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Lp-APPROXIMATION BY TRUNCATED
MAX-PRODUCT SAMPLING OPERATORS OF

KANTOROVICH-TYPE BASED ON FEJÉR KERNEL
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Communicated by Hermann Brunner

ABSTRACT. By use of the so-called max-product method,
in this paper we associate to the truncated linear sampling
operators based on the Fejér-type kernel, nonlinear sampling
operators of Kantorovich type, for which we prove conver-
gence results in the Lp-norm, 1 ≤ p ≤ +∞, with quantitative
estimates.

1. Introduction. The sinc-approximation operators were first in-
troduced and studied in [5, 19, 25] under the terms of cardinal and
truncated cardinal functions. Later on, the properties of these linear
approximation operators and their applications in signal theory were
intensively studied in, e.g., [1, 2, 6, 7, 8, 9, 12, 13, 17, 18, 20, 21,
22, 23, 24] (and the references therein).

Based on Open Problem 5.5.4 [16, pages 324–326], in a series of
papers we have introduced and studied the so called max-product
operators attached to the Bernstein polynomials and to other linear
Bernstein-type operators, like those of Favard-Szász-Mirakjan opera-
tors (truncated and nontruncated cases), Baskakov operators (trun-
cated and nontruncated cases), Meyer-König and Zeller operators and
Bleimann-Butzer-Hahn operators.

In [10], applying this idea to Whittaker’s cardinal series, we obtained
a Jackson-type estimate in uniform approximation of f by the max-
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product Whittaker sampling operator given by

(1.1) S
(M)
W,φ(f)(t) =

∞∨
k=−∞

φ(Wt− k)f (k/W )

∞∨
k=−∞

φ(Wt− k)
, t ∈ R,

where W > 0, f : R → R+ and φ is a kernel given by the formula
φ(t) = sinc(t), where sinc(t) = sin(πt)/πt, for t ̸= 0 and at t = 0,
sinc(t) is defined to be the limiting value, that is, sinc(0) = 1 .

Also, in [11], a similar idea and study was applied to the sam-
pling operator in (1.1) based on the Fejér-type kernel φ(t) = (1/2) ·
[sinc(t/2)]2.

In the same paper [11], applying the max-product idea to the
truncated sampling operator based on the Fejér’s kernel and defined
by

Tn(f)(x) =

n∑
k=0

sin2(nx− kπ)

(nx− kπ)2
· f

(
kπ

n

)
, x ∈ [0, π],

we have introduced and studied uniform approximation by the trun-
cated max-product operator based on the Fejér kernel, given by
(1.2)

T (M)
n (f)(x) =

n∨
k=0

[sin2(nx− kπ)]/[(nx− kπ)2] · f (kπ/n)

n∨
k=0

[sin2(nx− kπ)]/[(nx− kπ)2]
, x ∈ [0, π],

where f : [0, π] → R+. Here, since sinc(0) = 1, it means above that, for
every x = kπ/n, k ∈ {0, 1, . . . , n}, we have [sin(nx− kπ)]/[nx− kπ]
= 1.

It is also worth mentioning here that qualitative Lp-approximation
results and quantitative uniform approximation results for max-product
neural networks have been obtained in very recent papers [14, 15],
respectively.

In the present paper, we study approximation properties with
quantitative estimates in the Lp-norm, 1 ≤ p ≤ ∞, for the Kan-
torovich variant of the above truncated max-product sampling oper-
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ators T
(M)
n (f)(x), defined for x ∈ [0, π] and n ∈ N by

K(M)
n (f)(x) =

1

π

(1.3)

·

n∨
k=0

[sin2(nx− kπ)]/[(nx− kπ)2] ·
[
(n+ 1)

(k+1)π/(n+1)∫
kπ/(n+1)

f(v) dv
]

n∨
k=0

[sin2(nx− kπ)]/[(nx− kπ)2]

where f : [0, π] → R+, f ∈ Lp[0, π], 1 ≤ p ≤ ∞.

2. Auxiliary results. Firstly, we present some properties of the

operator K
(M)
n which will be useful for proving the approximation

results.

Lemma 2.1.

(i) For any integrable function f : [0, π] → R, K(M)
n (f) is continuous

on [0, π];

(ii) If f ≤ g, then K
(M)
n (f) ≤ K

(M)
n (g);

(iii) K
(M)
n (f + g) ≤ K

(M)
n (f) +K

(M)
n (g);

(iv) |K(M)
n (f)−K

(M)
n (g)| ≤ K

(M)
n (|f − g|);

(v) If, in addition, f is positive on [0, π] and λ ≥ 0, then K
(M)
n (λf) =

λK
(M)
n (f).

Proof. We omit the proofs of (i)–(ii) and (v), respectively, because

they are immediate from the definition of K
(M)
n . As for the proof

of (iv), we easily obtain the conclusion since f ≤ |f − g| + g and

g ≤ |f − g| + f ; thus, applying (ii) and (iii), we obtain K
(M)
n (f) ≤

K
(M)
n (|f −g|)+K

(M)
n (g) and K

(M)
n (g) ≤ K

(M)
n (|f −g|)+K

(M)
n (f). �

For the next result, we need the first order modulus of continuity on
[0, π] defined for f : [0, π] → R and δ ≥ 0 by

ω1(f ; δ) = max{|f(x)− f(y)| : x, y ∈ [0, π], |x− y| ≤ δ}.
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Lemma 2.2. For any continuous function f : [0, π] → R+, we obtain

(2.1)
∣∣∣K(M)

n (f)(x)− f(x)
∣∣∣ ≤ [

1 +
1

δ
K(M)

n (φx)(x)

]
ω1(f ; δ),

for any x ∈ [0, π] and δ > 0. Here, φx(t) = |t− x|, t ∈ [0, π].

Proof. The proof is identical to the proof of [3, Corollary 2.4] (see
also Corollary 2.3 in the same paper). Applying property (iv) of

Lemma 2.1 and noting that K
(M)
n preserves the constant functions,

we obtain∣∣∣K(M)
n (f)(x)− f(x)

∣∣∣ = ∣∣∣K(M)
n (f)(x)−K(M)

n (f(x))(x)
∣∣∣

≤ K(M)
n (|f − f(x)|) (x).

On the other hand, for any t, x ∈ [0, π] and δ > 0, we have

|f(x)− f(t)| ≤ ω1(f ; |t− x|) = ω1

(
f ; δ · |t− x|

δ

)
≤

(
1 +

|t− x|
δ

)
ω1 (f ; δ) .

Now, applying properties (ii), (iii) and (v) of Lemma 2.1 and using

again that K
(M)
n preserves the constant functions, we easily obtain

relation (2.1). �

3. Pointwise and uniform convergence results. Our first main

result proves that K
(M)
n (f)(x) converges to f(x) at any point of conti-

nuity for f .

Theorem 3.1. Suppose that f : [0, π] → R+ is bounded on its domain
and integrable on any subinterval of [0, π]. If f is continuous at
x0 ∈ [0, π], then:

lim
n→∞

K(M)
n (f)(x0) = f(x0).

Proof. We use in the proof some ideas from [14]. We have

|K(M)
n (f)(x0)− f(x0)| = |K(M)

n (f)(x0)−K(M)
n (f(x0))(x0)|
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≤ K(M)
n (|f − f(x0)|)(x0)

=

n∨
k=0

[sin2(nx0−kπ)]/[(nx0−kπ)2]·
[
(n+1)

(k+1)π/(n+1)∫
kπ/(n+1)

|f(v)−f(x0)|dv
]

π
n∨

k=0

[sin2(nx0−kπ)]/[(nx0−kπ)2]
.

Let j ∈ {0, . . . , n− 1} be such that x0 ∈ [(jπ/n), [(j + 1)π]/n]. If

x0 ∈
[
jπ

n
,
(j + 1/2)π

n

]
,

then

nx0 − jπ ∈
[
0,

π

2

]
.

By the well-known inequality sin t ≥ (2/π) · t, t ∈ [0, (π/2)], we obtain

sin2(nx0 − jπ)

(nx0 − jπ)2
≥ 4

π2
.

If

x0 ∈
[
(j + 1/2)π

n
,
(j + 1)π

n

]
,

then it follows that nx0 − (j + 1)π ∈ [−(π/2), 0], which easily implies
that

sin2(nx0 − (j + 1)π)

(nx0 − (j + 1)π)
2 ≥ 4

π2
.

In conclusion, we obtain

n∨
k=0

sin2(nx0 − kπ)

(nx0 − kπ)
2 ≥ 4

π2
,

and this implies∣∣∣K(M)
n (f)(x0)− f(x0)

∣∣∣
≤ π

4
·

n∨
k=0

sin2(nx0−kπ)

(nx0 − kπ)2
·
[
(n+1)

∫ (k+1)π/(n+1)

kπ/(n+1)

|f (v)−f(x0)| dv
]
.

Now, let us choose arbitrary ε > 0. Then there exists δ > 0 such
that |f(x0)− f(y)| < (4ε/π) whenever |x0 − y| < δ. Suppose that n is
sufficiently large such that π/(n+ 1) < δ/4. If k ∈ {0, . . . , n} is such
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that |x0 − (kπ/n)| < δ/2, then, for any

v ∈
[

kπ

n+ 1
,
(k + 1)π

n+ 1

]
,

we have

|v − x0| ≤
∣∣∣∣v − kπ

n+ 1

∣∣∣∣+ ∣∣∣∣ kπ

n+ 1
− kπ

n

∣∣∣∣+ ∣∣∣∣x0 −
kπ

n

∣∣∣∣
≤ 2π

n+ 1
+

δ

2
< δ.

This implies

(n+ 1)

∫ (k+1)π/(n+1)

kπ/(n+1)

|f (v)− f(x0)| dv ≤ (n+ 1) · 4ε

π (n+ 1)
=

4ε

π

and hence, we get

(3.1) max
|x0−(kπ/n)|<δ/2

{
π(n+ 1) sin2(nx0 − kπ)

4(nx0 − kπ)2

·
[ ∫ (k+1)π/(n+1)

kπ/(n+1)

|f (v)− f(x0)| dv
]}

< ε.

If k ∈ {0, . . . , n} is such that |x0 − (kπ/n)| ≥ δ/2, then it follows that
(nx0 − kπ)2 ≥ (n2δ2)/4, and this implies

sin2(nx0 − kπ)

(nx0 − kπ)2
·
[
(n+ 1)

∫ (k+1)π/(n+1)

kπ/(n+1)

|f (v)− f(x0)| dv
]
≤ 8π ∥f∥

n2δ2
.

Here, ∥f∥ = supx∈[0,π] |f(x)|, and it is finite according to the hypothe-
ses. Moreover, we used that∫ (k+1)π/(n+1)

kπ/(n+1)

|f (v)− f(x0)| dv ≤ 2π ∥f∥ .

Obviously, for sufficiently large n, we have

8π ∥f∥
n2δ2

<
4ε

π
.

Therefore, we obtain

(3.2) max
|x0−kπ/n|≥δ/2

{
π(n+ 1) sin2(nx0 − kπ)

4(nx0 − kπ)2
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·
[ ∫ (k+1)π/(n+1)

kπ/(n+1)

|f (v)− f(x0)| dv
]}

< ε.

Combining relations (3.1) and (3.2), we easily obtain that, for suffi-
ciently large n (depending only on ε), we have∣∣∣K(M)

n (f)(x0)− f(x0)
∣∣∣ < ε.

This implies the desired conclusion. �

In contrast to the qualitative type results in [14], in the present
paper we prove a quantitative result, as well, which follows.

Theorem 3.2. Suppose that f : [0, π] → R+ is continuous on [0, π].
Then for any n ∈ N, n ≥ 1, we have∥∥∥K(M)

n (f)− f
∥∥∥ ≤ 10ω1

(
f ;

1

n

)
.

Proof. By Lemma 2.2, it suffices to estimate the following expression:

K(M)
n (φx)(x) =

1

π

·

n∨
k=0

[sin2(nx− kπ)]/[(nx− kπ)2] ·
[
(n+ 1)

(k+1)π/(n+1)∫
kπ/(n+1)

|v − x| dv
]

n∨
k=0

[sin2(nx− kπ)]/[(nx− kπ)2]

for all x ∈ [0, π]. Obviously, sin2(nx − kπ) is constant for any
k ∈ {0, 1, . . . , n}, and therefore, for all x ∈ [0, π] we obtain:

K(M)
n (φx)(x) =

1

π

·

n∨
k=0

1/(nx− kπ)2 ·
[
(n+ 1)

(k+1)π/(n+1)∫
kπ/(n+1)

|v − x| dv
]

n∨
k=0

1/(nx− kπ)2
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For some arbitrary x ∈ [0, π], let j ∈ {0, . . . , n} be such that

x ∈
[
jπ

n
,
(j + 1)π

n

]
.

At first, suppose that

x ∈
[
jπ

n
,
(j + 1/2)π

n

]
.

By simple calculations (or by applying [11, Lemma 4.3]) it is easily
seen that

n∨
k=0

1

(nx− kπ)2
=

1

(nx− jπ)2
,

and this implies

K(M)
n (φx)(x) =

1

π
·

n∨
k=0

(nx− jπ)2

(nx− kπ)2

·
[
(n+ 1)

∫ (k+1)π/(n+1)

kπ/(n+1)

|v − x| dv
]
.

Applying the mean value theorem on each interval[
kπ

n+ 1
,
(k + 1)π

n+ 1

]
,

there exists

vk ∈
[

kπ

n+ 1
,
(k + 1)π

n+ 1

]
such that ∫ (k+1)π/(n+1)

kπ/(n+1)

|v − x| dv =
π

n+ 1
· |vk − x| ,

which means that

K(M)
n (φx)(x) =

n∨
k=0

(nx− jπ)2

(nx− kπ)2
· |vk − x| .

We have
n∨

k=0

(nx− jπ)2

(nx− kπ)2
· |vk − x| ≤

n∨
k=0

(nx− jπ)2

(nx− kπ)2
·
(∣∣∣∣vk − kπ

n

∣∣∣∣+ ∣∣∣∣x− kπ

n

∣∣∣∣).
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Let us arbitrarily choose k ∈ {0, . . . , n}. Since |vk−(kπ/n)|≤ π/(n+ 1)
and noting that (nx− jπ)2/(nx− kπ)2 ≤ 1, it results that

(nx− jπ)2

(nx− kπ)2
·
∣∣∣∣vk − kπ

n

∣∣∣∣ ≤ π

n+ 1
.

Then,
(nx− jπ)2

(nx− kπ)2
·
∣∣∣∣x− kπ

n

∣∣∣∣ = |nx− jπ|
|nx− kπ|

· |nx− jπ|
n

.

As |nx− jπ|/|nx− kπ| ≤ 1 and |nx− jπ| ≤ π/2, we obtain

(nx− jπ)2

(nx− kπ)2
·
∣∣∣∣x− kπ

n

∣∣∣∣ ≤ π

2n
.

All of these imply that

(nx− jπ)2

(nx− kπ)2
·
(∣∣∣∣vk − kπ

n

∣∣∣∣+ ∣∣∣∣x− kπ

n

∣∣∣∣) ≤ π

n+ 1
+

π

2n
≤ 3π

2n

and, by the arbitrariness of k, it follows that

(3.3) K(M)
n (φx)(x) ≤

3π

2n
.

The case

x ∈
[
(j + 1/2)π

n
,
(j + 1)π

n

]
by absolutely similar reasonings leads to the same conclusion. Thus, we

obtain K
(M)
n (φx)(x) ≤ (3π)/(2n), for all x ∈ [0, π]. By relation (2.1),

taking δ = (3π)/(2n) and noting that, in general, we have ω1(f ;αδ) ≤
([α] + 1)ω1(f ; δ) for any α > 0 and δ > 0 (here [α] means the integer
part of α), we easily obtain the estimation from the conclusion. �

Remark 3.3. The estimate in the statement of Theorem 3.2 remains
valid for lower bounded functions and of arbitrary sign. Indeed, if c ∈ R
is such that f(x) ≥ c for all x ∈ [0, π], then it is easy to see that defining

the new max-product operator K
(M)

(f)(x) = K
(M)
n (f − c)(x) + c, we

get |f(x)−K
(M)

(f)(x)| ≤ 10ω1(f ; 1/n), for all x ∈ [0, π], n ∈ N.
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4. Convergence results in the Lp-norm. Let the Lp-norm,

∥f∥p =

(∫ π

0

|f(t)|pdt
)1/p

, with 1 ≤ p < +∞.

In this section, we deal with the approximation by K
(M)
n in the Lp-

norm. For this purpose, firstly we need the following Lipschitz property

of the operator K
(M)
n .

Theorem 4.1. We have∥∥∥K(M)
n (f)−K(M)

n (g)
∥∥∥
p
≤ 2(1−2p)/pπ2 · ∥f − g∥p ,

for any n ∈ N, n ≥ 1, f, g : [0, π] → R+, f, g ∈ Lp[0, π] and 1 ≤ p < ∞.

Proof. Applying the Lp norm, we get∥∥∥K(M)
n (f)−K(M)

n (g)
∥∥∥
p

=

(∫ π

0

∣∣∣K(M)
n (f)(x)−K(M)

n (g)(x)
∣∣∣p dx)1/p

≤
(∫ π

0

(
K(M)

n (|f(x)− g(x)|)
)p

dx

)1/p

=
1

π

(∫ π

0( n∨
k=0

[sin2(nx−kπ)]/[(nx−kπ)2](n+1)
(k+1)π/(n+1)∫

kπ/(n+1)

|f(v)−g(v)| dv

n∨
k=0

[sin2(nx−kπ)]/(nx−kπ)2

)p

dx

)1/p

.

As we already know from the previous section, for any x ∈ [0, π], we
have

n∨
k=0

sin2(nx− kπ)

(nx− kπ)
2 ≥ 4

π2
,

which implies

∥∥∥K(M)
n (f)−K(M)

n (g)
∥∥∥
p
≤ π

4

(∫ π

0

( n∨
k=0

sin2(nx− kπ)

(nx− kπ)
2
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· (n+ 1)

∫ (k+1)π/(n+1)

kπ/(n+1)

|f (v)− g(v)| dv
)p

dx

)1/p

.

Since

0 ≤
n∨

k=0

sin2(nx− kπ)

(nx− kπ)
2 ≤ 1, for all x ∈ [0, π] ,

it easily follows that

∥∥∥K(M)
n (f)−K(M)

n (g)
∥∥∥
p
≤ π

4
×

(∫ π

0

n∨
k=0

sin2(nx− kπ)

(nx− kπ)
2

·
[
(n+ 1)

∫ (k+1)π/(n+1)

kπ/(n+1)

|f (v)− g(v)| dv
]p
dx

)1/p

.

As the function x → xp is convex, applying Jensen’s inequality, we
obtain(∫ (k+1)π/(n+1)

kπ/(n+1)

|f (v)− g(v)| dv
)p

≤ n+ 1

π

∫ (k+1)π/(n+1)

kπ/(n+1)

πp |f (v)− g(v)|p

(n+ 1)
p dv,

and from here it follows that∥∥∥K(M)
n (f)−K(M)

n (g)
∥∥∥
p
≤ π(2p−1)/p

4

×
(∫ π

0

n∨
k=0

[
(n+ 1)

sin2(nx− kπ)

(nx− kπ)
2

∫ (k+1)π/(n+1)

kπ/(n+1)

|f (v)−g(v)|p dv
]
dx

)1/p

.

On the other hand, for some k ∈ {0, 1, . . . , n}, using the substitution
y = nx− kπ, we obtain∫ π

0

(n+ 1)
sin2(nx− kπ)

(nx− kπ)
2 dx =

n+ 1

n
·
∫ (n−k)π

−kπ

sin2 y

y2
dy.

It is well-known that ∫ ∞

−∞

sin2 y

y2
dy = π,
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which implies ∫ (n−k)π

−kπ

sin2 y

y2
dy ≤ π,

and hence,
π∫

0

(n+ 1)
sin2(nx− kπ)

(nx− kπ)
2 dx ≤ 2π.

This implies∥∥∥K(M)
n (f)−K(M)

n (g)
∥∥∥
p

≤ 21/pπ2

4
·
( n∑

k=0

∫ (k+1)π/(n+1)

kπ/(n+1)

|f (v)− g(v)|p dv
)1/p

=
21/pπ2

4
· ∥f − g∥p .

The proof is complete. �

Now, let us define

C1
+[0, π] = {g : [0, π] → R+; g is differentiable on [0, π]},

∥ · ∥C[0,π] the uniform norm of continuous functions on [0, π] and the
Petree K-functional:

K (f ; t)p = inf
g∈C1

+[0,π]
{∥f − g∥p + t∥g′∥C[0,π]}.

The second main result of this section is the following.

Theorem 4.2. Let 1 ≤ p < ∞. For all f : [0, π] → R+, f ∈ Lp[0, π]
and n ∈ N, we have

∥f −K(M)
n (f)∥p ≤ c ·K

(
f ;

a

n

)
p

,

where

c = 1 + 2(1−2p)/p · π2, a =
3π1+1/p

2c
.
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Proof. Let g ∈ C1
+[0, π] be fixed. Now, by Minkowski’s inequality,

we obtain

∥f −K(M)
n (f)∥p

= ∥(f − g) + (g −K(M)
n (g)) + (K(M)

n (g)−K(M)
n (f))∥p

≤ ∥f − g∥p + ∥g −K(M)
n (g)∥p + ∥K(M)

n (g)−K(M)
n (f)∥p.

From Theorem 4.1 we have

(4.1) ∥K(M)
n (g)−K(M)

n (f)∥p ≤ 2(1−2p)/p · π2 · ∥f − g∥p.

Now, let us estimate ∥g − K
(M)
n (g)∥p for g ∈ C1

+[0, π]. Thus, by

K
(M)
n (e0)(x) = e0(x) = 1, we get

|g(x)−K(M)
n (g)(x)| = |K(M)

n (g(x))(x)−K(M)
n (g(t))(x)|

≤ K(M)
n (|g(x)− g(·)|)(x).

Since, for g ∈ C1
+[0, π] and x, t ∈ [0, π], we get

|g(x)− g(t)| ≤ ∥g′∥C[0,π] · |x− t| = ∥g′∥C[0,π] · φx(t),

and applying K
(M)
n , it easily follows that

K(M)
n (|g(x)− g(·)|)(x) ≤ ∥g′∥C[0,π]K

(M)
n (φx),

where φx(t) = |x− t| for x, t ∈ [0, π].

Therefore, rising at the power p and integrating above with respect
to x, we immediately obtain

(4.2) ∥g −K(M)
n (g)∥p ≤ ∥g′∥C[0,π] · ∥K(M)

n (φx)∥p.

Concluding, from equations (4.1) and (4.2) and denoting ∆n,p =

∥K(M)
n (φx)∥p and c = 1 + 2(1−2p)/p · π2, we obtain

∥f−K(M)
n (f)∥p≤(1+2(1−2p)/p · π2)

(
∥f−g∥p+∥g′∥C[0,π] ·∆n,p/c

)
.

Passing the above to infimum with g ∈ C1
+[0, π], the right-hand side

between parentheses becomes

K

(
f ;

∆n,p

c

)
p

,
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and we obtain

(4.3) ∥f −K(M)
n (f)∥p ≤ c ·K

(
f ;

∆n,p

c

)
p

.

But it is easy to see that ∆n,p ≤ π1/p · ∥K(M)
n (φx)∥, which, by

estimate (3.3) in the proof of Theorem 3.2, leads to

∆n,p ≤ 3π1+1/p

2n
.

Finally, replacing this in estimate (4.3), we immediately get the esti-
mate in Theorem 4.2. �

Remark 4.3. The statement of Theorem 4.2 can be restated for lower
bounded functions and of arbitrary sign. Indeed, if c ∈ R is such that
f(x) ≥ c for all x ∈ [0, π], then it is easy to see that, defining the slightly

modified max-product operator K
(M)

(f)(x) = K
(M)
n (f − c)(x) + c, we

get

|f(x)−K
(M)

(f)(x)| = |(f(x)− c)−K(M)
n (f − c)(x)|,

and, since we may consider here that c < 0, we immediately obtain the
following relations:

K(f − c; t)p = inf
g∈C1

+[0,π]
{∥f − (g + c)∥p + t∥g′∥C[0,π]}

= inf
g∈C1

+[0,π]
{∥f − (g + c)∥p + t∥(g + c)′∥C[0,π]}

= inf
h∈C1

+[0,π], h≥c
{∥f − h∥p + t∥h′∥C[0,π]}.
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