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ABSTRACT. This paper is concerned with the following
memory-type Timoshenko system

ρ1φtt −K(φx + ψ)x = 0

ρ2ψtt − bψxx +K(φx + ψ) +

∫ t

0
g(t− s)ψxx(s) ds = 0,

(x, t) ∈ (0, L) × (0,∞), with Dirichlet boundary conditions,
where g is a positive non-increasing function satisfying, for
some constant 1 ≤ p < 3/2,

g′(t) ≤ −ξ(t)gp(t), for all t ≥ 0.

We prove some decay results which generalize and improve
many earlier results in the literature. In particular, our
result gives the optimal decay for the case of polynomial
stability.

1. Introduction. In 1921, Timoshenko [26] presented the following
system of hyperbolic partial differential equations

(1.1)
ρutt = (K(ux − ϕ))x in (0, L)× (0,+∞),

Iρϕtt = (EIϕx)x +K(ux − ϕ) in (0, L)× (0,+∞),

as a mathematical model describing the dynamics of a beam by taking
the transverse shear strain into consideration. Here, t represents the
time and x is the space variable along the beam of length L, u is the
transverse displacement of the beam from its equilibrium configuration
and ϕ is the rotational angle of the filament of the beam. The constant
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coefficients ρ, Iρ, E, I andK are the mass density, the polar moment of
inertia of a cross-section, the Young modulus of elasticity, the moment
of inertia of a cross-section, and the shear modulus, respectively.

For almost a century, a great number of researchers have devoted
a considerable amount of time studying this model, and many results
concerning the well-posedness and long-time behavior of the system
have been established. Various types of dissipation mechanisms (such
as boundary and/or internal controls) were employed in order to achieve
different stability results. We mention a few of these results from the
literature. For more details, we refer the reader to the references in this
paper and the references therein.

In the case of boundary feedback controls, Kim and Renardy [14]
investigated the uniform stabilization of (1.1) with clamped end at
x = 0, that is,

u(0, t) = 0, ϕ(0, t) = 0, for all t ≥ 0

and mixed boundary conditions of the form

Kϕ(L, t)−Kux(L, t) = αut(L, t), for all t ≥ 0
EIϕ(L, t) = −βϕt(L, t), for all t ≥ 0.

They used the multiplier method to prove that the energy associated
to system (1.1) decays exponentially. Feng, et al. [7] considered
the problem in [14] but replaced the linear boundary controls with
some nonlinear feedback controls and established the asymptotic and
exponential stability of the system by using the LaSalle invariance
principle and energy perturbation method. Messaoudi and Mustafa in
[19] investigated the long-time behavior of a Timoshenko system with
internal and/or boundary feedback controls. Without imposing any
restrictive growth assumption on the damping terms near the origin,
they established explicit and general decay results.

In the presence of two internal feedback controls, Raposo, et al. [23]
studied the exponential decay of the solution of a linear Timoshenko-
type beam equation with frictional dissipative terms. Precisely, they
studied the following system

(1.2)


ρ1utt −K(ux − ψ)x + ut = 0 0 < x < L, t > 0,

ρ2ψtt − bψxx +K(ux − ψ) + ψt = 0 0 < x < L, t > 0,

u(0, t) = u(L, t) = ψ(0, t) = ψ(L, t) = 0 for all t > 0
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and used the semigroup method developed by Liu and Zheng [16] to
prove the exponential decay of the solution of the system (1.2).

However, when a control is present on the rotation angle or on the
transverse displacement alone the decay rates turn out to depend on the
constants ρ, Iρ, E, I and K. For instance, Soufyane and Wehbe [25]
proved that one can uniformly stabilize a linear Timoshenko system
under influence of one locally distributed damping. They considered

(1.3)


ρ1utt = (K(ux − ψ))x 0 < x < L, t > 0,

ρ2ψtt = (bψx)x +K(ux − ψ)− σψt 0 < x < L, t > 0,

u(0, t) = u(L, t) = ψ(0, t) = ψ(L, t) = 0 for all t > 0,

where σ is any continuous function on [0, L] satisfying

σ(x) ≥ γ0 > 0, for all x ∈ [c, d] ⊂ [0, L].

Indeed, they proved the exponential stability for system (1.3) if and
only if the system has equal speeds of wave propagation, that is, if and
only if

(1.4)
ρ1
K

=
ρ2
b

holds. Otherwise, only the asymptotic stability is established. Fer-
nandez Sare and Rivera [8] studied a Timoshenko system with infinite
history of the form

(1.5)



ρ1φtt −K(φx + ψ)x = 0,

ρ2ψtt − bψxx +K(φx + ψ)

+

∫ +∞

0

g(s)ψxx(t− s)ds = 0,

φ(0, t) = φ(L, t) = ψ(0, t) = ψ(L, t) = 0,

where x ∈ (0, L), t > 0, and the relaxation function g satisfies

(1.6) b̃ := b−
∫ +∞

0

g(s) ds > 0

and

(1.7)


g(t) > 0,

there exists k0, k1, k2 > 0 : −k0g(t) ≤ g′(t) ≤ −k1g(t),
|g′′(t)| ≤ k2g(t).
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They showed that system (1.5) is exponentially stable if and only if
relation (1.4) holds; otherwise, it is polynomially stable. Messaoudi
and Said-Houari [21] investigated the same system with the following
conditions on g:
(1.8)b̃ := b−

∫ +∞

0

g(s) ds > 0

g(t) > 0, there exists k0 > 0 : g′(t) ≤ −k0gp(t), 1 ≤ p < 3/2

and proved that, if (1.4) holds, then the energy associated to the system
decays exponentially for p = 1 and polynomially for p > 1. However,
if (1.4) is not satisfied, they established the decay rate of the type
1/t1/(2p−1). This result generalizes and improves that of [8]. In [13],
Guesmia, et al., established general decay estimates for the solution of
(1.5). Their results hold for the relaxation function g having more
general decay, and they obtained general decay results from which
the exponential and polynomial decay results are only special cases.
Additionally, they improved the results of [8, 21].

The stability of a linear viscoelastic-type Timoshenko system (finite
history) has also attracted the considerable attention of researchers.
For example, Ammar-Khodja, et al. [4] studied the following system:

(1.9)

ρ1φtt −K(φx + ψ)x = 0,

ρ2ψtt − bψxx +K(φx + ψ) +

∫ t

0

g(t− s)ψxx(s) ds = 0,

with Dirichlet-boundary conditions, where x ∈ (0, L) and t > 0. They
proved that this system decays uniformly if and only if the coefficients
satisfy (1.4). Concerning the rate of decay, they showed that if g
satisfies hypotheses (1.6) and (1.7), then the system is exponentially
stable. If g is of polynomial type, that is, if it satisfies, for some positive
constants b0, b1, b2, b3, b4 and p > 2,

0 < g(t) ≤ b0(1 + t)−p,

−b1g(p+1)/p(t) ≤ g′(t) ≤ −b2g(p+1)/p(t),

−b3|g′(t)|(p+2)/(p+1) ≤ g′′(t) ≤ −b4|g′(t)|(p+2)/(p+1),

then the energy associated to the system decays polynomially to zero.
In the case where the coefficients of system (1.9) satisfy (1.4), Guesmia
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and Messaoudi [10] established the same stabilization results of [4]
by assuming that g satisfies conditions (1.8) which are weaker than
those in [4]. Also, Messaoudi and Mustafa [20] discussed system (1.9)
and proved a general decay result, from which the exponential and
polynomial stability are only special cases, under the conditions

g(t) > 0, g′(t) ≤ −ξ(t)g(t), b−
∫ +∞

0

g(s) ds := l > 0,

where ξ is a positive non-increasing differentiable function. In fact, the
result of [20] generalizes those of [4, 10] and allows a wider class of
relaxation functions. Recently, Almeida Júnior et al. [3] considered
the situation when the control is only on the transverse displacement
equation, which is more realistic from the physical point of view.
Precisely, they studied the following system{

ρ1φtt − k(φx + ψ)x + µφt = 0 in (0, L)× (0,+∞)

ρ2ψtt − bψxx + k(φx + ψ) = 0 in (0, L)× (0,+∞)

and showed that the affect of linear frictional damping on the first
equation stabilizes the system exponentially if (1.4) holds; otherwise,
the stabilization is of polynomial type. This result was later improved
and generalized by Guesmia and Messaoudi [9]. For more recent results
on this and viscoelastic systems in general, see [1, 2, 6, 15, 18].

Concerning stabilization by heat effect, Rivera and Racke [22]
showed that it is possible to stabilize a Timoshenko system in such
a way. In fact, they considered the following coupled system

(1.10)


ρ1φtt − σ(φx, ψ)x = 0 in (0, L)× (0,+∞)

ρ2ψtt − bψxx + k(φx + ψ) + γθx = 0 in (0, L)× (0,+∞)

ρ3θt − kθxx + γψxt = 0 in (0, L)× (0,+∞)

and proved many exponential stability results of the linearized system
if relation (1.4) is satisfied and a polynomial stability result otherwise.
Guesmia et al. [13] established various general decay estimates for
system (1.10) depending on the regularity of the initial data and
the validity of relation (1.4) by adding an infinite memory term on
the first or second equation, where the heat propagation is given
by Fourier’s, Cattaneo’s and Green and Naghdi’s laws. Apalara et
al. [5] proved the asymptotic stability of a one-dimensional linear
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thermoelastic Timoshenko system, where the heat conduction is given
by Cattaneo’s theory and the coupling is through the displacement
equation. They proved their exponential and polynomial stability
results under a stability number which was first introduced in [24].
For more recent results on this, see [6, 12].

Our main purpose in this paper is to study the following memory-
type Timoshenko system

(P )



ρ1φtt −K(φx + ψ)x = 0,

ρ2ψtt − bψxx +K(φx + ψ) +

∫ t

0

g(t− s)ψxx(s) ds = 0,

φ(0, t) = φ(L, t) = ψ(0, t) = ψ(L, t) = 0,

φ(x, 0) = φ0(x), φt(x, 0) = φ1(x),

ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x),

where (x, t) ∈ (0, L) × (0,∞), b, K, ρ1 and ρ2 are positive constants,
φ0, φ1, ψ0 and ψ1 are given data, and g is a relaxation function
satisfying some conditions to be specified in the next section. We prove
generalized energy decay results for the system. Our results generalize
and improve that of Messaoudi and Mustafa [20] in the case of equal
speeds of wave propagation and that of Guesmia and Messaoudi [11]
in the opposite case.

This paper is organized as follows. In Section 2, we state some
preliminary results. In Section 3, we state and prove some technical
lemmas. The statement and proof of our main results are given in
Sections 4 and 5.

2. Preliminaries. In this section, we introduce our assumptions,
present some useful lemmas and state the existence theorem. We use
c to denote a positive generic constant.

Assumptions. We assume that the relaxation function g satisfies
the following hypotheses:

(H1) g : R+ → R+ is a non-increasing differentiable function such
that

g(0) > 0, b−
∫ +∞

0

g(s) ds =: l > 0.
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(H2) There exist a non-increasing differentiable function ξ : R+ →
R+ and a constant 1 ≤ p < 3/2 such that

g′(t) ≤ −ξ(t)gp(t), for all t ≥ 0.

Lemma 2.1. Assume that g satisfies hypotheses (H1) and (H2). Then,∫ +∞

0

ξ(t)g1−σ(t) dt < +∞, for all 0 < σ < 2− p.

Proof. Using (H2), we have∫ +∞

0

ξ(t)g1−σ(t) dt =

∫ +∞

0

ξ(t)gp(t)g1−σ−p(t) dt

≤ −
∫ +∞

0

g′(t)g1−σ−p(t) dt

= −
[

1

2− σ − p
g2−σ−p(t)

]t=+∞

t=0

< +∞,

since σ < 2− p. �

For completeness, we state, without proof, the global existence and
regularity result which can be easily established by a standard Galerkin
argument.

Theorem 2.2. Let (φ0, φ1), (ψ0, ψ1) ∈ H1
0 (0, L) × L2(0, L) be given.

Assume that g satisfies hypothesis (H1). Then, problem (P ) has a
unique global (weak) solution

φ,ψ ∈ C(R+;H
1
0 (0, L)) ∩ C1(R+;L

2(0, L)).

Moreover, if (φ0, φ1), (ψ0, ψ1) ∈ (H2(0, L)∩H1
0 (0, L))×H1

0 (0, L), then
the problem has a unique strong solution

φ,ψ ∈ C(R+;H
2(0, L)∩H1

0 (0, L))∩C1(R+;H
1
0 (0, L))∩C2(R+;L

2(0, L)).



124 SALIM A. MESSAOUDI AND JAMILU HASHIM HASSAN

Now, we introduce the energy functional

(2.1)

E(t) :=
1

2

∫ L

0

[
ρ1φ

2
t + ρ2ψ

2
t +

(
b−

∫ t

0

g(s) ds

)
ψ2
x

+K(φx + ψ)2
]
dx+

1

2
(g ◦ ψx)(t),

where, for any v ∈ L2
loc(R+;L

2(0, L)),

(g ◦ v)(t) :=
∫ L

0

∫ t

0

g(t− s)(v(t)− v(s))2ds dx.

Lemma 2.3 ([20]). Let (φ,ψ) be the solution of (P ). Then,

E′(t) = −1

2
g(t)

∫ L

0

ψ2
x dx+

1

2
(g′ ◦ ψx)(t)(2.2)

≤ 1

2
(g′ ◦ ψx)(t) ≤ 0, for all t ≥ 0.

Lemma 2.4 ([20]). There exists a constant c > 0 such that, for any
v ∈ L2

loc(R+;H
1
0 (0, L)), we have∫ L

0

(∫ t

0

g(t− s)(v(t)− v(s)) ds

)2

dx ≤ c(g ◦ vx)(t), for all t ≥ 0.

Lemma 2.5 ([17]). Assume that conditions (H1) and (H2) hold and
(φ,ψ) is the solution of (P ). Then, for any 0 < σ < 1, we have

g ◦ ψx ≤
[
8

l
E(0)

∫ t

0

g1−σ(s) ds

](p−1)/(p+σ−1)

(gp ◦ ψx)
σ/(p+σ−1).

For σ = 1/2, we obtain the following inequality :

(2.3) g ◦ ψx ≤ c

(∫ t

0

g1/2(s) ds

)(2p−2)/(2p−1)

(gp ◦ ψx)
1/(2p−1).

Corollary 2.6. Assume that g satisfies (H1), (H2) and (φ,ψ) is the
solution of (P ). Then,

ξ(t)(g ◦ ψx)(t) ≤ c(−E′(t))1/(2p−1), for all t ≥ 0.
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Proof. Multiplying both sides of the inequality (2.3) by ξ(t) and
using Lemmas 2.1 and 2.3, we obtain

ξ(t)(g ◦ ψx)(t)

≤ cξ(2p−2)/(2p−1)(t)

(∫ t

0

g1/2(s) ds

)(2p−2)/(2p−1)

(ξgp ◦ ψx)
1/(2p−1)(t)

≤ c

(∫ t

0

ξ(s)g1/2(s) ds

)(2p−2)/(2p−1)

(−g′ ◦ ψx)
1/(2p−1)

≤ c(−E′(t))1/(2p−1). �

Lemma 2.7 (Jensen’s inequality). Let G : [a, b] → R be a concave
function. Assume that the functions f : Ω → [a, b] and h : [0, L] → R
are integrable such that h(x) ≥ 0, for any x ∈ Ω and

∫
Ω
h(x) dx = k >

0. Then,

1

k

∫
Ω

G(f(x))h(x) dx ≤ G

(
1

k

∫
Ω

f(x)h(x) dx

)
.

In particular, for G(y) = y1/p, y ≥ 0, p > 1, we have

1

k

∫
Ω

f1/p(x)h(x) dx ≤
(
1

k

∫
Ω

f(x)h(x) dx

)1/p

.

3. Technical lemmas. In this section, we state and prove some
lemmas needed to establish our main results.

Lemma 3.1. Assume that conditions (H1) and (H2) hold. Then, the
functional F defined by

F (t) := −ρ2
∫ L

0

ψt

∫ t

0

g(t− s)(ψ(t)− ψ(s)) ds dx

satisfies, along with the solution of (P ), the estimates

F ′(t) ≤ −ρ2
(∫ t

0

g(s) ds− δ

)∫ L

0

ψ2
t dx+ δK

∫ L

0

(φx + ψ)2dx(3.1)

+ cδ

∫ L

0

ψ2
xdx+ c

(
δ +

1

δ

)
(g ◦ ψx)−

c

δ
(g′ ◦ ψx),

for all δ > 0.
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Proof. Differentiating F and using the equations in (P ), we get

F ′(t) = −ρ2
∫ L

0

ψt

∫ t

0

g′(t− s)(ψ(t)− ψ(s)) ds dx

− ρ2

(∫ t

0

g(s) ds

)∫ L

0

ψ2
t dx

+ b

∫ L

0

ψx

∫ t

0

g(t− s)(ψx(t)− ψx(s)) ds dx

+K

∫ L

0

(φx + ψ)

∫ t

0

g(t− s)(ψ(t)− ψ(s)) ds dx

−
∫ L

0

(∫ t

0

g(t− s)ψx(s) ds

)
×

(∫ t

0

g(t− s)(ψx(t)− ψx(s)) ds

)
dx.

Next, we estimate the terms on the right-hand side of the above
equation.

Using Young’s inequality and Lemma 2.3 for (−g′), we obtain, for
any δ > 0,

−ρ2
∫ L

0

ψt

∫ t

0

g′(t− s)(ψ(t)−ψ(s)) ds dx ≤ δρ2

∫ L

0

ψ2
t dx−

c

δ
(g′ ◦ψx).

Similarly, we have

b

∫ L

0

ψx

∫ t

0

g(t− s)(ψx(t)− ψx(s)) ds dx ≤ δ

∫ L

0

ψ2
x +

c

δ
(g ◦ ψx),

K

∫ L

0

(φx + ψ)

∫ t

0

g(t− s)(ψ(t)− ψ(s)) ds dx

≤ δK

∫ L

0

(φx + ψ)2dx+
c

δ
(g ◦ ψx),

and∫ L

0

(∫ t

0

g(t− s)ψx(s) ds

)
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(∫ t

0

g(t− s)(ψx(t)− ψx(s)) ds

)
dx

≤ cδ

∫ L

0

ψ2
xdx+ c

(
δ +

1

δ

)
(g ◦ ψx).

A combination of these estimates gives the desired result. �

Lemma 3.2. Under conditions (H1) and (H2), the functional I1 de-
fined by

I1(t) := −
∫ L

0

(ρ1φφt + ρ2ψψt) dx

satisfies, along with the solution of (P ), the estimate

(3.2) I ′1(t) ≤ −
∫ L

0

(ρ1φ
2
t + ρ2ψ

2
t ) dx

+K

∫ L

0

(φx + ψ)2dx+ c

∫ L

0

ψ2
xdx+ c(g ◦ ψx).

Proof. Using equations of (P ) and repeating the above computa-
tions, we arrive at

I ′1(t) = −
∫ L

0

(ρ1φ
2
t + ρ2ψ

2
t ) dx+ b

∫ L

0

ψ2
xdx+K

∫ L

0

(φx + ψ)2dx

−
∫ L

0

ψx

∫ t

0

g(t− s)ψx(s) ds dx

≤ −
∫ L

0

(ρ1φ
2
t + ρ2ψ

2
t ) dx+K

∫ L

0

(φx + ψ)2dx

+ c

∫ L

0

ψ2
x + c(g ◦ ψx). �

Lemma 3.3. Assume that the hypotheses (H1) and (H2) hold. Then,
for any 0 < ε < 1, the functional I2 defined by

I2(t) := ρ2

∫ L

0

ψt(φx + ψ) dx

+
bρ1
K

∫ L

0

φtψx dx− ρ1
K

∫ L

0

φt

∫ t

0

g(t− s)ψx(s) ds dx
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satisfies, along with the solution of (P ), the estimate

(3.3)

I ′2(t) ≤
[(
bψx −

∫ t

0

g(t− s)ψx(s) ds

)
φx

]x=L

x=0

−K

∫ L

0

(φx + ψ)2dx+ cερ1

∫ L

0

φ2
tdx

+ ρ2

∫ L

0

ψ2
t dx+

c

ε

∫ L

0

ψ2
xdx− c

ε
(g′ ◦ ψx)

+

(
bρ1
K

− ρ2

)∫ L

0

φtψxtdx.

Proof. Using equations of (P ), integrating by parts and applying
Young’s inequality, we obtain

I ′2(t) =

[(
bψx −

∫ t

0

g(t− s)ψx(s) ds

)
φx

]x=L

x=0

−K

∫ L

0

(φx + ψ)2dx

+ ρ2

∫ L

0

ψ2
t dx+

ρ1
K

∫ L

0

φt

∫ t

0

g′(t− s)(ψx(t)− ψx(s)) ds dx

− ρ1
K
g(t)

∫ L

0

φtψx dx+

(
bρ1
K

− ρ2

)∫ L

0

φxψxt dx

≤
[(
bψx −

∫ t

0

g(t− s)ψx(s) ds

)
φx

]x=L

x=0

−K

∫ L

0

(φx + ψ)2dx+ cερ1

∫ L

0

φ2
tdx

+ ρ2

∫ L

0

ψ2
t dx+

c

ε

∫ L

0

ψ2
xdx− c

ε
(g′ ◦ ψx)

+

(
bρ1
K

− ρ2

)∫ L

0

φxψxt dx. �

Lemma 3.4. Assume that the hypotheses (H1) and (H2) hold. Let
m ∈ C1([0, L]) be a real-valued function satisfying m(0) = −m(L) = 2.
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Then, for any 0 < ε < 1, the functional I3 defined by

I3(t) :=
ρ2
4ε

∫ L

0

m(x)ψt

(
bψx −

∫ t

0

g(t− s)ψx(s) ds

)
dx

+ ε
ρ1
K

∫ L

0

m(x)φtφx dx

satisfies, along with the solution of (P ), the estimate

(3.4)

I ′3(t) ≤ −1

4

[(
bψx(L, t)−

∫ t

0

g(t− s)ψx(L, s) ds

)2

+

(
bψx(0, t)−

∫ t

0

g(t− s)ψx(0, s) ds

)2]
− ε(φ2

x(L, t) + φ2
x(0, t))

+

(
1

4
+ cε

)
K

∫ L

0

(φx + ψ)2dx+ cερ1

∫ L

0

φ2
tdx

+
c

ε
ρ2

∫ L

0

ψ2
t dx+

c

ε2

(∫ L

0

ψ2
xdx+ g ◦ ψx

)
− c

ε
(g′ ◦ ψx).

Proof. Using equations of (P ), the Young and Poicaré inequalities
and the fact that

φ2
x ≤ 2(φx + ψ)2 + 2ψ2,

we have

I ′3(t) =
1

4ε

[
−
(
bψx(L, t)−

∫ t

0

g(t− s)ψx(L, s) ds

)2

−
(
bψx(0, t)−

∫ t

0

g(t− s)ψx(0, s) ds

)2

− 1

2

∫ L

0

m′(x)

(
bψx −

∫ t

0

g(t− s)ψx(s) ds

)2

dx

−K

∫ L

0

m(x)

(
bψx −

∫ t

0

g(t− s)ψx(s) ds

)
· (φx + ψ) dx− bρ2

2

∫ L

0

m′(x)ψ2
t dx
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− ρ2g(t)

∫ L

0

m(x)ψxψt dx

+ ρ2

∫ L

0

m(x)ψt

∫ t

0

g′(t− s)(ψx(t)− ψx(s)) ds dx

]
+ ε

[
− (φ2

x(L, t) + φ2
x(0, t)) +

∫ L

0

m(x)φxψx dx

− 1

2

∫ L

0

m′(x)φ2
xdx− ρ1

2K

∫ L

0

m′(x)φ2
tdx

]
≤ − 1

4ε

[(
bψx(L, t)−

∫ t

0

g(t− s)ψx(L, s) ds

)2

+

(
bψx(0, t)−

∫ t

0

g(t− s)ψx(0, s) ds

)2]
− ε(φ2

x(L, t) + φ2
x(0, t)) +

(
1

4
+ cε

)
K

∫ L

0

(φx + ψ)2dx

+ cερ1

∫ L

0

φ2
tdx+

c

ε
ρ2

∫ L

0

ψ2
t dx

+
c

ε2

(∫ L

0

ψ2
xdx+ g ◦ ψx

)
− c

ε
(g′ ◦ ψx). �

Lemma 3.5. Assume that conditions (H1) and (H2) hold. After fixing
ε small enough, the functional I defined by

I(t) := 3cεI1(t) + I2(t) + I3(t)

satisfies, along with the solution of (P ), the estimate

I ′(t) ≤ −K
2

∫ L

0

(φx + ψ)2dx− τρ1

∫ L

0

φ2
tdx

+ cρ2

∫ L

0

ψ2
t dx+ c

∫ L

0

ψ2
xdx+ c(g ◦ ψx − g′ ◦ ψx)(3.5)

+

(
bρ1
K

− ρ2

)∫ L

0

φxψxt dx,

where τ = cε.
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Proof. Using Lemmas 3.2–3.4 and the fact that(
bψx −

∫ t

0

g(t− s)ψx(s) ds

)
φx

≤ 1

4ε

(
bψx −

∫ t

0

g(t− s)ψx(s) ds

)2

+ εφ2
x,

then choosing ε such that 4cε− (3/4) ≤ −(1/2), we obtain the required
result. �

As in [4, 20], we use the multiplier

(3.6) w(x, t) =
1

L

(∫ L

0

ψ(y, t) dy

)
x−

∫ x

0

ψ(y, t) dy

which satisfies, for some c > 0,∫ L

0

w2
xdx ≤

∫ L

0

ψ2dx

and ∫ L

0

w2
t dx ≤ c

∫ L

0

ψ2
t dx.

Lemma 3.6. Assume that (H1) and (H2) hold. Then, the functional
J defined by

J(t) :=

∫ L

0

(ρ1wφt + ρ2ψψt) dx

satisfies, along with the solution of (P ), the estimate

(3.7)

J ′(t) ≤ − l

2

∫ L

0

ψ2
xdx+ ε0ρ1

∫ L

0

φ2
tdx

+
c

ε0
ρ2

∫ L

0

ψ2
t dx+ c(g ◦ ψx),

for any 0 < ε0 < l.

Proof. Using Young’s inequality and equation (3.6), we obtain

J ′(t) =

∫ L

0

ψ

(
bψxx −K(φx + ψ)−

∫ t

0

g(t− s)ψxx(s) ds

)
dx
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+ ρ2

∫ L

0

ψ2
t dx+K

∫ L

0

w(φx + ψ)xdx+ ρ1

∫ L

0

wtφt dx

= ρ2

∫ L

0

ψ2
t dx− b

∫ L

0

ψ2
xdx

+K

∫ L

0

(w2
x − ψ2) dx+ ρ1

∫ L

0

wtφt dx

+

(∫ t

0

g(s) ds

)∫ L

0

ψ2
xdx

+

∫ L

0

ψx

∫ t

0

g(t− s)(ψx(s)− ψx(t)) ds dx

≤
(
ρ2 +

c

ε0

)∫ L

0

ψ2
t dx+

(
ε0
2

− l

)∫ L

0

ψ2
xdx

+ ε0ρ1

∫ L

0

φ2
tdx+

c

ε0
(g ◦ ψx)

≤ − l

2

∫ L

0

ψ2
xdx+ ε0ρ1

∫ L

0

φ2
tdx

+
c

ε0
ρ2

∫ L

0

ψ2
t dx+ c(g ◦ ψx),

provided that ε0 < l. �

4. General and optimal decay rates for equal speeds of wave
propagation. In this section, we state and prove a general decay result
under the equal speed of waves propagation condition. The exponential
and polynomial decay results are merely special cases.

Theorem 4.1. Let

(φ0, φ1), (ψ0, ψ1) ∈ H1
0 (0, L)× L2(0, L).

Assume that the hypotheses (H1) and (H2) and identity (1.4) hold.
Then, for any t0 > 0, there exist two positive constants C and λ, for
which the solution of (P ) satisfies, for t ≥ t0,

(4.1) E(t) ≤ C exp

(
− λ

∫ t

t0

ξ(s) ds

)
for p = 1,
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and

(4.2) E(t) ≤ C

(
1

1 +
∫ t

t0
ξ2p−1(s) ds

)1/(2p−2)

for 1 < p <
3

2
.

Moreover, if

(4.3)

∫ +∞

t0

(
1

1 +
∫ t

t0
ξ2p−1(s) ds

)1/(2p−2)

dt < +∞ for 1 < p <
3

2
,

then

(4.4) E(t) ≤ C

(
1

1 +
∫ t

t0
ξp(s) ds

)1/(p−1)

for 1 < p <
3

2
.

Remark 4.2. Inequalities (4.2) and (4.3) together give∫ +∞

0

E(t) dt < +∞.

Proof of Theorem 4.1. For the case when p = 1, see [20]. Assume
that 1 < p < 3/2, and let N1, N2, N3 > 0, define a functional

L(t) := N1E(t) +N2F (t) + I(t) +N3J(t),

and set

g0 =

∫ t0

0

g(s) ds and δ =
1

4N2
.

Then, from (2.2), (3.1), (3.5) and (3.7), we obtain

(4.5)

L′(t) ≤ −K
4

∫ L

0

(φx + ψ)2dx−
(
lN3

2
− 5

4
c

)∫ L

0

ψ2
xdx

− (τ − ε0N3)ρ1

∫ L

0

φ2
tdx

−
(
N2g0 −

1

4
− cN3

ε0
− c

)
ρ2

∫ L

0

ψ2
t dx

+ c

(
4N2

2 +N3 +
5

4

)
(g ◦ ψx)

+

(
N1

2
− 4cN2

2 − c

)
(g′ ◦ ψx),
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for all t ≥ t0 and 0 < ε0 < l. First, we choose N3 large enough so that

c1 :=

(
lN3

2
− 5

4
c

)
> 0,

then ε0 very small so that

c2 := (τ − ε0N3) > 0.

Next, we pick N2 large enough so that

c3 :=

(
N2g0 −

1

4
− cN3

ε0
− c

)
> 0.

Finally, we select N1 large enough so that(
N1

2
− 4cN2

2 − c

)
> 0.

Thus, (4.5) becomes

(4.6)

L′(t) ≤ −c1
∫ L

0

ψ2
xdx− c2ρ1

∫ L

0

φ2
tdx

− c3ρ2

∫ L

0

ψ2
t dx− K

4

∫ L

0

(φx + ψ)2dx

+ c(g ◦ ψx) ≤ −kE(t) + c(g ◦ ψx)(t),

for all t ≥ t0, and some k > 0. On the other hand, we can choose N1

even larger (if necessary) so that

L(t) ∼ E(t).

Therefore, by using Corollary 2.6 and estimate (4.6), we arrive at

ξ(t)L′(t) ≤ −kξ(t)E(t) + cξ(t)(g ◦ ψx)(t)

≤ −kξ(t)E(t) + c(−E′(t))1/(2p−1).

Multiplying both sides of the above inequality by (ξE)α(t), for α =
2p− 2, we obtain

ξα+1(t)Eα(t)L′(t) ≤ −k(ξE)α+1(t) + c(ξE)α(t)(−E′(t))1/(2p−1).

Applying Young’s inequality with q = (α+ 1)/α and q′ = α + 1, we
obtain

ξα+1(t)Eα(t)L′(t) ≤ −(k − cγ)(ξE)α+1(t)− c

γ
E′(t), for all γ > 0.
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We choose γ such that λ1 := k − cγ > 0 and use the non-increasing
property of ξ and E, to have

(ξα+1EαL)′(t) ≤ ξα+1(t)Eα(t)L′(t) ≤ −λ1(ξE)α+1(t)− cE′(t),

which entails that

(ξα+1EαL+ cE)′(t) ≤ −λ1(ξE)α+1(t).

Let F = ξα+1EαL+ cE ∼ E. Then

F ′(t) ≤ −λξα+1Fα+1(t),

for some λ > 0. Integration over (t0, t) gives

E(t) ≤ C

(
1

1 +
∫ t

t0
ξ2p−1(s) ds

)1/(2p−2)

for all t ≥ t0.

This establishes (4.2).

Next, we prove (4.4). From (4.6), we have

(4.7)

ξ(t)L′(t) ≤ −kξ(t)E(t) + cξ(t)(g ◦ ψx)(t)

≤ −kξ(t)E(t)

+ c
η(t)

η(t)

∫ t

0

(
ξp(s)gp(s)

)1/p∥ψx(t)− ψx(t− s)∥22ds,

for any t ≥ t0, where

η(t) =

∫ t

0

∥ψx(t)− ψx(t− s)∥22ds

≤ 2

∫ t

0

(∥ψx(t)∥22 + ∥ψx(t− s)∥22) ds

≤ 4

ℓ

∫ t

0

(E(t) + E(t− s)) ds

≤ 8

ℓ

∫ t

0

E(t− s) ds =
8

ℓ

∫ t

0

E(s) ds

≤ 8

ℓ

∫ +∞

0

E(s) ds < +∞,

by Remark 4.2. Applying Jensen’s inequality to the second term on
the right-hand side of (4.7), with G(y) = y1/p, y > 0, f(s) = ξp(s)gp(s)
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and h(s) = ∥ψx(t)− ψx(t− s)∥22, we obtain

ξ(t)L′(t) ≤ −kξ(t)E(t)+cη(t)

(
1

η(t)

∫ t

0

ξp(s)gp(s)∥ψx(t)−ψx(t−s)∥22ds
)1/p

,

where we assume that η(t) > 0; otherwise we get, from (4.6),

E(t) ≤ C exp(−kt) for all t ≥ t0.

Therefore,

ξ(t)L′(t) ≤ −kξ(t)E(t)

+ cη(p−1)/p(t)

(
ξp−1(0)

∫ t

0

ξ(s)gp(s)∥ψx(t)− ψx(t− s)∥22ds
)1/p

≤ −kξ(t)E(t) + c(−g′ ◦ ψx)
1/p(t)

≤ −kξ(t)E(t) + c(−E′(t))1/p.

Multiplying both sides of the above inequality by (ξE)α(t), for α =
p− 1, and repeating the above computations, we arrive at

E(t) ≤ C

(
1

1 +
∫ t

t0
ξp(s) ds

)1/(p−1)

for all t ≥ t0,

which establishes (4.4). �

Example 4.3. Let g(t) = a/(1 + t)q with q > 2, and let a > 0 be
chosen such that (H1) is satisfied. Then,

(4.8) g′(t) = − aq

(1 + t)q+1
.

Assume that ρ1/K = ρ2/b. If we write the above identity as

g′(t) = − q

1 + t
· a

(1 + t)q
= −ξ(t)g(t),

with ξ(t) = q/(1 + t) and p = 1, then it follows from (4.1) that, for any
t0 > 0, there exist λ > 0 and C > 0 such that

E(t) ≤ C exp

(
− λ

∫ t

t0

ξ(s) ds

)
=

c

(1 + t)λq
,

with the decay rate λq which is not necessarily the optimal rate.
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Now, by writing (4.8) as

(4.9) g′(t) = −a0
(

a

(1 + t)q

)(q+1)/q

= −ξ(t)gp(t),

with ξ(t) = a0 = q/a1/q and p = (q + 1)/q < 3/2, we have, for any
fixed t0 > 0,

∫ +∞

t0

(
1

1 +
∫ t

t0
ξ2p−1(s) ds

)1/(2p−2)

dt

=

∫ +∞

t0

(
1

1 + c(t− t0)

)1/(2p−2)

dt < +∞.

Therefore, inequality (4.3) entails that a constant C > 0 exists such
that

E(t) ≤ C

(
1

1 +
∫ t

t0
ξp(s) ds

)1/(p−1)

=
c

(1 + t)q
,

with the optimal decay rate q. For more examples, see [18, 20].

5. General decay rate for different speeds of wave propaga-
tion. In this section, we state and prove a generalized decay result in
the case of non-equal speeds of wave propagation. We begin by differ-
entiating both sides of the differential equations in (P ) with respect to
t and use the fact that

∂

∂t

[ ∫ t

0

g(t− s)ψxx(s) ds

]
=

∂

∂t

[ ∫ t

0

g(s)ψxx(t− s) ds

]
= g(t)ψxx(0) +

∫ t

0

g(s)ψxxt(t− s) ds

=

∫ t

0

g(t− s)ψxxt(s) ds+ g(t)ψ0xx,

to obtain the following system
(P∗){
ρ1φttt −K(φxt + ψt)x = 0,

ρ2ψttt − bψxxt +K(φxt + ψt) +
∫ t

0
g(t− s)ψxxt(s) ds+ g(t)ψ0xx = 0.
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The energy functional associated to (P∗) is given by

E∗(t) :=
1

2

∫ L

0

[
ρ1φ

2
tt + ρ2ψ

2
tt +

(
b−

∫ t

0

g(s) ds

)
ψ2
xt

(5.1)

+K(φxt + ψt)
2

]
dx+

1

2
(g ◦ ψxt)(t).

Lemma 5.1 ([11]). Let (φ,ψ) be the strong solution of (P ). Then,
the energy of (P∗) satisfies, for all t ≥ 0,

(5.2) E′
∗(t) = −1

2
g(t)

∫ L

0

ψ2
xt dx+

1

2
(g′ ◦ ψxt)− g(t)

∫ L

0

ψttψ0xx dx

and

(5.3) E∗(t) ≤ c

(
E∗(0) +

∫ L

0

ψ2
0xx dx

)
.

By repeating the steps of [17] in proving Lemma 2.5 and using (5.3),
we easily obtain the following lemma.

Lemma 5.2. Assume that hypotheses (H1) and (H2) hold and (φ,ψ)
is the strong solution of (P ). Then, for any 0 < σ < 1, we have

g ◦ ψxt ≤
[
8

l
c

(
E∗(0) +

∫ L

0

ψ2
0xxdx

)
·
∫ t

0

g1−σ(s) ds

](p−1)/(p+σ−1)(
gp ◦ ψxt

)σ/(p+σ−1)
.

In particular, for σ = 1/2, we get the following inequality :

(5.4) g ◦ ψxt ≤ c

(∫ t

0

g1/2(s) ds

)(2p−2)/(2p−1)

(gp ◦ ψxt)
1/(2p−1)

.

Corollary 5.3. Assume that conditions (H1) and (H2) hold and (φ,ψ)
is the strong solution of (P ). Then,

ξ(t)(g ◦ ψxt)(t) ≤ c
(
− E′

∗(t) + c1g(t)
)1/(2p−1)

for all t ≥ 0,

for some positive constant c1.
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Proof. From equation (5.2) and inequality (5.3), we have

(5.5)

0 ≤ −g′ ◦ ψxt

= −2E′
∗(t)− g(t)

∫ L

0

ψ2
xtdx− 2g(t)

∫ L

0

ψttψ0xx dx

≤ 2 (−E′
∗(t) + c1g(t)) ,

for some positive constant c1. Multiplication on both sides of (5.4) by
ξ(t) and the use of Lemma 2.1 and inequality (5.5) give

ξ(t)(g ◦ ψxt)(t)

≤ c

(
ξ(t)

∫ t

0

g1/2(s) ds

)(2p−2)/(2p−1)(
ξgp ◦ ψxt

)1/(2p−1)
(t)

≤ c

(∫ t

0

ξ(s)g1/2(s) ds

)(2p−2)/(2p−1)(
− g′ ◦ ψxt

)1/(2p−1)
(t)

≤ c
(
− E′

∗(t) + c1g(t)
)1/(2p−1)

. �

Let t0 > 0 and N1, N2, N3 > 1. We set g0 =
∫ t0
0
g(s) ds and

δ = 1/(4N2) in (3.1), and define a functional L by

L (t) := N1(E(t) + E∗(t)) +N2F (t) + I(t) +N3J(t).

Then, from (2.2), (5.2), (3.1), (3.5) and (3.7), we get

L ′(t) ≤ −K
4

∫ L

0

(φx + ψ)2dx−
(
lN3

2
− 5

4
c

)∫ L

0

ψ2
xdx

− (τ − ε0N3)

∫ L

0

ρ1φ
2
tdx+ c

(
4N2

2 +N3 +
5

4

)
g ◦ ψx

−
(
N2g0 −

1

4
− cN3

ε0
− c

)
ρ2

∫ L

0

ψ2
t dx(5.6)

+

(
N1

2
− 4cN2

2 − c

)
g′ ◦ ψx +

N1

2
g′ ◦ ψxt

−N1g(t)

∫ L

0

ψttψ0xx dx

+

(
ρ1b

K
− ρ2

)∫ L

0

φtψxt dx.
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Now, we estimate the last term on the right side of (5.6) as in [11].

Lemma 5.4. Let (φ,ψ) be the strong solution of (P ). Then, for any
ε > 0, we have

(5.7)

(
ρ1b

K
− ρ2

)∫ L

0

φtψxt dx ≤ ερ1

∫ L

0

φ2
tdx

+
c

ε
(g ◦ ψxt − g′ ◦ ψx) +

c

ε
E(0)g(t) for all t ≥ t0.

Proof.(
ρ1b

K
− ρ2

)∫ L

0

φtψxt dx =
((ρ1b/K)− ρ2)∫ t

0
g(s) ds

×
∫ L

0

φt

∫ t

0

g(t− s)(ψxt(t)− ψxt(s)) ds dx(5.8)

+
((ρ1b/K)− ρ2)∫ t

0
g(s) ds

×
∫ L

0

φt

∫ t

0

g(t− s)ψxt(s) ds dx.

By observing that

1∫ t

0
g(s) ds

≤ 1

g0
for all t ≥ t0

and exploiting Young’s inequality and Lemma 2.4 (for ψxt), we get, for
ε > 0 and t ≥ t0,

((ρ1b/K)− ρ2)∫ t

0
g(s) ds

∫ L

0

φt

∫ t

0

g(t− s)(ψxt(t)− ψxt(s)) ds dx

≤ ε

2
ρ1

∫ L

0

φ2
tdx+

c

ε
(g ◦ ψxt).

On the other hand, by integration by parts and using Lemma 2.4 (for
−g′ and ψx) and the fact that E is non-increasing, we obtain

((ρ1b/K)− ρ2)∫ t

0
g(s) ds

∫ L

0

φt

∫ t

0

g(t− s)ψxt(s) ds dx =
((ρ1b/K)− ρ2)∫ t

0
g(s) ds
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·
∫ L

0

φt

(
g(0)ψx − g(t)ψ0x +

∫ t

0

g′(t− s)ψx(s) ds

)
dx

=
((ρ1b/K)− ρ2)∫ t

0
g(s) ds

·
∫ L

0

φt

(
g(t)(ψx − ψ0x)−

∫ t

0

g′(t− s)(ψx(t)− ψx(s)) ds

)
dx

≤ ε

2
ρ1

∫ L

0

φ2
tdx+

c

ε
g(t)

∫ L

0

(ψ2
x + ψ2

0x) dx− c

ε
g′ ◦ ψx

≤ ε

2
ρ1

∫ L

0

φ2
tdx+

c

ε
E(0)g(t)− c

ε
g′ ◦ ψx.

Inserting the last two inequalities into (5.8), we get (5.7). �

Lemma 5.5. Let (φ,ψ) be the strong solution of (P ). Then, for any
t ≥ t0, we have

(5.9)

L ′(t) ≤ −kE(t) + c(g ◦ ψx + g ◦ ψxt)

+ c

(
E(0) + E∗(0) +

∫ L

0

ψ2
0xxdx

)
g(t),

for some k > 0.

Proof. It follows from Young’s inequality and (5.3) that

(5.10)

−
∫ L

0

ψttψ0xx dx ≤ 1

2

∫ L

0

(ψ2
tt + ψ2

0xx) dx

≤ c

(
E∗(t) +

∫ L

0

ψ2
0xxdx

)
≤ c

(
E∗(0) +

∫ L

0

ψ2
0xxdx

)
.

Then, plugging (5.7) and (5.10) into (5.6), we obtain

L ′(t) ≤ −K
4

∫ L

0

(φx + ψ)2dx−
(
lN3

2
− 5

4
c

)∫ L

0

ψ2
xdx

−
(
τ − (N3 + 1)ε0

) ∫ L

0

ρ1φ
2
tdx
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−
(
N2g0 −

1

4
− cN3

ε0
− c

)
ρ2

∫ L

0

ψ2
t dx

+ c

(
4N2

2 +N3 +
5

4

)
g ◦ ψx +

c

ε0
g ◦ ψxt

+

(
N1

2
− 4cN2

2 − c− c

ε0

)
g′ ◦ ψx +

c

ε0
E(0)g(t)

+ c

(
E∗(0) +

∫ L

0

ψ2
0xxdx

)
g(t).

At this point, we choose N3, ε0, N2 and N1 as in (4.5) to get (5.9). �

Theorem 5.6. Let (φ0, φ1), (ψ0, ψ1) ∈ (H2(0, L)∩H1
0 (0, L))×H1

0 (0, L).
Assume that conditions (H1) and (H2) hold and the coefficients of the
problem (P ) satisfy

ρ1
K

̸= ρ2
b
.

Then, for any t0 > 0, there exists a positive constant C, for which the
strong solution of (P ) satisfies, for t > t0,

(5.11) E(t) ≤ C

(
1∫ t

t0
ξ2p−1(s) ds

)1/(2p−1)

for 1 ≤ p <
3

2
.

Proof. Multiplying both sides of (5.9) by ξ(t) and using Corollaries
2.6 and 5.3, we obtain

ξ(t)L ′(t) ≤ −kξ(t)E(t) + cξ(t)(g ◦ ψx + g ◦ ψxt) + cξ(t)g(t)

≤ −kξ(t)E(t) + cξ(t)g(t)

+ c
[(

− E′(t)
)1/(2p−1)

+
(
− E′

∗(t) + c1g(t)
)1/(2p−1)

]
.

Set α = 2p − 2, then multiply both sides of the above inequality by
(ξE)α(t) and exploit Young’s inequality with

q =
α+ 1

α
and q′ = α+ 1,

to obtain

ξα+1(t)Eα(t)L ′(t) ≤ −(k − cγ)(ξE)α+1(t)− c

γ
E′(t)− c

γ
E′

∗(t)
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+
cc1
γ
g(t) + cξα+1(t)Eα(t)g(t), for all γ > 0.

We choose γ > 0 small enough such that λ2 := k − cγ > 0 and use the
non-increasing property of ξ and g to get

(ξα+1EαL+cE+cE∗)
′(t) ≤ −λ2(ξE)α+1(t)+cξα+1(t)Eα(t)g(t)+cg(t),

which implies that

λ2(ξE)α+1(t) ≤ −(ξα+1EαL+cE+cE∗)
′(t)+cξα+1(t)Eα(t)g(t)+cg(t).

We choose N1 even larger (if needed) in the proof of Lemma 5.5 so
that L ≥ cE. Then, integration over (t0, t), together with the non-
increasing property of E and ξ, and the hypothesis (H1) yield, for
t ≥ t0,

λ2E
α+1(t)

∫ t

t0

ξα+1(s) ds

≤ λ2

∫ t

t0

(ξE)α+1(s) ds ≤ (ξα+1EαL + cE + cE∗)(t)

+ (ξα+1EαL + cE + cE∗)(t0) + (cξα+1(0)Eα(0) + c)

∫ t

t0

g(s) ds

≤ (ξα+1EαL + cE + cE∗)(0)

+

∫ L

0

ψ2
0xx(x) dx+ (cξα+1(0)Eα(0) + c)(b− l).

This entails that

E(t) ≤ C

(
1∫ t

t0
ξ2p−1(s) ds

)1/(2p−1)

for all t > t0.

This completes the proof of Theorem 5.6. �

Example 5.7. Let g(t) = e−at, where a > 0. Then g′(t) = −ξ(t)g(t)
with ξ(t) = a. It follows from (5.11) that, for any fixed t0 > 0, there
exists a C > 0 such that

E(t) ≤ C

t− t0
for all t > t0.



144 SALIM A. MESSAOUDI AND JAMILU HASHIM HASSAN

Example 5.8. Consider the same function g as in Example 4.3, and
write g′ as in (4.9). Then, it follows from (5.11) that, for any t0 > 0,
there exists C > 0 such that

E(t) ≤ C

(
1∫ t

t0
ξ2p−1(s) ds

)1/(2p−1)

=
c

(1 + t)q/(q+2)
, for t large.

For more examples, see [11, 18].
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