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BLOW UP OF FRACTIONAL
REACTION-DIFFUSION SYSTEMS

WITH AND WITHOUT CONVECTION TERMS
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ABSTRACT. Based on the study of blow up of a par-
ticular system of ordinary differential equations, we give a
sufficient condition for blow up of positive mild solutions to
the Cauchy problem of a fractional reaction-diffusion system,
and, by a comparison between the transition densities of the
semigroups generated by ∆α := −(−∆)α/2 and ∆α + b(x) · ∇
for 1 < α < 2, d ≥ 1 and b in the Kato class on Rd, we
prove that this condition is also sufficient for the blow up of
a fractional diffusion-convection-reaction system.

1. Introduction. Let d be a positive integer, βi > 1, αi ∈ (1, 2)
and

bi : Rd −→ Rd

a function in the Kato class Kαi−1
d on Rd (see Bogdan and Jakubowski

[3, page 185]), i = 1, 2. In this paper, we study blow up in finite time
of positive mild solutions to the Cauchy problem for the next fractional
reaction-diffusion system with convection terms
(1.1)
∂u1(t, x)

∂t
= (∆α1 + b1(x) · ∇)u1(t, x) + uβ1

2 (t, x), t > 0, x ∈ Rd,

∂u2(t, x)

∂t
= (∆α2 + b2(x) · ∇)u2(t, x) + uβ2

1 (t, x), t > 0, x ∈ Rd,

ui(0, x) = fi(x), x ∈ Rd, i = 1, 2,
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where
∆αi

:= −(−∆)αi/2, 1 < αi < 2,

denotes the fractional power of the Laplacian, fi is a nonnegative, not
identically zero, bounded continuous function, i = 1, 2 and ∇ is the
gradient operator, i.e.,

bi(x) · ∇g(x) =
d∑

j=1

bij(x)
∂g

∂xj
(x),

x = (x1, . . . , xd) , bi ≡
(
bi1, . . . , b

i
d

)
,

i = 1, 2, for any differentiable function g on Rd.

Let pi(t, x, y) be the transition density of the semigroup generated by
∆αi , i = 1, 2. It is known (see Bogdan and Jakubowski [3, Theorems
1, 2]) that the semigroup generated by ∆αi + bi(x) ·∇ has a continuous

transition density pbii (t, x, y) such that, for every 0 < T < ∞, there is
a Ci = Ci(d, αi, bi, T ) > 1 that satisfies

C−1
i pi(t, x, y) ≤ pbii (t, x, y) ≤ Cipi(t, x, y),(1.2)

0 < t ≤ T, x, y ∈ Rd,

and Ci → 1 as T → 0.

The associated integral system to (1.1) is given by

(1.3)

ui(t, x) =

∫
Rd

pbii (t, x, y)fi(y) dy

+

∫ t

0

∫
Rd

pbii (t− s, x, y)uβi

i′ (s, y) dy ds,

t ≥ 0, x ∈ Rd, where i ∈ {1, 2} and i′ = 3 − i. A solution of integral
system (1.3) is called a mild solution of (1.1). In this paper, solutions of
(1.1) should be understood in this mild sense. If there exists a solution
(u1, u2) of (1.3) defined in [0,∞)×Rd, we say that (u1, u2) is a global
solution, and, when there exists a number Tb < ∞ such that (1.3)
has an unbounded solution in [0, t] × Rd for every t > Tb, we say that
(u1, u2) blows up in finite time.

The study of systems like (1.1) arise in several fields, such as heat
conduction, chemical reaction processes, combustion theory, physics
and engineering, see Beberbes and Eberly [2] and Samarskii, et al.,
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[23]. Generators of the form ∆αi perturbed by gradient operators are
used in models of anomalous growth of certain fractal interfaces and
in hydrodynamic models with modified diffusivity, see, for example,
Bardos, et al., [1] and Mann, Jr., and Woyczynski [16].

For a single equation, with α = 2 and without a convection term, in
his pioneering work, Fujita [6] showed the influence of spatial dimension
on the finite time blow up versus global existence of solutions. Also see
[12, 13, 24, 21] for cases with 0 < α ≤ 2. Within the framework of a
fractional diffusion equation, this spatial dimensional influence for the
thermal blow up in a superdiffusive medium with a localized energy
source was also shown in Olmstead and Roberts [18]. Introducing
convection through a linear transport term that is proportional to the
convection speed, under a one-dimensional domain of infinite extent
and a nonlinear source term g(u) satisfying g(u) > 0, g′(u) > 0,
g′′(u) > 0, u ≥ 0 and ∫ ∞

0

du

g(u)
< ∞,

Kirk and Olmstead [11] have shown that there exists a critical convec-
tion speed above which blow up is avoided and below which blow up
is guaranteed. For the case α = 2, Tersenov [25] showed that, for the
problem with Dirichlet boundary condition on a domain Ω ⊂ Rd, that
lies in a strip, e.g., |x1| ≤ l1, a large enough coefficient b can bring a
sufficient cold substance from the boundary so as not to allow the term
uβ to blow up the temperature. However, due to (1.2), in this paper
(see Theorem 2.1), we will prove that when volume energy release is
given by powers greater than one, and the convection terms are of the
form bi(x) · ∇ for bi in the Kato class, i = 1, 2, the blow up in finite
time of system (1.1) without convection terms (bi ≡ 0, i = 1, 2) implies
blow up in finite time of system (1.1) with convection terms (some bi
non-zero, i = 1, 2).

The finite time blow up of systems like (1.1) was initially considered
by Escobedo and Herrero [5] for the case α1 = α2 = 2 without
convection terms. In this paper, in Theorem 2.2 we have proved that
the positive mild solution of the reaction-diffusion system

(1.4)

∂vi(t, x)

∂t
= ∆αivi(t, x) + vβi

i′ (t, x), t > 0, x ∈ Rd,

vi(0, x) = fi(x), x ∈ Rd,
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i ∈ {1, 2} and i′ = 3− i, where 0 < αi ≤ 2 and d, βi, fi are as in system
(1.1), blows up in finite time if

(1.5) d <
α1 ∨ α2

β1 ∨ β2 − 1
.

Theorem 2.1 given below allows us to conclude (Corollary 2.3) that the
positive mild solution of system (1.1) also blows up if (1.5) holds. Re-
lated cases involving perturbed and unperturbed Laplacian, fractional
Laplacians and fractional derivatives may be found, for instance, in
[4, 7, 8, 10, 9, 17, 19, 20, 14, 22, 26]. For instance, Villa [26], and
Guedda and Kirane [7], have considered more general systems than
(1.4), which, reduced to our case, imply, respectively, that the solution
blows up in finite time if

d ≤ β1 + β2 + 2

β1(β2 + 1)/(α1 ∨ α2) + β2(β1 + 1)/(α1 ∧ α2)− 1/(α1 ∨ α2)

and

d ≤ (β1 ∨ β2) (α1 ∧ α2)

β1β2 − 1
.

Note that, when β1 = β2 and α1 ̸= α2, the condition (1.5) is better.
And, when β1 ̸= β2 and α1 = α2, the blow up condition (1.5) is
better if the difference between β1 and β2 is not very large; namely,
(β1 ∨ β2)

2 < (β1 ∧ β2)(β1 ∨ β2 + 2) + 1 for the Villa condition, and
(β1 ∨ β2)

2 < (β1 ∨ β2)(β1 ∧ β2 + 1) − 1 for the Guedda and Kirane
condition.

On the other hand, Kakehi and Oshita [8] showed for the case
α1 = α2 = α that the solution of system (1.4) blows up in finite time if

(1.6) d ≤ α (β1 ∨ β2 + 1)

β1β2 − 1
.

Note that, in this particular case, the Kakehi-Oshita condition (1.6) is
better.

A good reference for global nonexistence of positive solutions for
systems like (1.1) for the case α1 = α2 = 2, not considered in our
paper, is Kirane and Qafsaoui [10]. In that paper, they additionally
considered, as a particular case, the system (1.4), and they showed
that, under the condition d ≤ 2(β1 ∨ β2 + 1)/(β1β2 − 1) there are
no nontrivial global solutions. Note that this Kirane and Qafsaoui
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condition coincides (for α = 2) with the blow up in finite time condition
(1.6) given by Kakehi and Oshita.

2. Main theorems. The existence of nonnegative local mild so-
lutions for the reaction-diffusion system (1.4) and for the reaction-
convection-diffusion system (1.1) easily follows from the Banach fixed-
point theorem (see, for example, [20, Theorem 1] or [26, Theorem
2.1]); thus, we omit this standard calculation.

Theorem 2.1. The positive mild solution of the reaction-convection-
diffusion system (1.1) blows up in finite time if and only if the positive
mild solution of the reaction-diffusion system (1.4) blows up in finite
time.

Proof. Let 0 < T < ∞ be fixed. Let pi(t, x, y) be the transition

density of the semigroup generated by ∆αi , i = 1, 2, and pbii (t, x, y)
the transition density of the semigroup generated by ∆αi + bi(x) · ∇,
i = 1, 2. From (1.2), we obtain

C−1
i

[ ∫
Rd

pi(t, x, y)fi(y) dy +

∫ t

0

∫
Rd

pi(t− s, x, y)uβi

i′ (s, y) dy ds

]
≤

∫
Rd

pbii (t, x, y)fi(y) dy +

∫ t

0

∫
Rd

pbii (t− s, x, y)uβi

i′ (s, y) dy ds

≤ Ci

[ ∫
Rd

pi(t, x, y)fi(y) dy +

∫ t

0

∫
Rd

pi(t− s, x, y)uβi

i′ (s, y) dy ds

]
,

0 < t ≤ T , x ∈ Rd, i = 1, 2.

Letting the integral system

(2.1)

vi(t, x) =

∫
Rd

pi(t, x, y)fi(y) dy

+

∫ t

0

∫
Rd

pi(t− s, x, y)vβi

i′ (s, y) dy ds,

t ≥ 0, x ∈ Rd, i = 1, 2, we have that v1, v2 ≥ 0 is a mild solution of the
reaction-diffusion system (1.4). Thus, by comparison,

C−1
i vi(t, x) ≤ ui(t, x) ≤ Civi(t, x), 0 ≤ t ≤ T, x ∈ Rd.
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Hence, (u1, u2) blows up in finite time if and only if (v1, v2) blows up
in finite time. �

Theorem 2.2. Suppose that 0 < αi ≤ 2, i = 1, 2 and let α1 ≤ α2.
Then, if (v1, v2) is a positive mild solution of system (1.4) and

(2.2)
d

α2
− d(β1 ∨ β2)

α2
+ 1 > 0,

the mild solution (v1, v2) blows up in finite time.

As a direct consequence of Theorems 2.1 and 2.2, we obtain the next
result.

Corollary 2.3. Suppose that 1 < αi < 2, i = 1, 2, and let α1 ≤ α2.
Then the positive mild solution of the reaction-convection-diffusion
system (1.1) blows up in finite time if (2.2) holds.

For the proof of Theorem 2.2, we need some preliminary results.

3. Preliminary results. In the sequel, we denote the transition
density pi(t, x, y) of the semigroup generated by ∆αi

as pi(t, x, y) ≡
pi(t, x− y), i = 1, 2.

Lemma 3.1. Let s, t > 0 and x, y ∈ Rd. Then,

(i) pi(ts, x) = t−d/αipi(s, t
−1/αix),

(ii) pi(t, x) ≥ (s/t)d/αipi(s, x) for t ≥ s,
(iii) pi(t, (1/τ)(x− y)) ≥ pi(t, x)pi(t, y) if pi(t, 0) ≤ 1 and τ ≥ 2,
(iv) p1(t, x) ≥ cp2(t

α2/α1 , x) for some 0 < c ≤ 1, if α1 ≤ α2.

Proof. For (i)–(iii), see [24, pages 46, 47] and, for (iv), see [15, page
1699]. �
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Using Lemma 3.1 (iv), it follows from (2.1) that

(3.1)

v1(t, x) ≥
∫
Rd

cp2

(
tα2/α1 , x− y

)
f1(y) dy

+

∫ t

0

∫
Rd

cp2

(
(t− s)α2/α1 , x− y

)
vβ1

2 (s, y) dy ds,

v2(t, x) ≥
∫
Rd

p2(t, x− y)f2(y) dy

+

∫ t

0

∫
Rd

p2(t− s, x− y)vβ2

1 (s, y) dy ds.

Lemma 3.2. If v1, v2 ≥ 0 is a solution of the integral system (2.1),
then there exist some positive constants c0, γ0 and t0, with t0 > 1, such
that

min {v1 (t0, x) , v2 (t0, x)} ≥ c0p2 (γ0, x) , for all x ∈ Rd.

Proof. By (i) of Lemma 3.1, we can fix t0 > 1 such that

p2

(
t
α2/α1

0 , 0
)
≤ 1 and p2 (t0, 0) ≤ 1,

and thus, using (i) and (iii) of Lemma 3.1, we obtain

p2

(
t
α2/α1

0 , x− y
)
≥ 2−dp2

(
t
α2/α1

0

2α2
, x

)
p2

(
t
α2/α1

0 , 2y
)
,

p2 (t0, x− y) ≥ 2−dp2

(
t0
2α2

, x

)
p2 (t0, 2y) .

Using these inequalities, it follows from (3.1) that

v1 (t0, x) ≥ p2

(
t
α2/α1

0

2α2
, x

)
2−dc

∫
Rd

p2

(
t
α2/α1

0 , 2y
)
f1(y) dy,

v2 (t0, x) ≥ p2

(
t0
2α2

, x

)
2−d

∫
Rd

p2 (t0, 2y) f2(y) dy.

We consider

a = min

{
2−dc

∫
Rd

p2

(
t
α2/α1

0 , 2y
)
f1(y) dy, 2

−d

∫
Rd

p2 (t0, 2y) f2(y) dy

}
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and γ0 = t0/2
α2 . Then, from (ii) of Lemma 3.1, we obtain

v1 (t0, x) ≥ at
[d(α1−α2)]/(α1α2)
0 p2 (γ0, x) ,

v2 (t0, x) ≥ ap2 (γ0, x) .

Finally, the desired result is obtained by taking c0 = at
[d(α1−α2)]/(α1α2)
0 .

�

Let t0 > 1 be as in Lemma 3.2. The semigroup property implies

vi (t+ t0, x) =

∫
Rd

pi(t, x− y)vi (t0, y) dy

+

∫ t

0

∫
Rd

pi(t− s, x− y)vβi

i′ (s, y) dy ds,

t > 0, x ∈ Rd, i = 1, 2. From Lemma 3.1 (iv), we have that
p1(t

α1/α2 , x) ≥ cp2(t, x). Thus,

v1

(
tα1/α2 + t0, x

)
≥

∫
Rd

cp2 (t, x− y) v1 (t0, y) dy

+

∫ tα1/α2

0

∫
Rd

cp2

(
(tα1/α2 − s)α2/α1 , x− y

)
vβ1

2 (s+ t0, y) dy ds,

v2

(
tα1/α2 + t0, x

)
≥

∫
Rd

p2(t
α1/α2 , x− y)v2 (t0, y) dy

+

∫ tα1/α2

0

∫
Rd

p2(t
α1/α2 − s, x− y)vβ2

1 (s+ t0, y) dy ds.

Hence, Lemma 3.2 implies
(3.2)

v1

(
tα1/α2 + t0, x

)
≥ cc0p2 (t+ γ0, x)

+

∫ tα1/α2

0

∫
Rd

cp2

(
(tα1/α2 − s)

α2
α1 , x− y

)
vβ1

2 (s+ t0, y) dy ds,

v2

(
tα1/α2 + t0, x

)
≥ c0p2

(
tα1/α2 + γ0, x

)
+

∫ tα1/α2

0

∫
Rd

p2(t
α1/α2 − s, x− y)vβ2

1 (s+ t0, y) dy ds.
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We define

v1(t) =

∫
Rd

p2(t, x)v1(t, x) dx, t ≥ 0,

v2(t) =

∫
Rd

p2(t, x)v2(t, x) dx, t ≥ 0.

Lemma 3.3. If there exists a T0 > 0 such that v1(t) = ∞ or v2(t) = ∞
for all t ≥ T0, then the mild solution (v1, v2) of system (1.4) blows up
in finite time.

Proof. Suppose that v1(t) = ∞ for all t ≥ T0. Let

T0 ≤ t ≤ s ≤ 6t

2α2 + 1
and τ =

(
6t− s

s

)1/α2

.

From Lemma 3.1 (i), we have

p2(6t− s, x− y) =

(
s

6t− s

)d/α2

p2

(
s,

1

τ
(x− y)

)
.

Since τ ≥ 2, it follows from Lemma 3.1 (iii) that

p2(6t− s, x− y) ≥
(

s

6t− s

)d/α2

p2(s, x)p2(s, y).

Therefore, ∫
Rd

p2(6t− s, x− y)v1(s, y) dy

≥
(

s

6t− s

)d/α2

p2(s, x)

∫
Rd

p2(s, y)v1(t, y) dy

=

(
s

6t− s

)d/α1

p2(s, x)v1(s).

Since T0 ≤ t ≤ s, we have that v1(s) = ∞, and thus,

(3.3)

∫
Rd

p2(6t− s, x− y)v1(s, y) dy = ∞.
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On the other hand, from (2.1) and the fact that f2 ≥ 0, we get

v2(6t, x) ≥
∫ 6t

0

∫
Rd

p2(6t− s, x− y)vβ2

1 (s, y) dy ds.

Finally, from Jensen’s inequality and (3.3), we obtain

v2(6t, x) ≥
∫ 6t/(2α2+1)

0

(∫
Rd

p2(6t− s, x− y)v1(s, y) dy

)β2

ds = ∞,

so that v2(t, x) = ∞ for all t ≥ 6T0 and x ∈ Rd. Clearly, blow up of v2
implies blow up of v1. Similarly, it can be shown that, if v2(t) = ∞ for
all t ≥ 6T0, then v1(t, x) = ∞ for all t ≥ 6T0 and x ∈ Rd. �

4. Proof of Theorem 2.2.

Proof. Multiplying equations (3.2) by p2(t
α1/α2 + t0, x) gives

p2(t
α1/α2 + t0, x)v1(t

α1/α2 + t0, x)

≥ cc0p2(t
α1/α2 + t0, x)p2 (t+ γ0, x)

+

∫ tα1/α2

0

∫
Rd

cp2(t
α1/α2 + t0, x)p2((t

α1/α2 − s)α2/α1 , x− y)

· vβ1

2 (s+ t0, y) dy ds

and

p2(t
α1/α2 + t0, x)v2(t

α1/α2 + t0, x)

≥ c0p2(t
α1/α2 + t0, x)p2(t

α1/α2 + γ0, x)

+

∫ tα1/α2

0

∫
Rd

p2(t
α1/α2 + t0, x)p2(t

α1/α2 − s, x− y)

· vβ2

1 (s+ t0, y) dy ds.

Integrating with respect to x, we have

v1(t
α1/α2 + t0) ≥ cc0p2(t+ tα1/α2 + t0 + γ0, 0) +

∫ tα1/α2

0

·
∫
Rd

cp2(t
α1/α2 + t0 + (tα1/α2 − s)α2/α1 , y)vβ1

2 (s+ t0, y) dy ds
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and

v2(t
α1/α2 + t0) ≥ c0p2(2t

α1/α2 + t0 + γ0, 0)

+

∫ tα1/α2

0

∫
Rd

p2(2t
α1/α2 + t0 − s, y)vβ2

1 (s+ t0, y) dy ds.

Using (i) and (ii) of Lemma 3.1, we obtain

v1(t
α1/α2 + t0)

≥ cc0(t+ tα1/α2 + t0 + γ0)
−d/α2p2(1, 0)

+

∫ tα1/α2

0

∫
Rd

c

(
s+ t0

tα1/α2 + t0 + (tα1/α2 − s)α2/α1

)d/α2

p2 (s+ t0, y)

· vβ1

2 (s+ t0, y) dy ds

and

v2(t
α1/α2 + t0)

≥ c0(2t
α1/α2 + t0 + γ0)

−d/α2p2(1, 0)

+

∫ tα1α2

0

∫
Rd

(
s+ t0

2tα1/α2 + t0 − s

)d/α2

p2 (s+ t0, y)

· vβ2

1 (s+ t0, y) dy ds.

Now, applying Jensen’s inequality gives

v1(t
α1/α2 + t0) ≥ cc0(t+ tα1/α2 + t0 + γ0)

−d/α2p2(1, 0)

+

∫ tα1/α2

0

c

(
s+ t0

tα1/α2 + t0 + (tα1/α2 − s)α2/α1

)d/α2

v2 (s+ t0)
β1 ds

and

v2(t
α1/α2 + t0) ≥ c0(2t

α1/α2 + t0 + γ0)
−d/α2p2(1, 0)

+

∫ tα1/α2

0

(
s+ t0

2tα1/α2 + t0 − s

)d/α2

v1 (s+ t0)
β2 ds.

Using the facts that tα1/α2 − s ≤ tα1/α2 and α1/α2 ≤ 1, we obtain

v1(t
α1/α2 + t0) ≥ cc0(2t+ t0 + γ0)

−d/α2p2(1, 0)
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+

∫ tα1/α2

0

c

(
s+ t0

2 (t+ t0)

)d/α2

v2 (s+ t0)
β1 ds

and

v2(t
α1/α2 + t0) ≥ c0(2t

α1/α2 + t0 + γ0)
−d/α2p2(1, 0)

+

∫ tα1/α2

0

(
s+ t0

2(tα1/α2 + t0)

)d/α2

v1 (s+ t0)
β2 ds.

Thus,

v1(t
α1/α2 + t0) (t+ t0)

d/α2

≥ cc0

(
t+ t0

2t+ t0 + γ0

)d/α2

p2(1, 0)

+ 2−d/α2c

∫ tα1/α2

0

(s+ t0)
d/α2 v2 (s+ t0)

β1 ds

and

v2(t
α1/α2 + t0) (t+ t0)

d/α2

≥ c0

(
t+ t0

2tα1/α2 + t0 + γ0

)d/α2

p2(1, 0)

+ 2−d/α2

∫ tα1/α2

0

(s+ t0)
d/α2 v1 (s+ t0)

β2 ds.

Assume that t ≥ 1. Since γ0 = t0/2
α2 , we have that t0 > γ0. Thus,

v1(t
α1/α2 + t0) (t+ t0)

d/α2 ≥ 2−d/α2cc0p2(1, 0)

+ 2−d/α2c

∫ tα1/α2

1

(s+ t0)
d/α2

· (s+ t0)
−dβ1/α2 [(s+ t0)

d/α2 v2 (s+ t0)]
β1ds

and

v2(t
α1/α2 + t0) (t+ t0)

d/α2 ≥ 2−d/α2c0p2(1, 0)

+ 2−d/α2

∫ tα1/α2

1

(s+ t0)
d/α2

· (s+ t0)
−dβ2/α2 [(s+ t0)

d/α2 v1 (s+ t0)]
β2ds.
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Let η = min{2−d/α2cc0p2(1, 0), 2−d/α2c}. Since 0 < c ≤ 1, we have

v1(t
α1/α2 + t0) (t+ t0)

d/α2

≥ η + η

∫ tα1/α2

1

(s+ t0)
(d/α2)−(dβ1/α2) [(s+t0)

d/α2 v2 (s+t0)]
β1ds,

t ≥ 1,

v2

(
tα1/α2 + t0

)
(t+ t0)

d/α2

≥ η + η

∫ tα1/α2

1

(s+ t0)
(d/α2)−(dβ2/α2) [(s+ t0)

d/α2 v1 (s+ t0)]
β2ds,

t ≥ 1, or, equivalently,

v1(t
α1/α2)td/α2

≥ η + η

∫ tα1/α2

t0+1

s(d/α2)−(dβ1/α2)[sd/α2v2(s)]
β1ds, tα1/α2 ≥ t0 + 1,

v2(t
α1/α2)td/α2

≥ η + η

∫ tα1/α2

t0+1

s(d/α2)−(dβ2/α2)[sd/α2v1(s)]
β2ds, tα1/α2 ≥ t0 + 1.

Consider the integral system
(4.1)

w1(t
α1/α2) = η + η

∫ tα1/α2

t0+1

(
sθ1 ∧ sθ2

)
wβ1

2 (s) ds, tα1/α2 ≥ t0 + 1,

w2(t
α1/α2) = η + η

∫ tα1/α2

t0+1

(
sθ1 ∧ sθ2

)
wβ2

1 (s) ds, tα1/α2 ≥ t0 + 1,

where θ1 = (d/α2) − (dβ1/α2) and θ2 = (d/α2) − (dβ2/α2). The
differential expression of (4.1) is

α1

α2
tα1/α2−1w′

1(t
α1/α2)

=
α1

α2
tα1/α2−1η[(tα1/α2)θ1 ∧ (tα1/α2)θ2 ]wβ1

2 (tα1/α2), tα1/α2 ≥ t0 + 1,

α1

α2
tα1/α2−1w′

2(t
α1/α2)

=
α1

α2
tα1/α2−1η[(tα1/α2)θ1 ∧ (tα1/α2)θ2 ]wβ2

1 (tα1/α2), tα1/α2 ≥ t0 + 1,



194 AROLDO PÉREZ

w1 (t0 + 1) = η = w2 (t0 + 1), or, equivalently,

w′
1(t) = η

(
tθ1 ∧ tθ2

)
wβ1

2 (t), t ≥ t0 + 1,

w′
2(t) = η

(
tθ1 ∧ tθ2

)
wβ2

1 (t), t ≥ t0 + 1,(4.2)

w1 (t0 + 1) = η = w2 (t0 + 1) ,

whose solution satisfies

wβ2+1
1 (t)− ηβ2+1

β2 + 1
=

wβ1+1
2 (t)− ηβ1+1

β1 + 1
.

Assume, without loss of generality, that β2 ≥ β1. Since 0 < η < 1, we
have

wβ2+1
1 (t)

β2 + 1
≤ wβ1+1

2 (t)

β1 + 1

or, equivalently,

w2(t) ≥
(
β1 + 1

β2 + 1

)1/(β1+1)

w
(β2+1)/(β1+1)
1 (t), t ≥ t0 + 1.

Substituting this into the first equation of (4.2), we obtain

w′
1(t) ≥ η

(
tθ1 ∧ tθ2

)(β1 + 1

β2 + 1

)β1/(β1+1)

w
β1(β2+1)/(β1+1)
1 (t), t ≥ t0+1.

Due to the assumption that β2 ≥ β1, we have that θ2 ≤ θ1, and since
t ≥ t0 + 1, tθ1 ∧ tθ2 = tθ2 . Thus,

w
−β1(β2+1)/(β1+1)
1 (t)w′

1(t) ≥ η

(
β1 + 1

β2 + 1

)β1/(β1+1)

tθ2 , t ≥ t0 + 1.

Integrating from t0 + 1 to t yields

β1 + 1

1− β1β2

[
w

(1−β1β2)/(β1+1)
1 (t)− η(1−β1β2)/(β1+1)

]
≥ η

(
β1 + 1

β2 + 1

)β1/(β1+1) ∫ t

t0+1

sθ2ds.

Thus (recalling that β1β2 > 1), we obtain

w1(t) ≥
[
η(1−β1β2)/(β1+1) − η

(
β1β2 − 1

β1 + 1

)
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·
(
β1 + 1

β2 + 1

)β1/(β1+1) ∫ t

t0+1

sθ2ds

](β1+1)/(1−β1β2)

.

Since θ2 + 1 = (d/α2)− (dβ2/α2) + 1 > 0, it follows that∫ t

t0+1

sθ2ds −→ ∞

when t → ∞. Thus, there exists a T0 > t0 +1 such that w1(t) = ∞ for
t = T0. By comparison, we have

td/α1v1(t) ≥ w1(t) = ∞ for t = T0,

and Lemma 3.3 implies that (v1, v2) blows up in finite time. �
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