log

∣∣∣∣eis + i2πn

A

∣∣∣∣ = log

(
2π

|A|
− 1

)
.

Thus, we have

(4.10) |λ2n−1| = |λ2n| ≤ Cβn for any β >
|A|

2π − |A|
.
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Abhandlung, Abh. Kgl. Sächs Ges. Wiss. 9, 13, Leipzig, 1887/88.

20. K.-M. Perfekt and M. Putinar, Spectral bounds for the Neumann-Poincaré
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