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ABSTRACT. We consider the Cauchy problem in RN ,
N ≥ 1, for the semi-linear Schrödinger equation with
fractional Laplacian. We present the local well-posedness of
solutions in Hα/2(RN ), 0 < α < 2. We prove a finite-time
blow-up result, under suitable conditions on the initial data.

1. Introduction. We study the initial-value problem for the non-
linear Schrödinger equation

(1.1)

{
i∂tu = Λαu+ λ|u|p (t, x) ∈ (0, T )× RN ,

u(x, 0) = f(x) x ∈ RN ,

where the pseudo-differential operator Λα := (−∆)α/2 with 0 < α < 2

is defined by the Fourier transformation: Λ̂αu(ξ) = |ξ|αû(ξ). Moreover,
we assume that T > 0, p > 1, u = u(x, t) is a complex-valued unknown
function, λ ∈ C \ {0} and f = f(x) ∈ Hα/2(RN ) is a given complex-
valued function.

In recent years, the study of fractional calculus and fractional inte-
grodifferential equations applied to physics and other areas has grown,
see [8, 12, 13] and the references therein. Meltzler and Klafter dis-
cussed recent developments in the description of anomalous diffusion
with the fractional dynamics approach in [12, 13] where many frac-
tional partial differential equations are asymptotically derived from
Lévy random walk models, a natural generalization of the Brownian
walk models. Inspired by the Feynman path approach to quantum me-
chanics, Laskin used the path integral over Lévy-like quantum mechan-
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ical paths to obtain a fractional Schrödinger equation, which extends a
classical result that the path integral over Brownian trajectories leads
to the standard Schrödinger equations, (see [10, 11]). There are also
papers that address fractional Schrödinger equations and their appli-
cations, see e.g., [5, 16].

When α = 2, i.e.,

(1.2)

{
i∂tu+∆u = λ|u|p (t, x) ∈ (0, T )× RN ,

u(x, 0) = f(x) x ∈ RN ,

it is well known, see [3], that local well-posedness holds for (1.2) in
H1(RN ) if 1 < p < 1 + (4/(N − 2)+). Moreover, it is also known
that the local solutions can be globally extended for some small data
when p is larger than the Strauss exponent ps, which is the positive
root of Np2 − (N + 2)p− 2 = 0, see [2]. However, there have been no
results on global existence for p ≤ ps. In 2013, Ikeda and Wakasugi [7]
proved a small-data blow-up result for (1.2) when 1 < p ≤ 1 + 2/N .
For more information on the semilinear Schrödinger equations without
gauge invariance, we refer the reader to [6].

The main goal in this paper is to generalize the blow-up result of
Ikeda and Wakasugi [7] to the fractional Schrödinger equations (1.1).
The local existence is accomplished by the Banach fixed point theorem,
using semigroup theory and Stone’s theorem on the fractional operator
A = −i(−∆)α/2, which is the infinitesimal generator of a C0 group of
unitary operator on L2, see [3]. The method used to prove the blow-
up result is the test function method. This method was introduced by
Baras and Kersner [1] in 1987 and developed by Zhang [17], Pohozaev
and Mitidieri [14] in 2001. It was also used by Kirane, et al., [9] in
2002.

The paper is organized as follows. In Section 2, we present local
existence of solutions for (1.1) with some properties. Section 3 contains
the blow-up result of solutions for (1.1).

2. Local existence. This section is dedicated to showing the local
existence and uniqueness of mild solutions of problem (1.1). Let
Au = −i(−∆)α/2u. By applying Stone’s theorem [15, theorem 1.10.8],
we conclude that A is the infinitesimal generator of a C0 group of
unitary operators S(t), −∞ < t <∞, on L2(RN ). We begin by giving
the following definition.
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Definition 2.1 (Mild solution). Let f ∈ Hα/2(RN ), 0 < α < 2, p > 1
and T > 0. We say that u ∈ C([0, T ],Hα/2(RN )) is a mild solution of
problem (1.1) if u satisfies the following integral equation:

(2.1) u(t) = S(t)f − iλ

∫ t

0

S(t− s)|u(s)|p ds.

We set

p0 =


∞ if n = 1,

1 +
2(α− 1)

α(2− α)
if n = 2,

1 +
n(α− 1)

(n− 1)(n− α)
if n ≥ 3.

Theorem 2.2 (Local existence). Given f ∈ Hα/2(RN ), λ ∈ C\{0},
0 < α < 2 and 1 < p < 1 + (2α/(N − α)+), there exist T > 0
and a mild solution u ∈ C([0, T ],Hα/2(RN )) of (1.1). Moreover, if
1 < α < 2 and 1 < p < p0, then the solution u is unique, and
therefore, there exist a maximal time Tmax > 0 and a unique mild
solution u ∈ C([0, Tmax),H

α/2(RN )) of (1.1). Furthermore, either
Tmax = ∞ or else Tmax <∞ and ∥u∥Hα/2(RN ) → ∞ as t→ Tmax.

Proof. Cho, et al., [4, Propositions 4.1–4.3] have shown, using the
Banach fixed-point theorem, that there exists a unique mild solution
u ∈ ΠT := C([0, T ],Hα/2(RN )) of (1.1). Using the uniqueness of
solution, we conclude the existence of a solution on a maximal interval
[0, Tmax), where

Tmax := sup {T > 0; there exists a mild solution u ∈ ΠT to (1.1)}
≤ +∞.

Next, we prove that ∥u∥Hα/2 → ∞ as t→ Tmax. We suppose

lim inf
t→Tmax

∥u∥Hα/2 <∞.

Then, we can find a sequence {tk}k∈N ⊂ [0, Tmax) and a positive
constant M > 0 such that

(2.2) lim
k→∞

tk = Tmax
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and

(2.3) sup
k∈N

∥u(tk)∥Hα/2 ≤M.

From (2.3) and the first part of Theorem 2.2, we can construct a
solution u ∈ C([tk, tk + T (M));Hα/2(RN )) of (2.1) for all k ∈ N
with some T (M) > 0. However, by (2.2), we can take tk satisfying
tk+T (M) > Tmax, which contradicts the definition of Tmax. Therefore,
we obtain

lim inf
t→Tmax

∥u∥Hα/2 = ∞. �

3. Blow-up of solutions. This section is devoted to deriving the
blow-up result of (1.1). We define the following.

Definition 3.1 (Weak solution). Let f ∈ L1
loc(RN ) and T > 0. We

say that u is a weak solution of problem (1.1) if u ∈ Lp
loc((0, T )× RN )

which verifies the following weak formulation:

(3.1)

i

∫
RN

f(x)φ(x, 0) + λ

∫ T

0

∫
RN

|u|pφ(x, t)

= −
∫ T

0

∫
RN

u(x, t)Λαφ(x, t)

− i

∫ T

0

∫
RN

u(x, t)φt(x, t),

for all compactly supported real-valued functions φ ∈ C2
0 ([0, T ]× RN )

such that φ(· , T ) = 0.

Lemma 3.2. Consider f ∈ Hα/2(RN ), and let u ∈ C([0, T ],Hα/2(RN ))
be a mild solution of (1.1). Then, u is a weak solution of (1.1), for all
T > 0.

Proof. Let T > 0, f ∈ Hα/2(RN ) and u ∈ C([0, T ], Hα/2(RN )) be
a solution of (2.1). Given a real-valued function φ ∈ C2

0 ([0, T ] × RN )
such that suppφ is compact and φ(· , T ) = 0. Then, after multiplying
(2.1) by φ and integrating over RN , we have
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∫
RN

u(x, t)φ(x, t)

=

∫
RN

S(t)f(x)φ(x, t)− iλ

∫
RN

∫ t

0

S(t− s)|u(s)|p dsφ(x, t).

We differentiate to obtain

(3.2)

d

dt

∫
RN

u(x, t)φ(x, t)

=

∫
RN

d

dt
(S(t)f(x)φ(x, t))

− iλ

∫
RN

d

dt

∫ t

0

S(t− s)|u(s)|p dsφ(x, t).

Now, using that A is a skew-adjoint operator and a property of the
group S(t) [3, Chapter 3], we have:

(3.3)

∫
RN

d

dt
(S(t)f(x)φ(x, t)) dx

=

∫
RN

A (S(t)f(x))φ(x, t) dx

+

∫
RN

S(t)f(x)φt(x, t) dx

=

∫
RN

S(t)f(x)Aφ(x, t) dx

+

∫
RN

S(t)f(x)φt(x, t) dx,

and

iλ

∫
RN

d

dt

∫ t

0

S(t− s)|u(s)|p dsφ(x, t) dx

= iλ

∫
RN

|u(t)|pφ(x, t) dx

+ iλ

∫
RN

∫ t

0

A (S(t− s)|u(s)|p) dsφ(x, t)

+ iλ

∫
RN

∫ t

0

S(t− s)|u(s)|p dsφt(x, t) dx(3.4)
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= iλ

∫
RN

|u(t)|pφ(x, t) dx

+ iλ

∫
RN

∫ t

0

S(t− s)|u(s)|p dsAφ(x, t)

+ iλ

∫
RN

∫ t

0

S(t− s)|u(s)|p dsφt(x, t) dx.

Thus, using (2.1), (3.3) and (3.4), we conclude that (3.2) implies

d

dt

∫
RN

u(x, t)φ(x, t) dx =

∫
RN

u(x, t)Aφ(x, t) dx

+

∫
RN

u(x, t)φt(x, t) dx

− iλ

∫
RN

|u(s)|pφ(x, t) dx.

The result follows by integrating in time over [0, T ] and using the fact
that φ(· , T ) = 0. �

In order to state our result, we set λ = λ1 + iλ2 and f = f1 + if2.
We introduce the following assumption on the data:

f1 ∈ L1(RN ), λ2

∫
RN

f1 dx > 0,(3.5)

or

f2 ∈ L1(RN ), λ1

∫
RN

f2 dx < 0.(3.6)

Theorem 3.3. Under the same conditions as Theorem 2.2, if f satis-
fies (3.5) or (3.6) and if

1 < p ≤ 1 +
α

N
,

then the mild solution of (1.1) blows-up in finite time.

Proof. We argue by contradiction, supposing that u is a global mild
solution of (1.1). Using Lemma 3.2, we have u ∈ Lp((0, Rα), Lp(B2ρ)),
for all ρ > 0 and that it satisfies (3.1), where B2ρ stands for the
closed ball of center 0 and radius 2ρ. We define the function φ(x, t) :=
φ1(x/BR)(φ2(t))

ℓ, where
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ℓ =
2p− 1

p− 1
,

R,B > 0 and 0 ≤ φ1 ∈ D(∆
α/2
D ) is the first eigenfunction of the frac-

tional Laplacian operator ∆
α/2
D in B2, with the homogeneous Dirichlet

boundary condition, associated to the first eigenvalue κ, and

φ2(t) = ψ

(
t

Rα

)
,

where ψ is a smooth non-increasing function on [0,∞) such that

ψ(r) =

{
1 if 0 ≤ r ≤ 1,

0 if r ≥ 2.

The constant B > 0 in the definition of φ1 is fixed and will be chosen
later. In fact, it plays some role only in the critical case p = 1 + α/N ;
in the subcritical case p < 1 + α/N we simply take B = 1.

In the following, we denote by Ω1 and Ω2 the supports of φ1 and
φ2, respectively:

Ω1 =
{
x ∈ RN : |x| ≤ 2BR

}
,

Ω2 = {t ∈ [0,∞) : t ≤ 2Rα} .

Since u is a weak solution, we have

(3.7)

λ

∫
Ω2

∫
Ω1

|u|p(x, t)φ(x, t) dx dt

+ i

∫
Ω1

f(x)φ(x, 0) dx

= −i
∫
Ω2

∫
Ω1

u(x, t)φ1(x/BR)∂tφ
ℓ
2(t) dx dt

+

∫
Ω2

∫
Ω1

u(x, t)φℓ
2(t)Λ

α(φ1(x/BR)) dx dt.

In order to obtain non-negativity on the left hand side of (3.7) (for
R,B ≫ 1), we consider four cases:
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Case I. If λ1 > 0, then ∫
RN

f2 dx < 0;

therefore, by taking the real part (Re) on the both sides of (3.7), we
get:

0 ≤ λ1

∫
Ω2

∫
Ω1

|u|p(x, t)φ(x, t) dx dt−
∫
Ω1

f2(x)φ(x, 0) dx

= Re

[
− i

∫
Ω2

∫
Ω1

u(x, t)φ1(x/BR)∂tφ
ℓ
2(t) dx dt

]
+Re

[ ∫
Ω2

∫
Ω1

u(x, t)φℓ
2(t)Λ

α(φ1(x/BR)) dx dt

]
.

Case II. If λ1 < 0, then
∫
RN f2 dx > 0; therefore, by taking (−Re)

on both sides of (3.7), we get:

0 ≤ −λ1
∫
Ω2

∫
Ω1

|u|p(x, t)φ(x, t) dx dt+
∫
Ω1

f2(x)φ(x, 0) dx

= Re

[
i

∫
Ω2

∫
Ω1

u(x, t)φ1(x/BR)∂tφ
ℓ
2(t) dx dt

]
+ (−Re)

[ ∫
Ω2

∫
Ω1

u(x, t)φℓ
2(t)Λ

α(φ1(x/BR)) dx dt

]
.

Case III. If λ2 > 0, then ∫
RN

f1 dx > 0;

therefore, by taking the imaginary part (Im) on both sides of (3.7), we
get:

0 ≤ λ2

∫
Ω2

∫
Ω1

|u|p(x, t)φ(x, t) dx dt+
∫
Ω1

f1(x)φ(x, 0) dx

= Im

[
− i

∫
Ω2

∫
Ω1

u(x, t)φ1(x/BR)∂tφ
ℓ
2(t) dx dt

]
+ Im

[ ∫
Ω2

∫
Ω1

u(x, t)φℓ
2(t)Λ

α(φ1(x/BR)) dx dt

]
.
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Case IV. If λ2 < 0, then
∫
RN f1 dx < 0; therefore, by taking (−Im)

on both sides of (3.7), we get:

0 ≤ −λ2
∫
Ω2

∫
Ω1

|u|p(x, t)φ(x, t) dx dt−
∫
Ω1

f1(x)φ(x, 0) dx

= Im

[
i

∫
Ω2

∫
Ω1

u(x, t)φ1(x/BR)∂tφ
ℓ
2(t) dx dt

]
+ Im

[ ∫
Ω2

∫
Ω1

u(x, t)φℓ
2(t)Λ

α(φ1(x/BR)) dx dt

]
.

We only consider Case I since the others may be treated identically.
In this case, we assume f2 ∈ L1 and

(3.8)

∫
RN

f2 dx < 0.

Thus, we have:

(3.9)

λ1

∫
Ω2

∫
Ω1

|u|p(x, t)φ(x, t) dx dt

≤ κB−α

∫
Ω2

∫
Ω1

|u|(x, t)φℓ
2(t)R

−αφ1(x/BR) dx dt

+ ℓ

∫
Ω2

∫
Ω1

|u|(x, t)φ1(x/BR)φ
ℓ−1
2 (t)∂tφ2(t) dx dt

:= I2 + I1,

where we have used the fact that ∆
α/2
D φ1(x/BR) = R−αB−ακφ1(x/R).

Hence, by the ε-Young inequality ab ≤ εap + C(ε)bℓ−1 (note that
1/p+ 1/(ℓ− 1) = 1) with ε > 0, we deduce:

I1 = ℓ

∫
Ω2

∫
Ω1

|u|(x, t)φ1/pφ−1/pφ1(x/BR)φ
ℓ−1
2 (t)∂tφ2(t) dx dt

≤ λ1
4

∫
Ω2

∫
Ω1

|u|p(x, t)φ(x, t) dx dt

+ C

∫
Ω2

∫
Ω1

φ−(ℓ−1)/pφ
(ℓ−1)
1 (x/BR)φ

(ℓ−1)2

2 (t)|∂tφ2(t)|ℓ−1 dx dt
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≤ λ1
4

∫
Ω2

∫
Ω1

|u|p(x, t)φ(x, t) dx dt

+ C

∫
Ω2

∫
Ω1

φ1(x/BR)φ2(t)|∂tφ2(t)|ℓ−1 dx dt,

and

I2 = κB−α

∫
Ω2

∫
Ω1

|u|(x, t)φ1/pφ−1/pφℓ
2(t)R

−αφ1(x/BR) dx dt

≤ λ1
4

∫
Ω2

∫
Ω1

|u|p(x, t)φ(x, t) dx dt

+ C

∫
Ω2

∫
Ω1

φ−(ℓ−1)/pφ
ℓ(ℓ−1)
2 (t)B−α(ℓ−1)R−α(ℓ−1)φℓ−1

1 (x/BR) dx dt

≤ λ1
4

∫
Ω2

∫
Ω1

|u|p(x, t)φ(x, t) dx dt

+ C

∫
Ω2

∫
Ω1

φℓ
2(t)B

−α(ℓ−1)R−α(ℓ−1)φ1(x/BR) dx dt.

Hence, from (3.9), we have:

λ1
2

∫
Ω2

∫
Ω1

|u|p(x, t)φ(x, t) dx dt

≤ C

∫
Ω2

∫
Ω1

φ1(x/BR)φ2(t)|∂tφ2(t)|ℓ−1 dx dt

+ C

∫
Ω2

∫
Ω1

φ1(x/BR)φ
ℓ
2(t)B

−α(ℓ−1)R−α(ℓ−1) dx dt.

Note that N + α− α(ℓ− 1) ≤ 0 if and only if p ≤ 1 + α/N . Therefore,
we consider two cases.

• If p < 1 + α/N , we suppose that B = 1. Thus, by taking the
change of variables ξ = R−1x and τ = R−αt, we have

λ1
2

∫
Ω2

∫
Ω1

|u|p(x, t)φ(x, t) dx dt

≤ C

∫ 2

0

∫
|ξ|≤2

φ1(ξ)φ2(R
ατ)R−α(ℓ−1)|∂τφ2(R

ατ)|ℓ−1RNRα dξ dτ

+ C

∫ 2

0

∫
|ξ|≤2

φ1(ξ)φ
ℓ
2(R

ατ)R−α(ℓ−1)RNRα dξ dτ.
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Therefore, we easily obtain

(3.10)

∫
Ω2

∫
Ω1

|u|p(x, t)φ(x, t) dx dt ≤ CRN+α−α(ℓ−1),

where the constant C on the right hand side of (3.10) is independent
of R. Hence, computing the limit R → ∞ and using the Lebesgue
dominated convergence theorem yields

∫ ∞

0

∫
RN

|u|p(x, t)φ1(0) dx dt = 0.

Then, u(x, t) = 0 for all t and almost every x. Hence, we obtain a
contradiction with (3.8).

• In the critical case p = 1+α/N , we choose 1 ≤ B < R large enough
such that, when R → ∞, we do not simultaneously have B → ∞. We
estimate the first term on the right hand side of inequality (3.9) by the
ε-Young inequality and the second term by the Hölder inequality (with
p = p/(p− 1) = ℓ− 1), as follows:

(3.11)

λ1

∫
Ω2

∫
Ω1

|u|pφ(x, t) dx dt

≤ λ1
2

∫
Ω2

∫
Ω1

|u|pφ(x, t) dx dt

+ C

∫
Ω2

∫
Ω1

φ−p̄/pφℓp̄
2 (t)φp̄

1(x/BR)(RB)−αp̄ dx dt

+ ℓ

(∫
Ω3

∫
Ω1

|u|pφ(x, t) dx dt
)1/p

×
(∫

Ω2

∫
Ω1

φ1(x/BR)φ2(t) |∂tφ2(t)|p̄ dx dt
)1/p̄

.

Here, Ω3 = {t ∈ [0,∞) : Rα ≤ t ≤ 2Rα} ⊂ Ω2 is the support of ∂tφ2.
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Note that

(3.12)

lim
R→∞

∫
Ω3

∫
Ω1

|u|pφ(x, t) dx dt

= lim
R→∞

∫
|t|≤2Rα

∫
Ω1

|u|pφ(x, t) dt dx

− lim
R→∞

∫
|t|≤Rα

∫
Ω1

|u|pφ(x, t) dt dx

=

∫ ∞

0

∫
RN

|u|p(x, t)φ1(0) dx dt

−
∫ ∞

0

∫
RN

|u|p(x, t)φ1(0) dx dt = 0,

where we have used the Lebesgue dominated convergence theorem and
the fact that u ∈ Lp(RN × (0,∞)), cf., (3.10). Now, introducing the
new variables ξ = (BR)−1x, τ = R−αt and recalling that p = 1+α/N ,
we rewrite (3.11) as:

(3.13)

λ1
2

∫
Ω2

∫
Ω1

|u|pφ(x, t) dx dt

≤ C

∫ 2

0

∫
|ξ|≤2

ψℓ(τ)φ1(ξ)B
−α dξ dτ

+ ℓ

(∫
Ω3

∫
Ω1

|u|pφ(x, t) dx dt
)1/p

×
(∫ 2

0

∫
|ξ|≤2

ψ(τ)φ1(ξ)B
N |∂τψ(τ)|p̄ dξ dτ

)1/p̄

≤ CB−α + CBN/p̄

(∫
Ω3

∫
Ω1

|u|pφ(x, t) dx dt
)1/p

,

where the constant C is independent of R and B. Passing in (3.13) to
the limit as R → +∞ and using (3.12) and the Lebesgue dominated
convergence theorem, we obtain

(3.14)

∫ ∞

0

∫
RN

|u|p(x, t)φ1(0) dx dt ≤ CB−α.

Finally, computing the limit B → ∞ in (3.14), we infer that u(x, t) = 0
for all t and almost every x. A contradiction with (3.8) is again ob-
tained. �
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268 (2000), 298–305.

11. , Fractional quantum mechanics, Phys. Rev. 62 (2000), 3135.

12. R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion:
A fractional dynamics approach, Phys. Rep. 339 (2000), 1–77.

13. , The restaurant at the random walk : Recent developments in the
description of anomalous transport by fractional dynamics, J. Phys. 37 (2004),
161–208.

14. E. Mitidieri and S.I. Pohozaev, A priori estimates and blow-up of solutions
to nonlinear partial differential equations and inequalities, Proc. Steklov. Inst.

Math. 234 (2001), 1–383.

15. A. Pazy, Semigroup of linear operator and applications to partial differential
equation, Springer-Verlag, Berlin, 1983.

16. P. Rozmej and B. Bandrowski, On fractional Schrödinger equation, Comp.
Meth. Sci. Tech. 16 (2010), 191–194.

17. Q.S. Zhang, A blow up result for a nonlinear wave equation with damping:
The critical case, C.R. Acad. Sci. Paris 333 (2001), 109–114.

Lebanese University, Mathematics Department, Tripoli, Lebanon

Email address: ahmad.fino01@gmail.com



80 A.Z. FINO, I. DANNAWI AND M. KIRANE
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