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COUPLED VOLTERRA INTEGRAL EQUATIONS
WITH BLOWING UP SOLUTIONS

WOJCIECH MYDLARCZYK

ABSTRACT. In this paper, a system of nonlinear integral
equations related to combustion problems is considered.
Necessary and sufficient conditions for the existence and
explosion of positive solutions are given. In addition, the
uniqueness of the positive solutions is shown. The main
results are obtained by monotonicity methods.

1. Introduction. Nonlinear integral equations arise in models of
ignition and explosive behavior in diffusive media. In applications,
solutions can describe a variety of processes, including solid fuel com-
bustion processes. There are many papers related to this topic, e.g.,
[5, 13, 15].

Some simple models of combustion may be studied with the aid of
the equation

(1.1) u(x) =

∫ x

0

(x− s)α−1g(u(s)) ds, α > 0,

where g is a nondecreasing continuous function such that g(0) = 0.
Obviously, u ≡ 0 is the trivial solution to (1.1). This equation describes
ignition in media if a nontrivial continuous solution u exists which is
positive for x > 0. It was shown [1, 3, 4, 6, 7, 12] that a necessary
and sufficient condition for ignition is

(1.2)

∫ δ

0

[
u

g(u)

]1/α
du

u
< ∞,
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where δ is any finite positive number. A solution u to (1.1) has explosive
behavior if there exists a finite blow-up time T , that is, u(x) → ∞ as
x → T−. A necessary and sufficient condition for the existence of a
finite blow-up time is

(1.3)

∫ ∞

0

[
u

g(u)

]1/α
du

u
< ∞,

see [1, 2, 8].

However, in more complicated combustion models, systems of in-
tegral equations appear [13, 14]. Inspired by considerations in those
papers we study ignition and blow-up criteria for the system of equa-
tions:

u(x) =

∫ x

0

(x− s)α−1[v(s)]γds,(1.4)

v(x) =

∫ x

0

k(x− s, u(s)) ds,(1.5)

where

k(x− s, u(s)) =
m∑
i=1

(x− s)βi−1gi(u(s)),

α, βi ≥ 1, i = 1, 2, . . . ,m, γ > 0, and the functions gi, i = 1, 2, . . . ,m,
are assumed to be the same as g in (1.1).

Obviously, u ≡ 0, v ≡ 0 is the trivial solution to (1.4), (1.5).
However, we shall ask about nontrivial solutions, i.e., nonnegative
continuous functions u and v not identically equal to 0. Since they
are nondecreasing, it follows from the convolution form of (1.4) and
(1.5) that, either they are simultaneously positive for x > 0, or there
exists a constant c > 0 such that

u(x) = v(x) = 0 for 0 ≤ x ≤ c

and
u(x), v(x) > 0 for x > c.

We show that, if system (1.4), (1.5) has nontrivial solutions, then it has
a unique solution with u, v positive for x > 0, and the components of
any other solution are, respectively, translations of u and v of the form
u((x− c)+), v((x− c)+), where c > 0 is any constant and (x− c)+ = 0
for 0 ≤ x ≤ c and equals x − c otherwise. From now on, we deal
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only with nontrivial solutions with positive components for x > 0. We
are also interested in the existence of a finite blow-up time T for such
solutions.

The system (1.4), (1.5) of integral equations with m = 1, i.e., with
a single integral term on the right hand side of equation (1.5) was
studied in [10, 11]. Unfortunately, the methods used there allowed
only consideration of the case of integer exponents α, β ≥ 1. Some
extensions of those results were obtained in [9]. In this paper, we
consider a more general system and describe its nontrivial solutions.

2. Notation and statement of results. Throughout the paper,
we assume that nonlinearities gi, i = 1, 2, . . . ,m, in system (1.4),
(1.5) are in a function class G consisting of nondecreasing continuous
functions g : [0,∞) → [0,∞) which are positive for x > 0 with g(0) = 0,
and which satisfy the following technical assumption
(2.1)
there exists a constant cg > 0 such that g(x) ≤ cgg(x/2) for x > 0.

We say that the solution (u, v) of system (1.4), (1.5) is nontrivial, if the
functions u(x) and v(x) are continuous and positive for x > 0. Such a
nontrivial solution will be called blowing-up at some T > 0, if

u(x) −→ ∞,

and consequently,
v(x) → ∞, as x → T−.

We emphasize that the functions u(x) and v(x) are nondecreasing.
Integrating by parts in (1.4), (1.5) it may be seen that the derivatives
u′(x) and v′(x) are also nondecreasing.

In order to formulate the main results of the paper we introduce an
auxiliary function:

(2.2) Φ(x) = x
m∑
i=1

[
gi(x)

γ

x

]1/(α+βiγ)

.

The existence of the solution to system (1.4), (1.5) is established in the
next theorem.
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Theorem 2.1. System (1.4), (1.5) has a unique nontrivial solution if
and only if

(2.3)

∫ δ

0

1

Φ(z)
dz < ∞.

We also analyze the blow-up behavior of the solution to system (1.4),
(1.5), and the appropriate result is stated in the theorem:

Theorem 2.2. System (1.4), (1.5) has a blowing-up solution if and
only if

(2.4)

∫ ∞

0

1

Φ(z)
dz < ∞.

Our first step in the study of system (1.4), (1.5) relies on its reduction
to the following, single nonlinear integral equation:

(2.5) u(x) =

∫ x

0

(x− s)α−1 [G(u)(s)]
γ
ds,

where

G(u)(s) =

∫ s

0

k(s− t, u(t)) dt.

Remark 2.3. If m = 1 and γ = 1, then both the system (1.4), (1.5)
and the equation (2.5) reduce to equation (1.1) with the exponent equal
to α+ β − 1. In this case, the conditions (2.3) and (2.4) are equivalent
to (1.2) and (1.3), respectively.

We introduce into our considerations the function

w(x) = u′(u−1(x)) = 1/(u−1)′(x),

where u−1 is the inverse function to u. In order to find a convenient
relation for w we begin with the observation that integration by parts
and then substitution of z = u(t) yields:
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∫ s

0

(s− t)βi−1gi(u(t)) dt =
1

βi

∫ s

0

(s− t)βidgi(u(t))

=
1

βi

∫ u(s)

0

(s− u−1(z))βidgi(z)

for i = 1, 2, . . . ,m.

Thus, (2.5) can be rewritten in the form

(2.6) u(x) =

∫ x

0

(x−s)α−1Gw(u(s))
γds =

1

α

∫ x

0

(x−s)αd[Gw(u(s))]
γ ,

where

Gw(z) =
m∑
i=1

1

βi

∫ z

0

(u−1(z)− u−1(t))βidgi(t)

=

m∑
i=1

1

βi

∫ z

0

(∫ z

t

1

w(r)
dr

)βi

dgi(t).

The substitution of z = u(s) in (2.6) gives

u(x) =
1

α

∫ u(x)

0

(x− u−1(s))αd[Gw(s)]
γ ,

or equivalently,

(2.7) x =
1

α

∫ x

0

(u−1(x)− u−1(s))αd[Gw(s)]
γ .

Differentiating both sides of (2.7), we obtain the sought relation

(2.8) w(x) =

∫ x

0

(∫ x

s

1

w(z)
dz

)α−1

d[Gw(s)]
γ .

3. Auxiliary lemmas. In this section, we obtain a priori estimates
for the nontrivial solution u(x) of equation (2.5). They will be expressed
in terms of the function Φ, given in (2.2). This function is continuous
and nondecreasing with Φ(0) = 0. Furthermore, it follows from (2.1)
that a constant c > 0 exists such that
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(3.1) Φ(x) ≤ cΦ(x/2)

for x ≥ 0.

We define the operator S related to the right hand side of (2.8) as:

Sw(x) =

∫ x

0

(∫ x

s

1

w(z)
dz

)α−1

d [Gw(s)]
γ
, x > 0,

where

Gw(s) =

m∑
i=1

1

βi

∫ s

0

(∫ s

t

1

w(z)
dz

)βi

dgi(t).

It is defined for any continuous function w(x) positive for x > 0 such
that the Stieltjes integrals Gw(s) and∫ x

0

(∫ x

s

1

w(z)
dz

)α−1

d [Gw(s)]
γ

are convergent.

Let g ∈ G, and let α, β ≥ 1 and γ > 0. We define

Ψ(x) = x

[
g(s)γ

x

]1/(α+βγ)

and
Vk(s) =

∫ s

0

(∫ s

t

1

Ψ(z)
dz

)β−k

dg(t)

for k = 0, 1, . . . , n, where 0 ≤ n < β ≤ n+ 1.

Lemma 3.1.

(i) The following inequalities hold
(3.2)

1

Ψ(x)
(x− s) ≤

∫ x

s

dz

Ψ(z)

≤ (α+ βγ)s1−1/(α+βγ)(x1/(α+βγ) − s1/(α+βγ))
1

Ψ(s)
.

(ii) There exist constants c0, c1, . . . , cn > 0 such that

(3.3) Vk(s) ≤ ckg(s)
1−[(β−k)γ]/(α+βγ)s(β−k)/(α+βγ)

for s > 0, k = 0, 1, 2, . . . , n.
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Proof.

(i) The lower and upper estimates in (3.2) follow from the mono-
tonicity of Ψ(z) and g(t), respectively.

(ii) We begin with k = n. Integrating by parts, we obtain

Vn(s) = J1(t)|s0 + (β − n)J2(s),

where

J1(t) = g(t)

(∫ s

t

1

Ψ(z)
dz

)β−n

and

J2(s) =

∫ s

0

(∫ s

t

1

Ψ(z)
dz

)β−n−1
1

Ψ(t)
g(t) dt.

It follows from the second inequality in (3.2) that

J1(t) ≤ (α+ βγ)β−ng(t)1−[(β−n)γ]/(α+βγ)(s1/(α+βγ) − t1/(α+βγ))β−n,

which shows that J1(t) = 0 both at t = 0 and at t = s.

Since Ψ is nondecreasing and −1 < β − n− 1 ≤ 0, we observe that

J2(s) ≤
1

Ψ(s)β−n−1

∫ s

0

(s− t)β−n−1t−1+(1/(α+βγ))g(t)1−(γ/(α+βγ))dt

≤ 1

Ψ(s)β−n−1
g(s)1−(γ/(α+βγ))

∫ s

0

(s− t)β−n−1t−1+(1/(α+βγ))dt

≤ cg(s)1−[(β−n)γ]/(α+βγ)s(β−n)/(α+βγ),

where

c =

∫ 1

0

(1− z)β−n−1z−1+(1/(α+βγ))dz.

Thus, we get (3.3) for k = n.

For 0 ≤ k < n, to avoid the difficulties connected with possible
divergence of the integral∫ s

t

dz

Ψ(z)
, as t → 0,
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we introduce the truncated integrals

V ϵ
k (s) =

∫ s

ϵ

(∫ s

t

1

Ψ(z)
dz

)β−k

dg(t),

defined for 0 ≤ k ≤ n and any 0 < ϵ ≤ s. We first note that

d

ds
V ϵ
k−1(s) = (β − k + 1)

1

Ψ(s)

∫ s

ϵ

(∫ s

t

1

Ψ(z)
dz

)β−k

dg(t)

= (β − k + 1)
1

Ψ(s)
V ϵ
k (s).

Therefore, using this recurrence relation and the induction assumption,
we obtain the estimate

(3.4) V ϵ
k−1(s) = (β − k + 1)

∫ s

ϵ

1

Ψ(z)
V ϵ
k (z) dz

≤ (β − k + 1)

∫ s

ϵ

1

Ψ(z)
Vk(z) dz

≤ (β − k + 1)ck

∫ s

ϵ

g(z)1−[(β−k+1)γ]/(α+βγ)z−1+(β−k+1)/(α+βγ) dz

≤ ck−1g(s)
1−[(β−(k−1))γ]/(α+βγ)s[β−(k−1)]/(α+βγ),

with ck−1 = (α + βγ)ck valid for any 0 < ϵ ≤ x. Letting ϵ → 0 in
(3.4), we get the required estimate for Vk−1(s), which by an induction
argument concludes the proof of (3.3). �

Let ai > 0 for i = 1, 2, . . . ,m and p > 0 be arbitrary numbers. We
will use the following well-known inequality:

(3.5) Ap

( m∑
i=1

ai

)p

≤
m∑
i=1

api ≤ Bp

( m∑
i=1

ai

)p

,

where Ap = 1 and Bp = 1/mp−1 for 0 < p < 1, Ap = 1/mp−1 and
Bp = 1, for p ≥ 1.

We denote

Ψi(x) = x

(
gi(x)

γ

x

)1/(α+βiγ)

,

V0,i(x) =

∫ x

0

(∫ x

s

1

Ψi(z)
dz

)βi

dgi(s)
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for i = 1, 2, . . . ,m and

V (x) =
m∑
i=1

1

βi

∫ x

0

(∫ x

s

1

Φ(z)
dz

)βi

dgi(s).

Lemma 3.2. There exist constants c1V and c2V > 0 such that

(3.6) c1V s
−α+1Φ(s)α ≤ V (s)γ ≤ c2V s

−α+1Φ(s)α.

Proof. We begin with the proof of the second inequality in (3.6).
Since Ψi(z) ≤ Φ(z), and consequently,

V (s) ≤
m∑
i=1

1

βi
V0,i(s),

it follows from the first inequality in (3.5) that there exists a constant
c > 0 such that

(3.7) V (s)γ ≤ c
m∑
i=1

V0,i(s)
γ .

Now, using (3.3) with k = 0, we see that there exist constants ci > 0,
i = 1, 2, . . . ,m, such that

(3.8) V0,i(s)
γ ≤ cis

1−(α/(α+βiγ))gi(s)
αγ/(α+βiγ) = cis

−α+1Ψi(s)
α

for i = 1, 2, . . . ,m. Combining (3.8) and (3.7), then applying the second
inequality in (3.5), we obtain the required upper estimate in (3.6).

Passing to the lower estimate in (3.6) we denote

(3.9) V (s) =

m∑
i=1

1

βi
Wi(s),

where

Wi(s) =

∫ s

0

(∫ s

t

1

Φ(z)
dz

)βi

dgi(t)

for i = 1, 2, . . . ,m. From the monotonic properties of functions Φ and
gi, i = 1, 2, . . . ,m, we get the estimates

Wi(x) ≥ Φ(x)−βi

∫ x

0

(x− s)βidgi(t) ≥ Φ(x)−βi

(
x

2

)βi

gi

(
x

2

)
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for i = 1, 2, . . . ,m. In view of (2.1), we see that there exist constants
ci > 0, i = 1, 2, . . . ,m, such that

(3.10)

Wi(x) ≥ ciΦ(x)
−βixβigi(x)

= cix
(−α+1)/γΦ(x)α/γ

(
Ψi(x)

Φ(x)

)(α/γ)+βi

for i = 1, 2, . . . ,m.

It follows from (3.9) and (3.10) that there exists a constant c > 0
such that

(3.11) V (x)γ ≥ cx−α+1Φ(x)α
( m∑

i=1

(
Ψi(x)

Φ(x)

)(α/γ)+β∗)γ

,

where β∗ = max1≤i≤m βi. Applying the first inequality in (3.5) to the
sum on the right hand side of (3.11) and noting that

Φ(x) =

m∑
i=1

Ψi(x),

we obtain the required lower estimate in (3.6), which completes the
proof. �

Lemma 3.3. There exist constants c1Φ, c
2
Φ > 0 such that

(3.12) c1ΦΦ(x) ≤ SΦ(x) ≤ c2ΦΦ(x)

for x > 0.

Proof. We begin with a discussion of the integrals

Uk(x) =

∫ x

0

(∫ x

s

1

Φ(z)
dz

)α−1−k

d [V (s)]
γ

for α > 1 and k = 0, 1, 2, . . . , n, where n is an integer such that
n < α − 1 ≤ n + 1. Our aim is to show that there exist constants
d1, d2, . . . , dn > 0 such that

(3.13) Uk(x) ≤ dkx
−kΦ(x)k+1

for x > 0 and k = 0, 1, 2, . . . , n.
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Let k = n. Integrating by parts, we get

(3.14) Un(x) = J(s)|x0 + (α− 1− n)I(x),

where

J(s) = V (s)γ
(∫ x

s

1

Φ(z)
dz

)α−n−1

and

I(x) =

∫ x

0

(∫ x

s

1

Φ(z)
dz

)α−n−2
1

Φ(s)
V (s)γds.

It follows from estimate (3.7) and inequalities Ψi(z) ≤ Φ(z) for i =
1, 2, . . . ,m that there exists a constant c > 0 such that

J(s) ≤ c

m∑
i=1

Ji(s),

where

Ji(s) =

(∫ x

s

1

Ψi(z)
dz

)α−n−1

V0,i(s)
γ .

In view of (3.2) and (3.8) we conclude that there exist constants ci > 0
for i = 1, 2, . . . ,m, such that

Ji(s)≤ci(x
1/(α+βiγ)−s1/(α+βiγ))α−n−1s1−(α/(α+βiγ))gi(s)

[(n+1)γ]/(α+βiγ),

whence Ji(s) = 0 both at s = 0 and s = x. Finally, we see that J(s) = 0
both at s = 0 and s = x.

We pass to estimating I(x). Since −1 < α − n − 2 ≤ 0 and
Ψi(z) ≤ Φ(z), an application of (3.7) and monotonicity of Φ(z) yields
the inequality

(3.15) I(x) ≤ cΦ(x)n+2−α
m∑
i=1

Ii(x),

where

Ii(x) =

∫ x

0

(x− s)α−n−2 1

Ψi(s)
V0,i(s)

γds

for i = 1, 2, . . . ,m, and c > 0 is some constant. We estimate the
integrals Ii(x), i = 1, 2, . . . ,m, using inequality (3.8), which results in
(3.16)

Ii(x) ≤ cix
α−1−nx−(α−1)/(α+βiγ)gi(x)

[(α−1)γ]/(α+βiγ) = cix
−nΨi(x)

α−1,



158 W. MYDLARCZYK

where ci > 0, i = 1, 2, . . . ,m, are some constants. Now, combining
(3.15) and (3.16), and then applying the second inequality in (3.5), we
see that there exists a constant c > 0 such that

(3.17) I(x) ≤ cx−nΦ(x)n+2−α

( m∑
i=1

Ψi(x)

)α−1

= cx−nΦ(x)n+1.

Thus, we see that

(3.18) Un(x) = (α− n− 1)

∫ x

0

(∫ x

s

1

Φ(z)
dz

)α−n−2
1

Φ(s)
V (s)γds,

and the required estimate for Un(x) follows from (3.17) and (3.18).

For 0 ≤ k < n, to avoid the difficulties connected with possible
divergence of the integral∫ s

t

dz

Φ(z)
, as t → 0,

we introduce the truncated integrals

U ϵ
k(s) =

∫ s

ϵ

(∫ s

t

1

Φ(z)
dz

)α−1−k

dV (t)γ ,

defined for 0 ≤ k ≤ n and any 0 < ϵ ≤ s. We first note that

d

ds
U ϵ
k−1(s) = (α− k)

1

Φ(s)

∫ s

ϵ

(∫ s

t

1

Φ(z)
dz

)α−1−k

dV (t)γ

= (α− k)
1

Φ(s)
U ϵ
k(s).

Using this recurrence relation and the induction assumption we obtain
the estimate

(3.19)

U ϵ
k−1(s) = (α− k)

∫ s

ϵ

1

Φ(z)
U ϵ
k(z) dz

≤ (α− k)

∫ s

ϵ

1

Φ(z)
Uk(z) dz

≤ ck−1

∫ s

ϵ

z−kΦ(z)kdz
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with ck−1 = (α − k)dk, valid for any 0 < ϵ ≤ x. Now, using the first
inequality in (3.5), we get

(3.20)

Φ(z)k ≤ (1/Ak)
m∑
i=1

Ψi(z)
k

= (1/Ak)z
k

m∑
i=1

z−k/(α+βiγ)gi(z)
(kγ)/(α+βiγ).

Letting ϵ → 0 in (3.19), it follows from (3.20) that there exists a
constant c > 0 such that

(3.21) Uk−1(s) ≤ c

m∑
i=1

Ii(s),

where

Ii(s) =

∫ s

0

z−kΨi(z)
kdz,

for i = 1, 2, . . . ,m. Since gi(z), i = 1, 2, . . . ,m, are nondecreasing, we
obtain the estimates

(3.22) Ii(s) ≤ cis
1−k/(α+βiγ)gi(s)

(kγ)/(α+βiγ) = ciz
−k+1Ψi(s)

k,

where ci > 0, i = 1, 2, . . . ,m, are some constants. Now, combining
(3.21) and (3.22) and then applying the second inequality in (3.5), we
get the required estimate for Uk−1(s), which, by an induction argument,
ends the proof of (3.13).

Now, we are ready to justify the inequalities for our main interest.

For α = 1, we have SΦ(x) = V (x)γ . Therefore, in this case, our
assertion immediately follows from Lemma 3.2.

For α > 1, we have SΦ(x) = U0(x). Therefore, the upper estimate
in (3.12) follows from the estimate of U0(x) given in (3.13).

In order to prove the lower estimate in (3.12), we first note that

SΦ(x) ≥
∫ x/2

0

(∫ x

s

1

Φ(z)
dz

)α−1

d [V (s)]
γ

≥ Φ(x)−α+1

∫ x/2

0

(x− s)α−1d [V (s)]
γ
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≥ Φ(x)−α+1

(
x

2

)α−1

[V (x/2)]
γ

for x > 0. Now, using the first inequality in (3.6) followed by inequality
(3.1), we obtain our assertion. �

Remark 3.4. For α > 1, by the same arguments as those used in
obtaining (3.18), we get

U0(x) = (α− 1)

∫ x

0

(∫ x

s

1

Φ(z)
dz

)α−2
1

Φ(s)
V (s)γds

for x > 0.

Lemma 3.5. Let w(x) be a continuous and nondecreasing function,
and let c1 > 0 be a constant such that

c1Φ(x) ≤ w(x)

for x > 0. Then, there exists a constant c2 such that

Sw(x) ≤ c2SΦ(x)

for x > 0.

Proof. We first note that there exists a constant c > 0 such that

(3.23) Gw(s) ≤ cGΦ(s)

for s > 0.

In the case of α = 1, we have SΦ(x) = GΦ(x)
γ and Sw(x) = Gw(x)

γ .
Therefore, our assertion immediately follows from (3.23).

In the case of α > 1, we first note that

Sw(x) ≤ c
−(α−1)
1

∫ x

0

(∫ x

s

1

Φ(z)
dz

)α−1

d[Gw(s)]
γ .

Now, integrating by parts in the outer integral on the right hand side
and then using estimate (3.23), we see that there exists a constant c > 0
such that

Sw(x) ≤ c

∫ x

0

(∫ x

s

1

Φ(z)
dz

)α−2
1

Φ(s)
GΦ(s)

γds.
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Hence, our assertion follows from Remark 3.4 and the estimate of
U0(x) = SΦ(x) in (3.13). �

Corollary 3.6. Let u be a nontrivial solution to (2.5), and let w(x) =
u′(u−1(x)), where u−1 is inverse to u. Then, there exist constants
c1w, c

2
w > 0 such that

c1wΦ(x) ≤ w(x) ≤ c2wΦ(x)

for x > 0.

Proof. In order to show the lower estimate we examine equa-
tion (2.8). Since the function w is nondecreasing, we have

(3.24)

∫ x

x/2

1

w(z)
dz ≥ x

2w(x)

and

(3.25)

Gw(x/2) ≥
∫ x/2

0

(∫ x/2

t

1

w(z)
dz

)βi

dgi(t)

≥
(

x

4w(x/2)

)βi

gi(x/4)

≥
(

x

4w(x)

)βi

gi(x/4)

for i = 1, 2, . . . ,m and x > 0.

It follows from (2.8) that

w(x) ≥
(∫ x

x/2

1

w(z)
dz

)α−1

Gw(x/2)
γ

for x > 0. Now, combining (3.24), (3.25) and using (2.1), we note that
there exist constants ci > 0, i = 1, 2, . . . ,m, such that

w(x) ≥ ciΨi(x)

for i = 1, 2, . . . ,m and x > 0. Since

Φ(x) =

m∑
i=1

Ψi(x),

our assertion follows from these inequalities.
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Now, the upper estimate immediately follows from the proved lower
estimate and Lemma 3.5. �

4. Proofs of theorems. We begin with giving the proof of Theorem
2.1.

Proof of Theorem 2.1.

Uniqueness. We begin by showing that the system (1.4), (1.5) has
at most one nontrivial solution with the components u, v positive for
x > 0. Let (ui, vi), i = 1, 2, be two nontrivial solutions of the system
(1.4), (1.5) with components positive for x > 0. Consider a shifted
solution with u2,c(x) = u2((x − c)+) and v2,c(x) = v2((x − c)+),
where c > 0 is a constant. We observe that u2,c(x) < u1(x) and
v2,c(x) < v1(x), at least for 0 ≤ x ≤ c. Moreover, the following
implication holds: if u2,c(x) < u1(x) and v2,c(x) < v1(x) for 0 ≤ x < a,
where a ≥ c is a constant, then also u2,c(a) < u1(a) and v2,c(a) < v1(a).
Hence, we conclude that u2,c(x) ≤ u1(x) and v2,c(x) ≤ v1(x) on their
common interval of existence. Letting c → 0, we see that u2(x) ≤ u1(x)
and v2(x) ≤ v1(x) for x > 0. We can obtain the reverse inequality in
the same way. Hence, u2 = u1 and v2 = v1.

Sufficiency. First, we shall construct a nondecreasing subsolution w
of (2.5), that is, a nondecreasing function positive for x > 0 such that

(4.1) w(x)≤Tw(x) =

∫ x

0

(x− s)α−1

[ ∫ s

0

m∑
i=1

(s−t)βi−1gi(w(t)) dt

]γ
ds.

Such functions w are equibounded, at least on a fixed small interval
x ∈ [0, δ]. In order to see this, we first note that the following inequality

(4.2)
w(x)

g∗(w(x))γ
≤ ϕ(x) for x > 0,

where g∗(z) = max1≤i≤m gi(z) and

ϕ(x) =

∫ x

0

(x− s)α−1

[ m∑
i=1

1

βi
sβi

]γ
ds,

is valid for any subsolution w. Hence, it also follows that

z

g∗(z)γ
−→ 0 as z → 0.
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Now, let M > 0 and

h(z) = inf{s/g∗(s)γ : z < s < M} for z ≥ 0.

Since the function h is continuous and nondecreasing with h(0) = 0,
we can choose 0 < M0 < M such that h(M0) < h(M0 + ϵ) for ϵ > 0.
Due to (4.2), we have

w(x) ≤ h−1(ϕ(x))

for 0 ≤ x ≤ δ, where h−1 is the inverse function to h and δ > 0 is such
that ϕ(x) ≤ h(M0) for 0 ≤ x ≤ δ. Integrating by parts in the inner
integrals in (4.1), and then substituting z = w(t), we obtain∫ s

0

(s− t)βi−1gi(w(t)) dt =
1

βi

∫ s

0

(s− t)βidgi(w(t))

=
1

βi

∫ w(s)

0

(s− w−1(z))βidgi(z).

Denote

Hw(z) =
m∑
i=1

1

βi

∫ z

0

(w−1(z)− w−1(r))βidgi(r).

Integrating by parts in the outer integral in (4.1) and then substituting
z = w(s) we obtain

Tw(x) =
1

α

∫ x

0

(x− s)αd [Hw(w(s))]
γ

=
1

α

∫ w(x)

0

(x− w−1(z))αd [Hw(z)]
γ
.

In order to construct a subsolution we define an auxiliary function
w0(x) by its inverse

w−1
0 (x) =

∫ x

0

1

Φ(z)
dz

for x > 0.
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We note that

(4.3)

∫ x

0

(w−1
0 (x)− w−1

0 (z))αd [Hw0(z)]
γ

≥
∫ x/2

0

(w−1
0 (x)− w−1

0 (z))αd [Hw0(z)]
γ

≥ (w−1
0 (x)− w−1

0 (x/2))α [Hw0(x/2)]
γ

and

(4.4) w−1
0 (x)− w−1

0 (x/2) ≥ x

2Φ(x)

for x > 0. Furthermore, due to (3.6), we have

(4.5) Hw0(x/2)
γ = V (x/2)γ ≥ cx−α+1Φ(x/2)α,

where c > 0 is a constant. Now, combining (4.3), (4.5) and using (3.1),
we see that there exists a constant c > 0 such that∫ x

0

(w−1
0 (x)− w−1

0 (z))αd [Hw0
(z)]

γ

≥
∫ x/2

0

(w−1
0 (x)− w−1

0 (z))αd [Hw0
(z)]

γ ≥ cx

for x > 0. Hence, it follows that there exists a constant c0 > 0 such
that

Tw0(x) ≥ c0w0(x)

for x > 0. Now, if 0 < c0 < 1, we modify w0 by taking w̃−1(x) =

c
−1/(α+β∗γ)
0 w−1

0 (x), where β∗ = min1≤i≤m βi; otherwise, we take

w̃−1(x) = w−1
0 (x). Then, we get

Tw̃(x) ≥ w̃(x)

for x > 0, which means that w̃(x) is a sought subsolution. Moreover,
the functions Tnw̃, n = 1, 2, . . . , constitute a nondecreasing bounded
sequence of subsolutions of (4.1). The required solution u can be
obtained as the limit

u(x) = lim
n→∞

Tnw̃(x) for 0 ≤ x ≤ δ.

Thus, we obtain the nontrivial solution u of (2.5), defined on a small
interval [0, δ]. Now, using standard arguments from the Volterra
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integral equation theory [4], this solution can be extended to the
maximal interval of existence.

Necessity. Let u be the nontrivial solution of equation (2.5). Since

u−1(x) =

∫ x

0

(u−1)′(s) ds < ∞

for x > 0, our assertion follows from the upper estimate of u′(u−1)
given in Corollary 3.6. �

Below, we give the proof of Theorem 2.2.

Proof of Theorem 2.2.

Necessity. Let u be the nontrivial solution of equation (2.5) blowing-
up at T < ∞. Since

T = lim
x→∞

u−1(x) =

∫ ∞

0

(u−1)′(s) ds < ∞,

our assertion follows from the upper estimate of u′(u−1)(s) given in
Corollary 3.6.

Sufficiency. Assume that (2.4) is true. First note that a nondecreas-
ing, nontrivial solution u(x) of equation (2.5) is blowing-up if and only
if its inverse function u−1(x) converges to some 0 < T < ∞, as x → ∞.
Since, by the left inequality in Corollary 3.6,

u−1(x) ≤ 1/c1Φ

∫ x

0

dz

Φ(z)
,

for x > 0, it follows from (2.4) that

T = lim
x→∞

u−1(x) ≤ 1/c1Φ lim
x→∞

∫ x

0

dz

Φ(z)
< ∞,

which shows that u(x) is blowing-up at T > 0. Thus, the proof is
complete. �
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