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ABSTRACT. We show that any two trajectories of so-
lutions of a one-dimensional fractional differential equation
(FDE) either coincide or do not intersect each other. How-
ever, in the higher-dimensional case, two different trajec-
tories can meet. Furthermore, one-dimensional FDEs and
triangular systems of FDEs generate nonlocal fractional dy-
namical systems, whereas a higher-dimensional FDE does
not, in general, generate a nonlocal dynamical system.

1. Introduction. In recent years, fractional differential equations
(FDEs) have attracted increasing interest due to the fact that they can
model many mathematical problems in science and engineering [11, 15,
21]. In this paper, we consider a d-dimensional, fractional differential
equation involving the Caputo derivative CDα

0+ of order α ∈ (0, 1), for t
in a finite interval J := [0, T ] or in the real half-line J := [0,∞):

(1.1) CDα
0+x(t) = f(t, x(t)).

Here, f : J × Rd → Rd is a continuous vector-valued function. A
continuous function x : J → Rd is called a solution of (1.1) if this
equation is satisfied for all t ∈ J \ {0}, in which case x(0) is called the
initial value of the solution x(·).
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We are interested in knowing whether (1.1) generates a dynamical
system so that the tools and methods of the classical theory of dy-
namical systems are applicable in the investigation of FDEs. Another
important problem in the theory of FDEs, which is closely related to
the problem of generation of dynamical systems by FDEs, is the ques-
tion of whether two different trajectories of an FDE can intersect. We
solve both of these problems, namely, we show that a one-dimensional
FDE or a triangular FDE generates a nonlocal fractional dynamical
system, whereas, in general, a higher-dimensional FDE does not. Cor-
respondingly, two different trajectories of a one-dimensional or a tri-
angular FDE cannot meet, whereas different trajectories of a higher-
dimensional FDE may intersect each other. As a byproduct of our in-
vestigation, we obtain lower bounds for the solutions of one-dimensional
FDEs and of triangular linear FDEs.

The question of whether solutions of (1.1) can intersect was treated
by Diethelm [10, 11], Diethelm and Ford [12], Agarwal et al. [1],
Hayek et al. [14] and Bonilla, Rivero and Trujillo [4]. Note that, in
the case of ordinary differential equations (ODEs), it is well known
that two trajectories either coincide or they do not intersect; the
authors mentioned above proved that similar results hold for fractional
differential equations of order α ∈ (0, 1). The main difficulty of the
problem for FDEs is the nonlocal nature (or history-dependence) of
solutions of FDEs. The above authors used various tools to deal with
the FDE case. However, several flaws make their proofs incomplete.
We will present some discussion about this matter in Section 3.

The paper is organized as follows. Section 2 is a preparatory section,
where we present some basic notions from fractional calculus and
the theory of FDEs. Section 3 is devoted to results on separation
of solutions of one-dimensional FDEs; we also discuss flaws in the
proofs of results from the above-mentioned papers. In Section 4, we
study the generation of nonlocal fractional dynamical systems by one-
dimensional FDEs. Section 5 is devoted to high-dimensional triangular
systems of FDEs, where, based on the results in Section 4, we show
that a triangular system of FDEs does generate a nonlocal fractional
dynamical system. In Section 6, we show that a higher-dimensional
FDE does not, in general, generate a nonlocal dynamical system: two
different trajectories of a high-dimensional FDE may intersect each
other in finite time.
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2. Preliminaries. We start this section by briefly recalling a frame-
work of fractional calculus and fractional differential equations. For
more details, we refer to the books of Diethelm [11] and Kilbas, Sri-
vastava and Trujillo [15].

Let Rd be the standard d-dimensional Euclidean space equipped with
usual Euclidean norm. We denote by R+ the set of all nonnegative
real numbers, by C([0,∞);Rd) the space of continuous functions from
[0,∞) to Rd, and by (C∞(Rd), ∥ · ∥∞) ⊂ C([0,∞);Rd) the space of all
continuous functions ξ : R+ → Rd that are uniformly bounded on R+,
i.e.,

∥ξ∥∞ := sup
t∈R+

∥ξ(t)∥ < ∞.

It is well known that (C∞(Rd), ∥ · ∥∞) is a Banach space.

Let α > 0, [a, b] ⊂ R and x : [a, b] → R, with x ∈ L1([a, b]), i.e.,∫ b

a

|x(τ)| dτ < ∞.

Then, the Riemann-Liouville integral of order α of the function x(·) is
defined by

Iαa+x(t) :=
1

Γ(α)

∫ t

a

(t− τ)α−1x(τ) dτ for t ∈ (a, b],

see, e.g., Diethelm [11], where the Gamma function is defined by

Γ(α) :=

∫ ∞

0

τα−1 exp(−τ) dτ for α > 0.

The corresponding Riemann-Liouville fractional derivative of order α
of an absolutely continuous function x(·) : [a, b] → R is given by

RDα
a+x(t) := (DmIm−α

a+ x)(t) for t ∈ (a, b],

where D = d/dt is the usual derivative and m := ⌈α⌉ is the smallest
integer greater than or equal to α. On the other hand, the Caputo
fractional derivative CDα

a+x of a function x ∈ Cm([a, b]) is defined by

CDα
a+x(t) := (Im−α

a+ Dmx)(t) for t ∈ (a, b].
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The Caputo fractional derivative of a d-dimensional vector func-
tion x(t) = (x1(t), . . . , xd(t))

T is defined component-wise as

CDα
0+x(t) = (CDα

0+x1(t), . . . ,
CDα

0+xd(t))
T.

It is well known that the initial-value problem of the FDE (1.1) is
equivalent to a Volterra integral equation of the second kind. This leads
to the following result.

Lemma 2.1. A continuous function x : J → R is a solution of the
FDE (1.1) with the initial value condition x(0) = x0 if and only if it is
a solution of the Volterra integral equation of the second kind

(2.1) x(t) = x0 +
1

Γ(α)

∫ t

0

(t− τ)α−1f
(
τ, x(τ)

)
dτ.

Proof. For a proof when d = 1, we refer to Diethelm [11, page 86,
Lemma 6.2] and Kilbas et al. [15, page 199, Theorem 3.24]; the multi-
dimensional case d > 1 follows by componentwise application of the
one-dimensional case. �

3. Separation of trajectories of solutions of one-dimensional
FDE.

3.1. Two different trajectories of a one-dimensional FDE do
not meet. In this section, we consider the one-dimensional case of the
system (1.1), i.e., the FDE

(3.1) CDα
0+x(t) = f(t, x(t)),

where f : J ×R → R is a continuous function. Assume that f satisfies
the following Lipschitz condition on the second variable: there exists a
nonnegative continuous function L : J → R+ such that

|f(t, x)− f(t, y)| ≤ L(t)|x− y|(3.2)

for all t ∈ J and all x, y ∈ R.

It is well known that, under the Lipschitz condition (3.2), the initial-
value problem for (3.1) has a unique solution, defined on the whole
interval J , for any given initial value; see, e.g., [2, Theorem 2], [11,
Theorem 6.8], [22, Theorem 6.4]. We will show that any two solutions
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of (3.1) either coincide or do not intersect on J . In order to do so, we
need two useful technical tools for investigating FDEs: the variation-of-
constants formula and the comparison principle. The interested reader
is referred to [11, Chapter 7] and [15, Chapter 5] for a more detailed
discussion about the use of Laplace transforms to obtain the variation-
of-constants formula for solutions to FDEs.

Lemma 3.1 (Variation-of-constants formula for FDEs). Consider the
FDE (3.1) on the finite interval J = [0, T ]. Assume that the function
f(·, ·) in the equation (3.1) satisfies condition (3.2). If the function
f(·, ·) is of the form

f(t, x) = Mx+ g(t, x)

for some fixed M ∈ R and all t ∈ J and x ∈ R, then the solution x(·)
of (3.1) with the initial value x(0) = x0 satisfies, for all t ∈ J , the
formula

x(t) = Eα(Mtα)x0 +

∫ t

0

(t− τ)α−1Eα,α(M(t− τ)α)g
(
τ, x(τ)

)
dτ,

where, for z ∈ C, the Mittag-Leffler functions are defined by

Eα,β(z) :=

∞∑
k=0

zk

Γ(αk + β)
and Eα(z) := Eα,1(z).

Proof. We define a function ĝ(t, x) on R≥0 × R by

ĝ(t, x) :=

{
g(t, x) if t ∈ J and x ∈ R,
g(T, x) if t ≥ T and x ∈ R.

Then, there exists a positive constant L̂ such that

|ĝ(t, x)− ĝ(t, y)| ≤ L̂|x− y| and |ĝ(t, 0)| ≤ L̂

for all x, y ∈ R and all t ∈ R≥0.

We now consider, on the half real line [0,∞), the FDE

(3.3)
CDα

0+x̂(t) = Mx̂(t) + ĝ(t, x̂(t))

= Mx̂(t) + ĝ(t, x̂(t))− ĝ(t, 0) + ĝ(t, 0).
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It is obvious that the function ĝ(t, x) − ĝ(t, 0) is Lipschitz continuous
with respect to the second variable and satisfies the condition

|ĝ(t, x)− ĝ(t, 0)| ≤ L̂|x|, for all t ∈ R≥0 and x ∈ R.

Moreover, ĝ(t, 0) is a bounded continuous function on R≥0. By virtue
of Lemma 2.1 and the Lipschitz property of ĝ, for any x0 ∈ R, the
equation (3.3) with the initial condition x̂(0) = x0 has a unique solution
which satisfies the Volterra integral equation

x̂(t) = x0 +
1

Γ(α)

∫ t

0

(t− τ)α−1 [Mx̂(τ) + ĝ(τ, x̂(τ))− ĝ(τ, 0)] dτ

+
1

Γ(α)

∫ t

0

(t− τ)α−1ĝ(τ, 0) dτ,

for all t ≥ 0. Therefore, for any t ≥ 0, we have

|x̂(t)| ≤ |x0|+
L̂tα

Γ(α+ 1)
+

M + L̂

Γ(α)

∫ t

0

(t− τ)α−1|x̂(τ)| dτ,

and consequently,
(3.4)

|x̂(t)|
exp(t)

≤ 1

exp(t)

(
|x0|+

L̂tα

Γ(α+ 1)

)
+

M + L̂

Γ(α)

∫ t

0

(t− τ)α−1 |x̂(τ)|
exp(τ)

dτ.

Put v(t) = x̂(t)/ exp(t) for t ≥ 0, and set

K := sup
t≥0

1

exp(t)

(
|x0|+

L̂tα

Γ(α+ 1)

)
< ∞;

from (3.4), we obtain the estimate

v(t) ≤ K +
M + L̂

Γ(α)

∫ t

0

(t− τ)α−1v(τ) dτ, t ≥ 0,

which, by a Gronwall-type inequality [11, page 111, Lemma 6.19],

implies that v(t) ≤ KEα((M + L̂)tα) for t ≥ 0. Thus,

|x̂(t)| ≤ K exp(t)Eα((M + L̂)tα) for t ≥ 0,

which shows that, for any x0 ∈ R, the solution x̂(·) of the equation (3.3)
with the initial value x̂(0) = x0 is exponentially bounded on [0,∞).
Hence, we can apply the Laplace transform to both sides of equation
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(3.3) and obtain, for some positive constant c,

sαL{x̂(t)}(s)− sα−1x0 = ML{x̂(t)}(s) + L{ĝ(t, x̂(t))}(s), ℜ(s) > c;

see [11, page 134, Theorem 7.1]. Therefore,

L{x̂(t)}(s) = sα−1

sα −M
x0 +

1

sα −M
L{ĝ(t, x̂(t))}(s),

assuming that ℜ(s) > max{c, |M |1/α}; thus, applying the inverse
Laplace transform to both sides gives

x̂(t) = L−1

{
sα−1

sα −M

}
(t)x0 + L−1

{
1

sα −M
L{ĝ(t, x̂(t))}(s)

}
(t),

for all t ≥ 0. Using the well-known formula [21, page 21, formula
(1.80), ],

L{tβ−1Eα,β(Mtα)}(s) = sα−β

sα −M
, ℜ(s) > |M |1/α,

with β = α or β = 1 and, using the properties of the Laplace transform
[11, page 231, Theorem D.11], we conclude that, for all t ≥ 0,

x̂(t) = Eα(Mtα)x0 +

∫ t

0

(t− τ)α−1Eα,α(M(t− τ)α)ĝ(τ, x̂(τ)) dτ.

For a given initial value x0, equation (3.1) has a unique solution on J ,
and likewise, equation (3.3) has a unique solution on R≥0. These two
solutions coincide on J since ĝ(t, x) = g(t, x) for all x ∈ R and t ∈ J ,
and therefore, x(·) satisfies

x(t) = Eα(Mtα)x0 +

∫ t

0

(t− τ)α−1Eα,α(M(t− τ)α)g(τ, x(τ)) dτ,

for all t ∈ J . �

Remark 3.2. It is easily seen that, in the setting of Lemma 3.1, if J is
not compact but is instead the real half-line [0,∞), then the variation-
of-constants formula holds true on the whole of [0,∞).

Remark 3.3. It can be seen that the proof of Lemma 3.1 can be
easily carried out for the higher-dimensional case with M changed to
a constant matrix and with the functions x(·), f , g changed to vector
functions, cf., [11, page 135, Remark 7.1] for both the one-dimensional
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and the higher-dimensional cases, where f and g depend only upon t
but not upon x.

In order to prove the main result in this section, we need a prepara-
tory lemma that is a small modification of a result of Lakshmikan-
tham [16, Theorem 2.1]. For the reader’s convenience, we present a
proof here.

Lemma 3.4 (Comparison principle). Let 0 < q < 1, and assume that
the continuous functions v, v1, w ,w1 ∈ C(J,R) and g ∈ C(J × R,R)
satisfy

v(t) ≤ v1(t) +
1

Γ(q)

∫ t

0

(t− s)q−1g(s, v(s)) ds

and

w(t) ≥ w1(t) +
1

Γ(q)

∫ t

0

(t− s)q−1g(s, w(s)) ds

for all t ∈ J . Suppose further that g(t, x) is nondecreasing in x for each
t ∈ J . If

v1(t) < w1(t) for all t ∈ J ,(3.5)

then

v(t) < w(t) for all t ∈ J .(3.6)

Proof. Suppose, for contradiction, that (3.6) is not true. Then, due
to the continuity of v(·) and w(·), there exists a t1 ∈ J \ {0} such that

(3.7) v(t1) = w(t1) and v(t) < w(t) for 0 ≤ t < t1.

Using (3.5), (3.7) and the nondecreasing nature of g, we find that

v(t1) ≤ v1(t1) +
1

Γ(q)

∫ t1

0

(t1 − s)q−1g(s, v(s)) ds

≤ v1(t1) +
1

Γ(q)

∫ t1

0

(t1 − s)q−1g(s, w(s)) ds

< w1(t1) +
1

Γ(q)

∫ t1

0

(t1 − s)q−1g(s, w(s)) ds ≤ w(t1),
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contradicting the condition v(t1) = w(t1) in (3.7). Hence, (3.6) holds,
and the proof is complete. �

Now we are in a position to prove our main theorem of this section.

Theorem 3.5 (Different trajectories do not meet). Assume that f
satisfies the Lipschitz condition (3.2). Then, for any two different
initial values x10 ̸= x20 in R, the trajectories of the corresponding
solutions of the FDE (3.1) do not meet on J , i.e., the solutions x1(·) and
x2(·) of (3.1) starting from x10 = x1(0) and x20 = x2(0) satisfy
x1(t) ̸= x2(t) for all t ∈ J .

Proof. For definiteness, we assume that

(3.8) x1(0) = x10 < x20 = x2(0).

In order to prove the theorem, we show that x1(t) < x2(t) for all t ∈ J .
Suppose that this is not true. Then there is a T1 ∈ J \ {0} such that
x1(T1) ≥ x2(T1). By the continuity of x1(·) and x2(·), and by (3.8),
there is a T2 > 0 such that

x1(T2) = x2(T2)

and

x1(t) < x2(t)

for all 0 ≤ t < T2. Set M := max0≤t≤T2 L(t), and define

(3.9) g(t, x) := f(t, x) +Mx for all 0 ≤ t ≤ T2 and x ∈ R.

Then, g : [0, T2]× R → R is nondecreasing in x for each t ∈ [0, T2]. In
fact, by (3.2), (3.9) and the choice of M , if t ∈ [0, T2] and x ≤ y, then

g(t, y)− g(t, x)

= M(y − x) + f(t, y)− f(t, x) ≥ (M − L(t))(y − x) ≥ 0.

By virtue of Lemma 3.1, since x1(·) and x2(·) are solutions of (3.1), on
the interval [0, T2] we have

(3.10)

x1(t) = Eα(−Mtα)x10

+

∫ t

0

(t− τ)α−1Eα,α(−M(t− τ)α) g(τ, x1(τ)) dτ,



594 N.D. CONG AND H.T. TUAN

and

(3.11)

x2(t) = Eα(−Mtα)x20

+

∫ t

0

(t− τ)α−1Eα,α(−M(t− τ)α) g(τ, x2(τ)) dτ.

Since Eα,α(s) > 0 for all s ∈ R (see, e.g., Cong, et al. [5, Lemma
2]), the function Eα,α(−M(t − τ)α)g(τ, x) is nondecreasing in the
variable x for 0 ≤ τ ≤ t ≤ T2. Therefore, Lemma 3.4 is applicable
to the pair of integral equations (3.10) and (3.11) on [0, T2] and gives
x1(T2) < x2(T2). Thus, we arrive at a contradiction, and consequently,
the conclusion of the theorem is true. �

Remark 3.6. Theorem 3.5 provides a full solution to [10, Conjec-
ture 1.2]. In that paper, Diethelm provided a partial solution to the
problem of separation of trajectories; he proved Conjecture 1.2 under
some restrictive conditions [10, Theorem 2.2].

3.2. Discussion on the problem of separation of solutions of a
general FDE. Diethelm [11, Theorem 6.12] formulated and proved
a theorem on separation of solutions of an FDE that is the same as
our Theorem 3.5. For the proof, he used a fixed point theorem on a
short interval of time and then used induction to extend the result to
the whole (long) interval of time under consideration. However, his
proof contains a flaw in the induction part: the passage to the next
step from N = 1 to N = 2 does not work since the argument leading
to a contractive mapping on the first subinterval of time fails on the
second subinterval, due to the fact that the FDE is history dependent.

In a subsequent joint work with Ford [12, Theorems 3.1, 4.1],
Diethelm gave an alternative proof of his result [11, Theorem 6.12]
on separation of solutions of an FDE. Instead of induction forward in
time from one subinterval to the next, they used induction backward
in time from one subinterval to the foregoing interval. However, their
argument in the first step of this induction does not work. Using the
numbering and notation of Diethelm and Ford [12], their equation (13)
is equivalent to their equation (8) only if we consider (8) and (13) in
the whole interval [0, b]. Actually, the solution y(t), considered as the
solution of the terminal problem (13), depends on the future value
y(b) = c, and hence, we cannot say that the function g(t) in their
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work [12, pages 29, 30] is independent of the restriction of function y
to [TN−1, TN ]. Therefore, the contraction property of the map F in
their formula (14) does not lead to the existence and uniqueness of the
solution of (14), as claimed. Consequently, their proof of Theorem 3.1
[12], and hence also of Theorem 4.1, is incomplete.

Note that the earlier proof [11, Theorem 6.12] is correct for a first
“short” interval of time: the smallness of time combined with the
bounded Lipschitz condition for f makes a certain operator contractive,
and hence, two different solutions cannot meet. In addition, we note
that continuity alone can also assure the non-intersection of different
trajectories in a short time interval.

Hayek, et al. [14, Theorem 3.1] have proved the separation theorem
on a “short” interval of time. However, Section 4 of that paper is
invalid due to the historical dependence of solutions of the FDE, which
prevents the application of the “usual method of prolongation” (for
ODEs) as claimed by the authors.

Bonilla, et al. [4] treated higher-dimensional linear systems of FDEs
and, in Section 3 of that paper, they relied on the above-mentioned
result [14, Theorem 3.1]. Hence, there are gaps in their proofs of some
results [4, page 71, Theorem 1 and page 72, Propositions 1 and 2]. For
a counterexample, see Section 6, which, coincidentally, also shows that
the arguments of Diethelm and Ford [11, 12] cannot work; otherwise,
as is easily seen, those arguments would work for the higher-dimensional
case as well, leading to a contradiction.

4. One-dimensional FDEs generate nonlocal dynamical sys-
tems. In this section, based on the results regarding separation of tra-
jectories presented in Section 3, we show that one-dimensional FDEs
generate nonlocal dynamical systems. Hence, tools and methods from
the classical theory of dynamical systems are applicable.

4.1. Bounds for solutions of FDEs. First, we formulate and prove
a lower bound for solutions of a one-dimensional FDE, which provides
us with a better understanding of the geometry of the solutions.

Theorem 4.1 (Convergence rate for solutions of one-dimensional
FDEs). Assume that f satisfies the Lipschitz condition (3.2), and put

(4.1) L∗(t) = max
0≤τ≤t

L(τ).
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Then, for any two solutions x1(·) and x2(·) of the FDE (3.1) and, for
any t ∈ J ,

|x2(t)− x1(t)| ≥ |x2(0)− x1(0)|Eα(−L∗(t)tα).

Proof. For definiteness, we assume that x2(0) ≥ x1(0). Then, by
Theorem 3.5, we have x2(t) ≥ x1(t) for any t ∈ J . For an arbitrary
but fixed t ≥ 0, we repeat the arguments in the proof of Theorem 3.5
on the interval [0, t] to conclude that

x2(s)− x1(s) = Eα(−L∗(t)sα)(x2(0)− x1(0))

+

∫ s

0

(s− τ)α−1Eα,α(−L∗(t)(s− τ)α)

× (g(τ, x2(τ))− g(τ, x1(τ))) dτ

≥ Eα(−L∗(t)sα)(x2(0)− x1(0)).

Now, take s = t to complete the proof. �

Corollary 4.2 (Lower bound for solutions of one-dimensional FDEs).
Assume that f satisfies the Lipschitz condition (3.2). Assume addition-
ally that f(t, 0) = 0 for all t ∈ J . Then, for any solution x(·) of the
FDE (3.1) and any t ∈ J ,

|x(t)| ≥ |x(0)|Eα(−L∗(t)tα).

Proof. Since f(t, 0) = 0, the FDE (3.1) has the trivial solution.
Apply Theorem 4.1 to the pair consisting of x(·) and the trivial solution
of (3.1). �

For the divergence rate and upper bound for solutions of the FDEs,
the following statements are easy modifications of well-known results.

Theorem 4.3 (Divergence rate for solutions of one-dimensional FDEs).
Assume that f satisfies the Lipschitz condition (3.2), and recall the
notation (4.1). Then, for any two solutions x1(·) and x2(·) of the
FDE (3.1), and for any t ∈ J ,

|x2(t)− x1(t)| ≤ |x2(0)− x1(0)|Eα(L
∗(t)tα).
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Proof. By Lemma 2.1, for all t ∈ J , we have

x1(t) = x1(0) +
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ, x1(τ)) dτ

and

x2(t) = x2(0) +
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ, x2(τ)) dτ.

Therefore, if 0 ≤ s ≤ t, then

|x2(s)− x1(s)| ≤ |x2(0)− x1(0)|

+
1

Γ(α)

∫ s

0

(s− τ)α−1|f(τ, x2(τ))− f(τ, x1(τ))| dτ

≤ |x2(0)− x1(0)|

+
1

Γ(α)

∫ s

0

(s− τ)α−1L∗(t)|x2(τ)− x1(τ)| dτ.

By virtue of the Gronwall-type inequality for FDEs (see [11, page 111,
Theorem 6.19] and [22, page 288, Lemma 3.1]), this estimate implies
that

|x2(s)− x1(s)| ≤ |x2(0)− x1(0)|Eα(L
∗(t)sα).

Since t ∈ J is arbitrary, the theorem follows by setting s = t. �

Corollary 4.4 (Upper bound for solutions of one-dimensional FDEs).
Assume that f satisfies the Lipschitz condition (3.2). Assume addition-
ally that f(t, 0) = 0 for all t ∈ J . Then, for any solution x(·) of the
FDE (3.1), and for any t ∈ J ,

|x(t)| ≤ |x(0)|Eα(L
∗(t)tα).

Proof. Since f(t, 0) = 0, the FDE (3.1) has the trivial solution.
Apply Theorem 4.3 to the pair consisting of x(·) and the trivial solution
of (3.1). �

Remark 4.5. It is easily seen that Theorem 4.3 and Corollary 4.4 also
hold true for the case of a higher-dimensional system of FDEs.
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4.2. One-dimensional FDEs generate two-parameter flows.
Now, we are in a position to show that one-dimensional FDEs gen-
erate two-parameter flows. First, we define the evolution mappings
of (3.1).

Definition 4.6. The evolution mapping of (3.1) is given by

Φ0,T1 : R −→ R, x0 7→ x(T1),

where x0 ∈ R is an arbitrary initial value of (3.1), x(·) is the solution of
(3.1) starting from x(0) = x0, and x(T1) is the evaluation of x(·) at T1.

Definition 4.7. A two-parameter family of mappings

ϕs,t(·) : R −→ R, s, t ∈ J,

is called a two-parameter flow in R if it has the following three proper-
ties:

(i) ϕs,t(x) is continuous as a function of the three variables s, t ∈ J
and x ∈ R;

(ii) for any fixed s, t ∈ J , the mapping ϕs,t is a homeomorphism
of R; and

(iii) the flow property ϕs,t ◦ ϕu,s = ϕu,t holds for all u, s, t ∈ J .

Theorem 4.8 (One-dimensional FDEs generate two-parameter flows
in R). The following statements hold for the one-dimensional FDE (3.1).

(i) The evolution mapping Φ0,t generated by (3.1) is a bijection for
each t ∈ J .

(ii) The FDE (3.1) generates a two-parameter family of bijections
on J by its evolution mappings, as follows:

(4.2) Φs,t := Φ0,t ◦ Φ−1
0,s for all s, t ∈ J ,

where Φ0,· is the evolution mapping of (3.1) from Definition 4.6.
(iii) The family Φs,t, for s, t ∈ J , generated by the FDE (3.1), is a

two-parameter flow in R.
(iv) If f is linear in x, then the two-parameter flow generated by the

FDE (3.1) is a flow of linear operators.
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Proof.

(i) Fix an arbitrary T1 ∈ J . By Theorem 3.5, Φ0,T1 is injective. In
order to show that Φ0,T1 is surjective, it suffices to show that, for an
arbitrary x∗ ∈ R, the terminal-value problem

CDα
0+x(t) = f(t, x(t)) for t ∈ [0, T1],(4.3)

x(T1) = x∗,(4.4)

has a continuous solution, assuming that the function f is continuous
and satisfies the Lipschitz condition (3.2). Set

M1 := L∗(T1) = max
0≤t≤T1

L(t),

where L(t) is determined from (3.2). We denote by x̂(·) the solution of
the FDE (4.3) satisfying the initial condition x̂(0) = 0. Put

M2 := max
0≤t≤T1

|x̂(t)|, M3 := |x∗ − x̂(T1)|+M2,

M4 :=
M3

Eα(−M1Tα
1 )

, M5 := M2 +M4Eα(M1T
α
1 ) + 1.

Clearly, M2 < M3 < M4 < M5. Define the function f̂ on [0, T1]×R by

(4.5) f̂(t, x) =

{
f(t, x) if |x| ≤ M5,

f(t,M5x/|x|) if |x| > M5,

and consider the terminal value problem

CDα
0+x(t) = f̂(t, x(t)),(4.6)

x(T1) = x∗.(4.7)

Clearly f̂ is Lipschitz continuous and bounded on [0, T1] × R with
Lipschitz constant L(t). Hence, the problem (4.6)–(4.7) has at least one
solution, say x1(·) [3, Theorem 8]. We show that x1(·) is the required
solution of (4.3)–(4.4). To this end, notice that, for all t ∈ [0, T1], we
have

|x̂(t)| ≤ M2 < M5,

and hence,

f(t, x̂(t)) = f̂(t, x̂(t)).
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Therefore, x̂(·) is the solution of the FDE (4.6) satisfying the initial
condition x̂(0) = 0. By applying Theorem 4.1 to the solutions x̂(·) and
x1(·) of the FDE (4.6), we see that, for any t ∈ [0, T1],

|x̂(t)− x1(t)| ≥ |x̂(0)− x1(0)|Eα(−L∗(t)tα)

≥ |x1(0)|Eα(−M1T
α
1 ).

Substituting t = T1, we obtain

|x̂(T1)− x1(T1)| ≥ |x1(0)|Eα(−M1T
α
1 ),

and hence,

|x1(0)| ≤
|x̂(T1)− x∗|
Eα(−M1Tα

1 )
≤ M4.

Applying Theorem 4.3 to the solutions x̂(·) and x1(·) of the FDE (4.6)
shows that, for any t ∈ [0, T1],

|x1(t)| ≤ |x̂(t)|+ |x1(0)|Eα(M1T
α
1 ) ≤ M5,

and hence, f(t, x1(t)) = f̂(t, x1(t)). Therefore, x1(·) is a solution of the
FDE (4.3), and (i) is proved.

(ii) By (i), the evolution mappings of (3.1) are bijective, and hence
Φs,t is well defined by (4.2). The flow property is easily verified.

(iii) By (ii), the FDE (3.1) generates a two-parameter family of bi-
jections Φs,t of R for all s, t ∈ J . From Theorems 4.1 and 4.3, it follows
that the bijections Φs,t are homeomorphisms and Φ continuously de-
pends on three variables s, t and x.

(iv) Obvious. �

Definition 4.9. The two-parameter flow Φs,t, specified in Theorem 4.8
and generated by the FDE (3.1), is called the nonlocal dynamical system
generated by (3.1).

Remark 4.10. Two distinguished features of the two-parameter flow
generated by the FDE (3.1) are as follows.

(i) The flow has an historical memory. Although the past has
impact on the behavior of the solutions, the solutions form a
two-parameter flow of homeomorphisms.

(ii) The flow is, in general, α-Hölder, but it is not C1.
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Remark 4.11. Li and Ma [18, Theorem 2] claimed that they con-
structed a dynamical system from an FDE. However, their construction
is false. For a counterexample, see Cong, et al. [6, Remark 12].

5. Triangular systems of FDEs generate nonlocal dynamical
systems. In this section, using the results of Section 4, we show
that a higher-dimensional, triangular system of FDEs also generates
a nonlocal dynamical system.

Now, we consider a d-dimensional triangular system of (not neces-
sarily linear) FDEs,

(5.1)

CDα
0+x1(t) = f1(t, x1(t)),

CDα
0+x2(t) = f2(t, x1(t), x2(t)),

· · ·
CDα

0+xd(t) = fd(t, x1(t), x2(t), . . . , xd(t)),

for t ∈ J , where x(·) = (x1(·), . . . , xd(·))T ∈ Rd, and where the vector-
valued function f = (f1, . . . , fd)

T is Lipschitz in the x variables, i.e.,
there exists a continuous function L : J → [0,∞) such that, for all
i = 1, . . . , d and all t ∈ J , we have

(5.2) |fi(t, x1, . . . , xi)− fi(t, y1, . . . , yi)|

≤ L(t)
√

(x1 − y1)2 + · · ·+ (xi − yi)2.

This triangular system has a distinguished property: it can be solved
successively coordinate-wise and, each time, we must solve only a one-
dimensional FDE. Hence, the triangular system inherits many features
of the one-dimensional FDEs.

Proposition 5.1 (Convergence rate for solutions of a triangular system
of FDEs). Assume that the Lipschitz condition (5.2) is satisfied, and
define L∗(t) as before in (4.1). Then, for any two solutions x(·) and
y(·) of the triangular FDE (5.1), and, for any t ∈ J ,

∥x(t)− y(t)∥ ≥ ∥x(0)− y(0)∥Eα(−L∗(t)tα).

Proof. Let x(·) = (x1(·), . . . , xd(·))T and y(·) = (y1(·), . . . , yd(·))T be
two arbitrary solutions of the triangular FDE (5.1). Consider the first
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equation in (5.1): it is a one-dimensional FDE for the first coordinate.
Applying Theorem 4.1 to this equation, we obtain

|x1(t)− y1(t)| ≥ |x1(0)− y1(0)|Eα(−L∗(t) tα).

Since the first coordinate is solvable from the first equation, we can
substitute it into the second equation of system ((5.1)) and get a one-
dimensional FDE for the second coordinate,

CDα
0+u(t) = f2(t, x1(t), u(t)) =: f̂2(t, u(t)),

where, due to (5.2), the function

f̂2(·, ·) : J × R −→ R

is L(t)-Lipschitz continuous with respect to the second variable. Apply-
ing Theorem 4.1 to the solutions x2(·) and y2(·) of this one-dimensional
FDE, we obtain

|x2(t)− y2(t)| ≥ |x2(0)− y2(0)|Eα(−L∗(t) tα).

Continuing this process, we get, for i = 1, . . . , d and t ∈ J , the
inequality

(5.3) |xi(t)− yi(t)| ≥ |xi(0)− yi(0)|Eα(−L∗(t) tα).

The conclusion of the proposition follows at once. �

An important particular case of the triangular system of FDEs (5.1)
is a linear triangular system,

(5.4) CDα
0+x(t) = A(t)x(t),

where t ∈ J , x ∈ Rd and

A : J −→ Rd×d

is a bounded continuous triangular (d × d) matrix-valued function.
Thus, A(·) = [aij(·)]1≤i,j≤d with either aij = 0 for all i > j (upper
triangular) or else aij = 0 for all i < j (lower triangular), and there
exists a continuous function L : J → [0,∞) such that

(5.5) ∥A(t)∥ ≤ L(t) for all t ∈ J .

Clearly, Proposition 5.1 is applicable to the linear triangular sys-
tem (5.4). Moreover, we also have a lower bound for solutions of (5.4).
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Proposition 5.2 (Lower bound for solutions of a linear triangular sys-
tem of FDEs). Assume that the triangular matrix function A satisfies
(5.5), and recall the notation (4.1). Then, for any solution x(·) of the
FDE (5.4), and for any t ∈ J ,

∥x(t)∥ ≥ ∥x(0)∥Eα(−L∗(t) tα).

Proof. Since system (5.4) has the trivial solution 0, we can apply
Proposition 5.1 to the two solutions x(·) and 0 of (5.4) and arrive at
the desired conclusion. �

Similar to the one-dimensional case, for any T1 ∈ J , the evolution
mapping of (5.1) is given by

(5.6) ϕ0,T1 : Rd −→ Rd, x0 7→ x(T1),

where x0 ∈ Rd is an arbitrary initial value of (5.1), x(·) is the solution
of (5.1) starting from x(0) = x0, and x(T1) is the evaluation of x(·)
at T1. By the same arguments as in Section 4, we can show that the
evolution mapping ϕ0,t of the triangular FDE (5.1) is a bijection for
any t ∈ J .

Definition 5.3. A two-parameter family of mappings

ϕs,t(·) : Rd −→ Rd, s, t ∈ J,

is called a two-parameter flow in Rd if it has the following three
properties:

(i) ϕs,t(x) is continuous as a function of the three variables s, t ∈ J
and x ∈ Rd;

(ii) for any fixed s, t ∈ J , the mapping φs,t(·) is a homeomorphism
of Rd; and

(iii) the flow property ϕs,t ◦ ϕu,s = ϕu,t holds for all u, s, t ∈ J .

Theorem 5.4 (Triangular systems of FDEs generate nonlocal dynam-
ical systems). The following statements hold.

(i) The triangular system of FDEs (5.1) generates a two-parameter
flow in Rd, namely,

ϕs,t := ϕ0,t ◦ ϕ−1
0,s : Rd −→ Rd for s, t ∈ J ,

where ϕ0,t is the evolution mapping of (5.1).
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(ii) The linear triangular system of FDEs (5.4) generates a two-
parameter flow of d-dimensional linear nonsingular operators.

Proof. Similar to Theorem 4.8. �

Definition 5.5. The two-parameter flow ϕs,t generated by the tri-
angular FDE (5.1) is called the nonlocal dynamical system generated
by (5.1).

6. A general high-dimensional system of FDEs does not
generate a dynamical system. Finally, we show that, in the high-
dimensional case, different trajectories of an FDE can intersect each
other. Thus, a high-dimensional system of FDEs does not, in general,
generate a dynamical system. In order for a high-dimensional FDE to
generate a nonlocal dynamical system, we need an additional property
of the FDE, such as triangularity. The results of this section also pro-
vide a counterexample to the assertions of Bonilla, et al. [4, Theorem 1,
Propositions 1, 2].

Theorem 6.1 (Different trajectories of a high dimensional system of
FDEs can meet). For any d ≥ 2, there exists a system of type (1.1)
with the property that it has two different solutions, x1(·) and x2(·),
with x1(0) ̸= x2(0), but which intersect each other at some finite time
moment T ∈ (0,∞), i.e., x1(T ) = x2(T ).

Proof. It suffices to construct a two-dimensional system of type (1.1)
having the desired property. In fact, the system we construct will also
be linear and autonomous.

Since α ∈ (0, 1), the complex valued Mittag-Leffler function Eα(·)
has infinitely many zeros in C [13, page 30, Corollary 3.10]. Fix z∗ ∈ C
such that Eα(z

∗) = 0. Let

ϕ := arg(z∗) ∈ (−π, π] and λ := cosϕ+ i sinϕ,

where i =
√
−1 ∈ C. Note that, since α ∈ R, we have Eα(z∗) =

Eα(z∗) = 0, where w denotes the complex conjugate of the complex
number w. Since α ∈ (0, 1), we have z∗ /∈ R, and hence, λ /∈ R.
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Consider the matrix

A :=

[
cosϕ sinϕ
− sinϕ cosϕ

]
,

which has two (complex) eigenvalues, namely, λ and λ. We show that
the associated linear and autonomous FDE,

(6.1) CDα
0+x(t) = Ax(t) for t ∈ R+,

has the desired property. Indeed, it is known [11, page 152, Theo-
rem 7.15] that this FDE has two linearly independent solutions of the
form

x1(t) =

[
u(t)
v(t)

]
and x2(t) =

[
−v(t)
u(t)

]
,

where u, v : R+ → R are given by

u(t) := Eα(λt
α) + Eα(λt

α)

and

v(t) := i(Eα(λt
α)− Eα(λt

α)).

Since u(0) = 2 and v(0) = 0, it follows that

x1(0) =

[
2
0

]
and x2(0) =

[
0
2

]
.

The general solution of (6.1) is

(6.2) x(t) = ax1(t) + bx2(t),

where a, b ∈ R are arbitrary real constants. Let T > 0 be the unique
finite positive number satisfying

λTα = z∗;

a unique such T exists due to the definitions of z∗ and λ. Clearly,
u(T ) = v(T ) = 0, and hence, x1(T ) = x2(T ) = (0, 0)T. From (6.2), it
follows that for any solution x(t) of (6.1), we have x(T ) = 0. �

From Theorem 6.1 we immediately obtain the next corollary.

Corollary 6.2 (A higher dimensional FDE does not generate a nonlo-
cal dynamical system). For d ≥ 2, the FDE (1.1) does not, in general,
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generate a two-parameter flow in Rd. Hence, it does not, in general,
generate a nonlocal dynamical system.

Remark 6.3. We note the following.

(i) Actually, for the FDE (6.1), all of the solutions are equal to
(0, 0)T at time T ; hence, all of them meet each other.

(ii) Theorem 6.1 shows that, in contrast to the initial-value prob-
lem, the terminal-value problem for FDEs is not always solv-
able.

(iii) Theorem 6.1 allows us to better understand the dynamics of
FDEs by revealing a distinguished feature in comparison with
ODEs: different trajectories of an FDE may meet, whereas for
an ODE they cannot.

(iv) By a small modification of A in the proof of Theorem 6.1, we
can make the time of intersection T small.

(v) By a small modification of the proof, it can be shown that
Theorem 6.1 also holds for any positive real α ̸= 1.
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