WELL-POSEDNESS OF FRACTIONAL DEGENERATE DIFFERENTIAL EQUATIONS WITH INFINITE DELAY IN VECTOR-VALUED FUNCTIONAL SPACES

SHANGQUAN BU AND GANG CAI

Communicated by Juan J. Trujillo

Abstract

We study the well-posedness of degenerate fractional differential equations with infinite delay $\left(P_{\alpha}\right)$: $D^{\alpha}(M u)(t)=A u(t)+\int_{-\infty}^{t} a(t-s) A u(s) d s+f(t), 0 \leq t \leq 2 \pi$, in Lebesgue-Bochner spaces $L^{p}(\mathbb{T} ; X)$ and Besov spaces $B_{p, q}^{s}(\mathbb{T} ; X)$, where A and M are closed linear operators on a Banach space X satisfying $D(A) \subset D(M), \alpha>0$ and $a \in L^{1}\left(\mathbb{R}_{+}\right)$are fixed. Using well known operator-valued Fourier multiplier theorems, we completely characterize the well-posedness of $\left(P_{\alpha}\right)$ in the above vector-valued function spaces on \mathbb{T}.

1. Introduction. In a series of publications, operator-valued Fourier multipliers on vector-valued function spaces were studied, see e.g., $[\mathbf{2}, \mathbf{3}, \mathbf{1 4}]$. They are needed to study the existence and uniqueness of differential equations on Banach spaces $[\mathbf{7}, \mathbf{8}, \mathbf{9}, \mathbf{1 0}, \mathbf{1 2}, \mathbf{1 3}, 14]$. Recently, problems of the characterization of well-posedness for degenerate differential equations with periodic initial conditions have been extensively studied. For instance, first order degenerate differential equations:

$$
\begin{equation*}
(M u)^{\prime}(t)=A u(t)+f(t), \quad 0 \leq t \leq 2 \pi \tag{1.1}
\end{equation*}
$$

[^0]with periodic boundary condition $(M u)(0)=(M u)(2 \pi)$, have recently been studied by Lizama and Ponce [10], where A and M are closed linear operators on a Banach space X. Under suitable assumptions on the modified resolvent operator determined by (1.1), they gave necessary and sufficient conditions to ensure the well-posedness of (1.1) in Lebesgue-Bochner spaces $L^{p}(\mathbb{T} ; X)$, periodic Besov spaces $B_{p, q}^{s}(\mathbb{T} ; X)$ and periodic Triebel-Lizorkin spaces $F_{p, q}^{s}(\mathbb{T} ; X)$. In [4], Bu studied the second order degenerate differential equations:
\[

$$
\begin{equation*}
\left(M u^{\prime}\right)^{\prime}(t)=A u(t)+f(t), \quad 0 \leq t \leq 2 \pi \tag{1.2}
\end{equation*}
$$

\]

with periodic boundary conditions $u(0)=u(2 \pi),\left(M u^{\prime}\right)(0)=\left(M u^{\prime}\right)(2 \pi)$, where A and M are closed linear operators on a Banach space X. He also obtained necessary or sufficient conditions for the well-posedness of (1.2) in Lebesgue-Bochner spaces $L^{p}(\mathbb{T} ; X)$, periodic Besov spaces $B_{p, q}^{s}(\mathbb{T} ; X)$ and periodic Triebel-Lizorkin spaces $F_{p, q}^{s}(\mathbb{T} ; X)$ under some suitable conditions on the modified resolvent operator determined by (1.2).

Poblete and Pozo studied fractional order neutral differential equations with finite delay:

$$
\begin{equation*}
D^{\alpha}(u(t)-B u(t-r))=A u(t)+F u_{t}+G D^{\beta} u_{t}+f(t), \quad 0 \leq t \leq 2 \pi \tag{1.3}
\end{equation*}
$$

where $r>0$ is fixed, A and B are closed linear operators on a Banach space X satisfying $D(A) \subset D(B), u_{t}(\theta)=u(t+\theta)$, and F and G are bounded linear operators on an appropriate space. Under suitable assumptions on delay operators F and G, the authors were able to give a sufficient condition for (1.3) to be well-posed in Besov spaces $B_{p, q}^{s}(\mathbb{T} ; X)$ and Triebel-Lizorkin spaces $F_{p, q}^{s}(\mathbb{T} ; X)[\mathbf{1 3}]$.

On the other hand, Bu considered the well-posedness in different function spaces of the following equations with fractional derivative with infinite delay:

$$
\begin{equation*}
D^{\alpha} u(t)=A u(t)+\int_{-\infty}^{t} a(t-s) A u(s) d s+f(t), \quad 0 \leq t \leq 2 \pi \tag{1.4}
\end{equation*}
$$

with symmetric boundary conditions, where A is a closed linear operator on a Banach space $X, \alpha>0$ and $D^{\alpha} u$ is the fractional derivative of u in the sense of Weyl, $a \in L^{1}\left(\mathbb{R}_{+}\right)$. Under suitable assumptions on the Laplace transform of a, the author completely characterized
the well-posedness of (1.4) on Lebesgue-Bochner spaces $L^{p}(\mathbb{T} ; X)$ and Besov spaces $B_{p, q}^{s}(\mathbb{T} ; X)$ [5].

In this paper, we study the following degenerate fractional differential equations with infinite delay:
$\left(P_{\alpha}\right) \quad D^{\alpha}(M u)(t)=A u(t)+\int_{-\infty}^{t} a(t-s) A u(s) d s+f(t), 0 \leq t \leq 2 \pi$,
where A and M are closed linear operators on a Banach space X satisfying $D(A) \subset D(M), a \in L^{1}\left(\mathbb{R}_{+}\right), \alpha>0$. It is clear that (1.4) is a special case of $\left(P_{\alpha}\right)$ when $M=I_{X}$. When Ω is a bounded domain in \mathbb{R}^{n} with smooth boundary $\partial \Omega, m$ is a non-negative bounded measurable function defined on Ω and X is the Hilbert space $H^{-1}(\Omega)$, we can consider M as the multiplication operator on X by m. One may also consider M as a differential operator on $H^{-1}(\Omega)$ or $L^{2}(\Omega)$ with different boundary conditions on $\partial \Omega$.

The purpose of this paper is to characterize the well-posedness of $\left(P_{\alpha}\right)$ in Lebesgue-Bochner spaces $L^{p}(\mathbb{T} ; X)$ and Besov spaces $B_{p, q}^{s}(\mathbb{T} ; X)$. Our characterizations of the well-posedness of $\left(P_{\alpha}\right)$ involve the Rademacher boundedness (or norm boundedness) of the M-resolvent set of A. Our main tools in the study of the well-posedness of $\left(P_{\alpha}\right)$ are the operator-valued Fourier multiplier theorems obtained by Arendt and $\mathrm{Bu}[\mathbf{2}, \mathbf{3}]$ on $L^{p}(\mathbb{T} ; X)$ and $B_{p, q}^{s}(\mathbb{T} ; X)$. Indeed, we will transform the well-posedness of $\left(P_{\alpha}\right)$ to an operator-valued Fourier multiplier problem in the corresponding vector-valued function space. In this paper, we are able to characterize the well-posedness of $\left(P_{\alpha}\right)$ by the boundedness of the M-resolvent set of A. For instance, we show that, under suitable assumptions on a, when the underlying Banach space X is a UMD Banach space and $1<p<\infty$, then $\left(P_{\alpha}\right)$ is L^{p} well-posed if and only if

$$
\left\{\frac{r_{k}^{(\alpha)}}{1+c_{k}}: k \in \mathbb{Z}\right\} \subset \rho_{M}(A)
$$

and the set

$$
\left\{r_{k}^{(\alpha)} M\left[r_{k}^{(\alpha)} M-\left(1+c_{k}\right) A\right]^{-1}: k \in \mathbb{Z}\right\}
$$

is R-bounded, where $\rho_{M}(A)$ is the M-resolvent set of A (see the precise
definition in Section 2), $r_{k}^{(\alpha)}=|k|^{\alpha} e^{(1 / 2) \operatorname{sgn}(k) \pi i \alpha}$ when $k \neq 0$, and $r_{0}^{(\alpha)}=0, c_{k}=\int_{0}^{+\infty} e^{-i k t} a(t) d t$ is the Fourier transform of a.

The results obtained in this paper recover the known results presented in [5] in the simpler case when $M=I_{X}$. Our results also recover the results obtained in [10] in the special case when $\alpha=1$, $a=0$. Thus, one may also consider our results as generalizations of the previous results obtained in $[2,3]$.

This work is organized as follows. In Section 2, we study the well-posedness of $\left(P_{\alpha}\right)$ in vector-valued Lebesgue spaces $L^{p}(\mathbb{T} ; X)$. In Section 3, we consider the well-posedness of $\left(P_{\alpha}\right)$ in Besov spaces $B_{p, q}^{s}(\mathbb{T} ; X)$. In the last section, we give some examples that our abstract results may be applied.
2. Well-posedness of $\left(P_{\alpha}\right)$ in Lebesgue-Bochner spaces. Let X and Y be complex Banach spaces, and let $\mathbb{T}:=[0,2 \pi]$. We denote by $\mathcal{L}(X, Y)$ the space of all bounded linear operators from X to Y. If $X=Y$, we will simply denote it by $\mathcal{L}(X)$. For $1 \leq p<\infty$, we denote by $L^{p}(\mathbb{T} ; X)$ the space of all equivalent classes of X-valued measurable functions f defined on \mathbb{T} satisfying

$$
\|f\|_{L^{p}}:=\left(\int_{0}^{2 \pi}\|f(t)\|^{p} \frac{d t}{2 \pi}\right)^{1 / p}<\infty
$$

For $f \in L^{1}(\mathbb{T} ; X)$, we denote by

$$
\widehat{f}(k):=\frac{1}{2 \pi} \int_{0}^{2 \pi} e_{-k}(t) f(t) d t
$$

the k th Fourier coefficient of f, where $k \in \mathbb{Z}$ and $e_{k}(t)=e^{i k t}$ when $t \in \mathbb{T}$. We denote by $e_{k} \otimes x$ the X-valued function defined on \mathbb{T} by $\left(e_{k} \otimes x\right)(t)=e_{k}(t) x$.

The main tool in our study of L^{p} well-posedness of $\left(P_{\alpha}\right)$ is the next L^{p}-Fourier multiplier theorem [2].

Definition 2.1. Letting X and Y be complex Banach spaces and $1 \leq p<\infty$, we say that $\left(M_{k}\right)_{k \in \mathbb{Z}} \subset \mathcal{L}(X, Y)$ is an L^{p}-Fourier multiplier if, for each $f \in L^{p}(\mathbb{T} ; X)$, there exists a $u \in L^{p}(\mathbb{T} ; Y)$ such that $\widehat{u}(k)=M_{k} \widehat{f}(k)$ for all $k \in \mathbb{Z}$.

It easily follows from the Closed Graph theorem that, when $\left(M_{k}\right)_{k \in \mathbb{Z}}$ $\subset \mathcal{L}(X, Y)$ is an L^{p}-Fourier multiplier, then there exists a bounded linear operator $T \in \mathcal{L}\left(L^{p}(\mathbb{T} ; X), L^{p}(\mathbb{T} ; Y)\right)$ satisfying $(T f)^{\wedge}(k)=M_{k} \widehat{f}(k)$ when $f \in L^{p}(\mathbb{T} ; X)$ and $k \in \mathbb{Z}$. The operator-valued Fourier multiplier theorem on $L^{p}(\mathbb{T} ; X)$ obtained in [2] involves the Rademacher boundedness for sets of bounded linear operators. Let γ_{j} be the j th Rademacher function on $[0,1]$ given by $\gamma_{j}(t)=\operatorname{sgn}\left(\sin \left(2^{j} \pi t\right)\right)$ when $j \geq 1$. For $x \in X$, we denote by $\gamma_{j} \otimes x$ the vector-valued function $t \rightarrow r_{j}(t) x$ on $[0,1]$.

Definition 2.2. Let X and Y be Banach spaces. A set $\mathbf{T} \subset \mathcal{L}(X, Y)$ is said to be Rademacher bounded (R-bounded, in short), if a $C>0$ exists such that

$$
\left\|\sum_{j=1}^{n} \gamma_{j} \otimes T_{j} x_{j}\right\|_{L^{1}([0,1] ; Y)} \leq C\left\|\sum_{j=1}^{n} \gamma_{j} \otimes x_{j}\right\|_{L^{1}([0,1] ; X)}
$$

for all $T_{1}, \ldots, T_{n} \in \mathbf{T}, x_{1}, \ldots, x_{n} \in X$ and $n \in \mathbb{N}$.

Remark 2.3.

(i) Let $\mathbf{S}, \mathbf{T} \subset \mathcal{L}(X)$ be R-bounded sets. Then it can be easily seen from the definition that

$$
\mathbf{S T}:=\{S T: S \in \mathbf{S}, T \in \mathbf{T}\}
$$

and

$$
\mathbf{S}+\mathbf{T}:=\{S+T: S \in \mathbf{S}, T \in \mathbf{T}\}
$$

are still R-bounded.
(ii) Let X be a UMD Banach space, and let $M_{k}=m_{k} I_{X}$ with $m_{k} \in \mathbb{C}$, where I_{X} is the identity operator on X, if $\sup _{k \in \mathbb{Z}}\left|m_{k}\right|<\infty$ and $\sup _{k \in \mathbb{Z}}\left|k\left(m_{k+1}-m_{k}\right)\right|<\infty$. Then $\left(M_{k}\right)_{k \in \mathbb{Z}}$ is an L^{p}-Fourier multiplier whenever $1<p<\infty$ [2].

The next results will be fundamental in the proof of our main result of this section. For the notion of UMD Banach spaces, we refer the reader to [2] and the references therein.

Proposition 2.4 ([2, Proposition 1.11]). Let X and Y be Banach spaces, $1 \leq p<\infty$, and let $\left(M_{k}\right)_{k \in \mathbb{Z}} \subset \mathcal{L}(X, Y)$ be an L^{p}-Fourier multiplier. Then the set $\left\{M_{k}: k \in \mathbb{Z}\right\}$ is R-bounded.

Theorem 2.5 ([2, Theorem 1.3]). Let X and Y be UMD Banach spaces and $\left(M_{k}\right)_{k \in \mathbb{Z}} \subset \mathcal{L}(X, Y)$. If the sets $\left\{M_{k}: k \in \mathbb{Z}\right\}$ and $\left\{k\left(M_{k+1}-M_{k}\right): k \in \mathbb{Z}\right\}$ are R-bounded, then $\left(M_{k}\right)_{k \in \mathbb{Z}}$ defines an L^{p}-Fourier multiplier whenever $1<p<\infty$.

The derivative operator (of order 1), denoted by D in $L^{p}(\mathbb{T} ; X)$, was defined in [2] as

$$
D u:=\sum_{k \in \mathbb{Z}} i k e_{k} \otimes \widehat{u}(k)
$$

with domain $W^{1, p}(\mathbb{T} ; X)$, where

$$
\begin{array}{r}
W^{1, p}(\mathbb{T} ; X):=\left\{u \in L^{p}(\mathbb{T} ; X): \text { there exists } v \in L^{p}(\mathbb{T} ; X)\right. \tag{2.1}\\
\text { such that } \widehat{v}(k)=i k \widehat{u}(k) \text { for } k \in \mathbb{Z}\}
\end{array}
$$

is the first periodic Sobolev space. Let $u \in L^{p}(\mathbb{T} ; X)$. Then $u \in$ $W^{1, p}(\mathbb{T} ; X)$ if and only if u is differentiable almost everywhere on \mathbb{T} and $u^{\prime} \in L^{p}(\mathbb{T} ; X)$. In this case, u is actually continuous and $u(0)=u(2 \pi)$ [2, Lemma 2.1].

The unbounded operator D is non negative in $L^{p}(\mathbb{T} ; X)[\mathbf{1 1}]$; thus, its fractional power makes sense. Let $\alpha>0$. The fractional power D^{α} of D is given by

$$
D^{\alpha} u:=\sum_{k \in \mathbb{Z}} r_{k}^{(\alpha)} e_{k} \otimes \widehat{u}(k)
$$

with domain $W^{\alpha, p}(\mathbb{T} ; X)$, where $W^{\alpha, p}(\mathbb{T} ; X)$ is the fractional Sobolev space of order α defined by

$$
\begin{align*}
& W^{\alpha, p}(\mathbb{T} ; X):=\left\{u \in L^{p}(\mathbb{T} ; X): \text { there exists } v \in L^{p}(\mathbb{T} ; X)\right. \tag{2.2}\\
&\text { such that } \left.\widehat{v}(k)=r_{k}^{(\alpha)} \widehat{u}(k) \text { for } k \in \mathbb{Z}\right\} .
\end{align*}
$$

Here,

$$
r_{k}^{(\alpha)}:= \begin{cases}|k|^{\alpha} e^{(1 / 2) \operatorname{sgn}(k) \pi i \alpha} & k \neq 0 \tag{2.3}\\ 0 & k=0\end{cases}
$$

This notation $r_{k}^{(\alpha)}$ will be fixed throughout this paper. D^{α} is called the fractional derivative (in the sense of Weyl) of u of order α [11]. It is clear that definition (2.2) coincides with (2.1) when $\alpha=1$ and $D=D^{1}$. See [9] for an equivalent definition of the fractional derivative D^{α} on $L^{p}(\mathbb{T} ; X) . W^{\alpha, p}(\mathbb{T} ; X)$ is a Banach space with the norm

$$
\|u\|_{W^{\alpha, p}}:=\|u\|_{L^{p}}+\left\|D^{\alpha} u\right\|_{L^{p}}
$$

For $\beta>0$, we let $a_{k}=1 / r_{k}^{(\beta)}$ for $k \neq 0$ and $a_{0}=0$, and

$$
F_{\beta}:=\sum_{k \in \mathbb{Z}} e_{k} \otimes a_{k}
$$

Then $F_{\beta} \in L^{1}(\mathbb{T})$ [15, Chapter V, (1.5), (1.14)]. This implies that, when $\alpha_{1} \leq \alpha_{2}$, then $W^{\alpha_{2}, p}(\mathbb{T} ; X) \subset W^{\alpha_{1}, p}(\mathbb{T} ; X)$ by Young's inequality. It is clear from the definition and [2, Lemma 2.1] that, when $\alpha>1$, then $u \in W^{\alpha, p}(\mathbb{T} ; X)$ if and only if u is differentiable almost everywhere and $u^{\prime} \in W^{\alpha-1, p}(\mathbb{T} ; X)$.

It was shown in [15, Chapter XII, (9.1)] that, when $1 / p<\alpha<$ $1+1 / p$, then $W^{\alpha, p}(\mathbb{T} ; X) \subset C_{\mathrm{per}}^{\alpha-1 / p}(\mathbb{T} ; X)$, where $C_{\mathrm{per}}^{\alpha-1 / p}(\mathbb{T} ; X)$ is the space of all X valued $(\alpha-1 / p)$-Hölder continuous functions u on \mathbb{T} satisfying $u(0)=u(2 \pi)$. This implies that, if $\alpha>0, n \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$ are such that

$$
n+\frac{1}{p}<\alpha<n+1+\frac{1}{p}
$$

and, if $u \in W^{\alpha, p}(\mathbb{T} ; X)$, then u is n-times continuously differentiable on \mathbb{T}, and $u^{(k)}(0)=u^{(k)}(2 \pi)$ when $0 \leq k \leq n$. This means that $\left(P_{\alpha}\right)$ is in fact a problem with symmetric boundary conditions when $1 / p<\alpha$.

A scalar sequence $(b)_{k \in \mathbb{Z}} \subset \mathbb{C} \backslash\{0\}$ is called 1-regular if the sequence $\left(k\left(b_{k+1}-b_{k}\right) / b_{k}\right)_{k \in \mathbb{Z}}$ is bounded; it is called 2-regular if it is 1-regular and the sequence $\left(k^{2}\left(b_{k+2}-2 b_{k+1}+b_{k}\right) / b_{k}\right)_{k \in \mathbb{Z}}$ is bounded.

Remark 2.6. An easy computation shows that $\left(r_{k}^{(\alpha)}\right)_{k \in \mathbb{Z}}$ is 2-regular whenever $\alpha>0$.

For $a \in L^{1}\left(\mathbb{R}_{+}\right)$and $u \in L^{p}(\mathbb{T} ; D(A))$, we define

$$
\begin{equation*}
(a * A u)(t):=\int_{-\infty}^{t} a(t-s) A u(s) d s, \quad t \in \mathbb{T} \tag{2.4}
\end{equation*}
$$

Here we consider $D(A)$ as a Banach space equipped with its graph norm. It is clear that $a * A u \in L^{p}(\mathbb{T} ; X)$ by Young's inequality and $\|a * A u\|_{L^{p}} \leq\|a\|_{L^{1}}\|A u\|_{L^{p}}$. Let $\widetilde{a}(\lambda):=\int_{0}^{+\infty} e^{-\lambda t} a(t) d t$ be the Laplace transform of a for $\operatorname{Re} \lambda \geq 0$. An easy computation shows that:

$$
\begin{equation*}
\widehat{a * A u}(k)=\widetilde{a}(i k) A \widehat{u}(k) \tag{2.5}
\end{equation*}
$$

when $k \in \mathbb{Z}$. We note that $\widetilde{a}(i k)$ exists for all $k \in \mathbb{Z}$ as $a \in L^{1}\left(\mathbb{R}_{+}\right)$. In what follows, we always use the notation:

$$
\begin{equation*}
c_{k}:=\widetilde{a}(i k) \tag{2.6}
\end{equation*}
$$

for all $k \in \mathbb{Z}$.

Remark 2.7. Under the above assumptions on a, if $\widetilde{a}(i k) \neq-1$ for all $k \in \mathbb{Z}$, then the sequences $(\widetilde{a}(i k))_{k \in \mathbb{Z}}$ and $(1 /(1+\widetilde{a}(i k)))_{k \in \mathbb{Z}}$ are bounded by the Riemann-Lebesgue lemma.

Let $\left(b_{k}\right)_{k \in \mathbb{Z}} \subset \mathbb{C}$ be a scalar sequence. We will use the following hypotheses:
(A1) $b_{k} \neq-1$ for all $k \in \mathbb{Z},\left(k\left(b_{k+1}-b_{k}\right)\right)_{k \in \mathbb{Z}}$ is bounded.
(A2) $b_{k} \neq-1$ for all $k \in \mathbb{Z},\left(k\left(b_{k+1}-b_{k}\right)\right)_{k \in \mathbb{Z}}$ and $\left(k^{2}\left(b_{k+2}-2 b_{k+1}\right.\right.$ $\left.+b_{k}\right)_{k \in \mathbb{Z}}$ are bounded.

Note that the sequences $\left.\left(b_{k+1}-b_{k}\right)_{k \in \mathbb{Z}},\left(b_{k+2}-2 b_{k+1}+b_{k}\right)\right)_{k \in \mathbb{Z}}$ and $\left.\left(b_{k+3}-3 b_{k+2}+3 b_{k+1}-b_{k}\right)\right)_{k \in \mathbb{Z}}$ may be considered as the first derivative, the second derivative and the third derivative of $\left(b_{k}\right)_{k \in \mathbb{Z}}$, respectively.

Let $1 \leq p<\infty, a \in L^{1}\left(\mathbb{R}_{+}\right)$. We define the solution space of $\left(P_{\alpha}\right)$ in the L^{p} well-posedness case by

$$
S_{p}(A, M):=\left\{u \in L^{p}(\mathbb{T} ; D(A)): M u \in W^{\alpha, p}(\mathbb{T} ; X)\right\}
$$

Here, again, we consider $D(A)$ to be a Banach space equipped with its graph norm. If $u \in S_{p}(A, M)$, then $a * A u \in L^{p}(\mathbb{T} ; X)$ by Young's inequality. $S_{p}(A, M)$ is a Banach space with the norm

$$
\|u\|_{S_{p}(A, M)}:=\|u\|_{L^{p}}+\|A u\|_{L^{p}}+\|M u\|_{W^{\alpha, p}} .
$$

Now we are ready to introduce the well-posedness of $\left(P_{\alpha}\right)$.

Definition 2.8. Let $1 \leq p<\infty$ and $f \in L^{p}(\mathbb{T} ; X) ; u \in S_{p}(A, M)$ is called a strong L^{p}-solution of $\left(P_{\alpha}\right)$, if $\left(P_{\alpha}\right)$ is satisfied almost everywhere on \mathbb{T}. We say that $\left(P_{\alpha}\right)$ is L^{p} well-posed if, for each $f \in L^{p}(\mathbb{T} ; X)$, there exists a unique strong L^{p}-solution of $\left(P_{\alpha}\right)$.

If $\left(P_{\alpha}\right)$ is L^{p} well-posed, there exists a constant $C>0$ such that, for each $f \in L^{p}(\mathbb{T} ; X)$, if $u \in S_{p}(A, M)$ is the unique strong L^{p}-solution of $\left(P_{\alpha}\right)$, then

$$
\begin{equation*}
\|u\|_{S_{p}(A, M)} \leq C\|f\|_{L^{p}} \tag{2.7}
\end{equation*}
$$

This is an easy consequence of the Closed Graph theorem.
Now we introduce the M-resolvent set of A. We recall that, under the assumption that $D(A) \subset D(M)$, for any $\lambda \in \mathbb{C}$, the sum operator $\lambda M-A$ is a linear operator $D(A)$ into X. We define

$$
\begin{aligned}
\rho_{M}(A):=\{\lambda \in \mathbb{C}: \lambda M-A: D(A) \rightarrow X & \text { is bijective and } \\
& \left.(\lambda M-A)^{-1} \in \mathcal{L}(X)\right\}
\end{aligned}
$$

as the M-resolvent set of A. If $\lambda \in \rho_{M}(A)$, then the operator $M(\lambda M-A)^{-1}$ is well defined by the assumption $D(A) \subset D(M)$, and $M(\lambda M-A)^{-1} \in \mathcal{L}(X)$ by the closedness of M and the boundedness of $(\lambda M-A)^{-1}$.

In the proof of our main result of this section, we will use the next result.

Proposition 2.9. Let A and M be closed linear operators defined on a UMD Banach space X such that $D(A) \subset D(M)$, $a \in L^{1}\left(\mathbb{R}_{+}\right)$. Assume that $\left(c_{k}\right)_{k \in \mathbb{Z}}$ defined by (2.6) satisfies (A1). We assume that $\left(a_{k}\right)_{k \in \mathbb{Z}} \subset \mathbb{C}$ is 1 -regular and satisfies

$$
\left\{\frac{a_{k}}{1+c_{k}}: k \in \mathbb{Z}\right\} \subset \rho_{M}(A) .
$$

Then the following assertions are equivalent.
(i) $\left(a_{k} M\left[a_{k} M-\left(1+c_{k}\right) A\right]^{-1}\right)_{k \in \mathbb{Z}}$ is an L^{p}-Fourier multiplier for $1<p<\infty$;
(ii) the set $\left\{a_{k} M\left[a_{k} M-\left(1+c_{k}\right) A\right]^{-1}: k \in \mathbb{Z}\right\}$ is R-bounded.

Proof. Let $N_{k}=\left[a_{k} M-\left(1+c_{k}\right) A\right]^{-1}$ and $M_{k}=a_{k} M N_{k}$. The implication (i) \Rightarrow (ii) is clearly true by Proposition 2.4. Now assume that the set $\left\{M_{k}: k \in \mathbb{Z}\right\}$ is R-bounded. To show that (i) is true, it will suffice to show that the set $\left\{k\left(M_{k+1}-M_{k}\right): k \in \mathbb{Z}\right\}$ is R-bounded by Theorem 2.5. We have

$$
\begin{align*}
N_{k+1}-N_{k} & =N_{k+1}\left[N_{k}^{-1}-N_{k+1}^{-1}\right] N_{k} \tag{2.8}\\
& =N_{k+1}\left[a_{k} M-\left(1+c_{k}\right) A-a_{k+1} M+\left(1+c_{k+1}\right) A\right] N_{k} \\
& =N_{k+1}\left(a_{k}-a_{k+1}\right) M N_{k}+N_{k+1}\left(c_{k+1}-c_{k}\right) A N_{k} \\
& =N_{k+1} \frac{a_{k}-a_{k+1}}{a_{k}} M_{k}+N_{k+1}\left(c_{k+1}-c_{k}\right) A N_{k},
\end{align*}
$$

when $k \neq 0$. It follows that

$$
\begin{aligned}
& k\left(M_{k+1}-M_{k}\right) \\
&= k\left[a_{k+1} M N_{k+1}-a_{k} M N_{k}\right] \\
&= k\left[a_{k+1} M\left(N_{k+1}-N_{k}\right)+\left(a_{k+1}-a_{k}\right) M N_{k}\right] \\
&= k a_{k+1} M N_{k+1} \frac{a_{k}-a_{k+1}}{a_{k}} M_{k} \\
&+k a_{k+1} M N_{k+1}\left(c_{k+1}-c_{k}\right) A N_{k}+k\left(a_{k+1}-a_{k}\right) M N_{k} \\
&= M_{k+1} \frac{k\left(a_{k}-a_{k+1}\right)}{a_{k}} M_{k} \\
&+M_{k+1} k\left(c_{k+1}-c_{k}\right) \frac{1}{1+c_{k}}\left[M_{k}-I_{X}\right]+\frac{k\left(a_{k+1}-a_{k}\right)}{a_{k}} M_{k}
\end{aligned}
$$

when $k \neq 0$. Hence, the set $\left\{k\left(M_{k+1}-M_{k}\right): k \in \mathbb{Z}\right\}$ is R-bounded as $\left(a_{k}\right)_{k \in \mathbb{Z}}$ is 1-regular and $\left(c_{k}\right)_{k \in \mathbb{Z}}$ satisfies (A1). This completes the proof.

The next result gives a necessary and sufficient condition for $\left(P_{\alpha}\right)$ to be L^{p}-well-posed.

Theorem 2.10. Let X be a UMD Banach space, $1<p<\infty, \alpha>0$, and let A, M be closed linear operators on X satisfying $D(A) \subset D(M)$, $a \in L^{1}\left(\mathbb{R}_{+}\right)$. We assume that $\left(c_{k}\right)_{k \in \mathbb{Z}}$ defined by (2.6) satisfies (A1). Then the following assertions are equivalent:
(i) $\left(P_{\alpha}\right)$ is L^{p}-well-posed;
(ii) $\left\{r_{k}^{(\alpha)} 1+c_{k}: k \in \mathbb{Z}\right\} \subset \rho_{M}(A)$ and the set

$$
\left\{r_{k}^{(\alpha)} M\left[r_{k}^{(\alpha)} M-\left(1+c_{k}\right) A\right]^{-1}: k \in \mathbb{Z}\right\}
$$

is R-bounded, where $r_{k}^{(\alpha)}$ is defined by (2.3).

Proof.
(ii) \Rightarrow (i). We assume that

$$
\left\{\frac{r_{k}^{(\alpha)}}{1+c_{k}}: k \in \mathbb{Z}\right\} \subset \rho_{M}(A)
$$

and the set $\left\{M_{k}: k \in \mathbb{Z}\right\}$ is R-bounded, where $N_{k}=\left[r_{k}^{(\alpha)} M-\right.$ $\left.\left(1+c_{k}\right) A\right]^{-1}$ and $M_{k}=r_{k}^{(\alpha)} M N_{k}$. It follows from Proposition 2.9 that $\left(M_{k}\right)_{k \in \mathbb{Z}}$ is an L^{p}-Fourier multiplier as the sequence $\left(r_{k}^{(\alpha)}\right)_{k \in \mathbb{Z}}$ is clearly 1-regular. Then, for all $f \in L^{p}(\mathbb{T} ; X)$, there exists $u \in L^{p}(\mathbb{T} ; X)$ satisfying

$$
\begin{equation*}
\widehat{u}(k)=M_{k} \widehat{f}(k) \tag{2.9}
\end{equation*}
$$

for all $k \in \mathbb{Z}$. We note that

$$
\begin{equation*}
A N_{k}=\frac{1}{1+c_{k}}\left[M_{k}-I_{X}\right] \tag{2.10}
\end{equation*}
$$

$\left(I_{X} / 1+c_{k}\right)_{k \in \mathbb{Z}}$ is an L^{p}-Fourier multiplier by Theorem 2.5 as we have assumed that $\left(c_{k}\right)_{k \in \mathbb{Z}}$ satisfies (A1). We deduce that $\left(A N_{k}\right)_{k \in \mathbb{Z}}$ is an L^{p} Fourier multiplier as the product of L^{p} Fourier multipliers is still an L^{p} Fourier multiplier. Thus, $v \in L^{p}(\mathbb{T} ; X)$ exists and satisfies $\widehat{v}(k)=A N_{k} \widehat{f}(k)$ for all $k \in \mathbb{Z}$. We note that A^{-1} is an isomorphism from X onto $D(A)$ as $0 \in \rho_{M}(A)$ by assumption; here, we consider $D(A)$ as a Banach space equipped with its graph norm. Hence, $A^{-1} \widehat{v}(k)=N_{k} \widehat{f}(k)$. Setting $w=A^{-1} v$, then $w \in L^{p}(\mathbb{T} ; D(A))$ and

$$
\begin{equation*}
\widehat{w}(k)=N_{k} \widehat{f}(k) \tag{2.11}
\end{equation*}
$$

for all $k \in \mathbb{Z}$. This implies, in particular, that $\left(N_{k}\right)_{k \in \mathbb{Z}}$ is an L^{p} Fourier multiplier. It is clear that the sequence $\left(I_{X} / r_{k}^{(\alpha)}\right)_{k \in \mathbb{Z}}$ satisfies the first order Marcinkiewicz condition in Theorem 2.1; thus, it is an L^{p} Fourier multiplier. We deduce that $\left(M N_{k}\right)_{k \in \mathbb{Z}}$ is an L^{p} Fourier multiplier. This
implies that $w \in L^{p}(\mathbb{T} ; D(M))$. Here, $D(M)$ is equipped with its graph norm so that it becomes a Banach space.

Following from (2.9) and (2.11), we obtain that

$$
\widehat{u}(k)=r_{k}^{(\alpha)} M \widehat{w}(k)=r_{k}^{(\alpha)}(M w)^{\wedge}(k),
$$

which implies that $M w \in W^{\alpha, p}(\mathbb{T} ; X)$. We have shown that $w \in$ $S_{p}(A, M)$. By (2.11), we have

$$
r_{k}^{(\alpha)}(M w)^{\wedge}(k)=A \widehat{w}(k)+c_{k} A \widehat{w}(k)+\widehat{f}(k)
$$

for all $k \in \mathbb{Z}$. Thus, $D^{\alpha}(M w)(t)=A w(t)+(a * A w)(t)+f(t)$ for $t \in \mathbb{T}$ by the uniqueness theorem [2, page 314]. This shows the existence.

To show the uniqueness, we let $u \in S_{p}(A, M)$ be another solution of $D^{\alpha}(M w)(t)=A w(t)+(a * A w)(t)+f(t)$. Then $D^{\alpha} M(u-w)(t)=$ $A(u-w)(t)+(a * A(u-w))(t)$ almost everywhere on \mathbb{T}. Taking the Fourier transform on both sides, we obtain $r_{k}^{(\alpha)} M(\widehat{u}(k)-\widehat{v}(k))=$ $\left(1+c_{k}\right) A(\widehat{u}(k)-\widehat{w}(k))$ when $k \in \mathbb{Z}$. This implies that $\left[r_{k}^{(\alpha)} M-\right.$ $\left.\left(1+c_{k}\right) A\right](\widehat{u}(k)-\widehat{w}(k))=0$ when $k \in \mathbb{Z}$. Thus, $\widehat{u}(k)-\widehat{w}(k)=0$ as $r_{k}^{(\alpha)} M-\left(1+c_{k}\right) A$ is invertible, and so $u=w$ by the uniqueness theorem [2, page 314]. We have shown that the implication (ii) \Rightarrow (i) is true.
(i) \Rightarrow (ii). Assume that $\left(P_{\alpha}\right)$ is L^{p} well-posed. We shall show that $r_{k}^{(\alpha)} / 1+c_{k} \in \rho_{M}(A)$ for all $k \in \mathbb{Z}$. Let $k \in \mathbb{Z}$ and $y \in X$ be fixed. We define $f(t)=e^{i k t} y(t \in \mathbb{T})$. Then, $f \in L^{p}(\mathbb{T} ; X), \widehat{f}(k)=y$ and $\widehat{f}(n)=0$ when $n \neq k$. There exists a unique $u \in S_{p}(A, M)$ such that

$$
\begin{equation*}
D^{\alpha}(M u)(t)=A u(t)+(a * A u)(t)+f(t) \tag{2.12}
\end{equation*}
$$

almost everywhere on \mathbb{T}. We have $\widehat{u}(n) \in D(A)$ when $n \in \mathbb{Z}$ by [2, Lemma 3.1] as $u \in L^{p}(\mathbb{T} ; D(A))$. Taking Fourier transforms on both sides of (2.12), we obtain

$$
\begin{equation*}
\left(r_{k}^{(\alpha)} M-\left(1+c_{k}\right) A\right) \widehat{u}(k)=y \tag{2.13}
\end{equation*}
$$

and $\left(r_{n}^{(\alpha)} M-\left(1+c_{n}\right) A\right) \widehat{u}(n)=0$ when $n \neq k$. Thus, $r_{k}^{(\alpha)} M-\left(1+c_{k}\right) A$ is surjective. To show that $r_{k}^{(\alpha)} M-\left(1+c_{k}\right) A$ is also injective, we take $x \in D(A)$ such that

$$
\left(r_{k}^{(\alpha)} M-\left(1+c_{k}\right) A\right) x=0
$$

Let $u(t)=e^{i k t} x$ when $t \in \mathbb{T}$. Then $u \in S_{p}(A, M)$ and $\left(P_{\alpha}\right)$ hold almost everywhere on \mathbb{T} when taking $f=0$. Thus, u is a strong $L^{p_{-}}$ solution of $\left(P_{\alpha}\right)$ when $f=0$. We obtain $x=0$ by the uniqueness assumption. We have shown that $r_{k}^{(\alpha)} M-\left(1+c_{k}\right) A$ is injective. Therefore, $r_{k}^{(\alpha)} M-\left(1+c_{k}\right) A$ is bijective from $D(A)$ onto X.

Next, we show that $\left[r_{k}^{(\alpha)} M-\left(1+c_{k}\right) A\right]^{-1} \in \mathcal{L}(X)$. For $f(t)=e^{i k t} y$, we let u be the unique strong L^{p}-solution of $\left(P_{\alpha}\right)$. Then

$$
\widehat{u}(n)= \begin{cases}0 & n \neq k \\ {\left[r_{k}^{(\alpha)} M-\left(1+c_{k}\right) A\right]^{-1} y} & n=k\end{cases}
$$

by (2.13). This means that $u(t)=e^{i k t}\left[r_{k}^{(\alpha)} M-\left(1+c_{k}\right) A\right]^{-1} y$. By (2.7), there exists a constant $C>0$ independent from $f \in L^{p}(\mathbb{T} ; X)$ such that

$$
\|u\|_{L^{p}}+\|A u\|_{L^{p}}+\|M u\|_{W^{\alpha, p}} \leq C\|f\|_{L^{p}}
$$

In particular $\|u\|_{L^{p}} \leq C\|f\|_{L^{p}}$. Hence,

$$
\left\|\left[r_{k}^{(\alpha)} M-\left(1+c_{k}\right) A\right]^{-1} y\right\| \leq C\|y\|
$$

which implies

$$
\left\|\left[r_{k}^{(\alpha)} M-\left(1+c_{k}\right) A\right]^{-1}\right\| \leq C
$$

We have shown that $r_{k}^{(\alpha)} / 1+c_{k} \in \rho_{M}(A)$ for all $k \in \mathbb{Z}$. Thus,

$$
\left\{\frac{r_{k}^{(\alpha)}}{1+c_{k}}: k \in \mathbb{Z}\right\} \subset \rho_{M}(A)
$$

Finally, we prove that, if $M_{k}=r_{k}^{(\alpha)} M\left[r_{k}^{(\alpha)} M-\left(1+c_{k}\right) A\right]^{-1}$ when $k \in \mathbb{Z}$, then $\left(M_{k}\right)_{k \in \mathbb{Z}}$ defines an L^{p} Fourier multiplier. Let $f \in$ $L^{p}(\mathbb{T} ; X)$. Then there exists $u \in S_{p}(A, M)$, a strong L^{p}-solution of $\left(P_{\alpha}\right)$ by assumption. Taking Fourier transforms on both sides of $\left(P_{\alpha}\right)$, we obtain that $\widehat{u}(k) \in D(A)$ by [2, Lemma 3.1] and

$$
\left[r_{k}^{(\alpha)} M-\left(1+c_{k}\right) A\right] \widehat{u}(k)=\widehat{f}(k),(k \in \mathbb{Z})
$$

for all $k \in \mathbb{Z}$. Since $r_{k}^{(\alpha)} M-\left(1+c_{k}\right) A$ is invertible, we have

$$
\widehat{u}(k)=\left[r_{k}^{(\alpha)} M-\left(1+c_{k}\right) A\right]^{-1} \widehat{f}(k)
$$

for all $k \in \mathbb{Z}$. It follows from $M u \in W^{\alpha, p}(\mathbb{T} ; X)$ that $\left[D^{\alpha}(M u)\right]^{\wedge}(k)=$ $r_{k}^{(\alpha)} M \widehat{u}(k)$, which implies that

$$
\left[D^{\alpha}(M u)\right]^{\wedge}(k)=r_{k}^{(\alpha)} M \widehat{u}(k)=M_{k} \widehat{f}(k)
$$

for all $k \in \mathbb{Z}$. We conclude that $\left(M_{k}\right)_{k \in \mathbb{Z}}$ defines an L^{p}-Fourier multiplier as $M u \in W^{\alpha, p}(\mathbb{T} ; X) \subset L^{p}(\mathbb{T} ; X)$. We deduce that $\left(M_{k}\right)_{k \in \mathbb{Z}}$ is R-bounded by Proposition 2.4. Therefore, the implication (i) \Rightarrow (ii) is also true. This finishes the proof.

Since the second statement in Theorem 2.10 does not depend on the space parameter p, we immediately have the next corollary.

Corollary 2.11. Let X be a UMD Banach space, and let A, M be closed linear operators on X satisfying $D(A) \subset D(M), \alpha>0$, $a \in L^{1}\left(\mathbb{R}_{+}\right)$. We assume that $\left(c_{k}\right)_{k \in \mathbb{Z}}$ defined by (2.6) satisfies (A1). Then, if $\left(P_{\alpha}\right)$ is L^{p} well-posed for some $1<p<\infty$, then it is L^{p} well-posed for all $1<p<\infty$.

When the underlying Banach space is isomorphic to a Hilbert space, then each norm bounded subset of $\mathcal{L}(X)$ is actually R-bounded [2, Proposition 1.13]. This fact, together with Theorem 2.5, immediately gives the following result.

Corollary 2.12. Let H be a Hilbert space, $1<p<\infty, \alpha>0$, and let A, M be closed linear operators on H satisfying $D(A) \subset D(M)$, $a \in L^{1}\left(\mathbb{R}_{+}\right)$. We assume that $\left(c_{k}\right)_{k \in \mathbb{Z}}$ defined by (2.6) satisfies ($\left.\mathbf{A} 1\right)$. Then the following assertions are equivalent:
(i) $\left(P_{\alpha}\right)$ is L^{p} well-posed;
(ii) $\left\{r_{k}^{(\alpha)} /\left(1+c_{k}\right): k \in \mathbb{Z}\right\} \subset \rho_{M}(A)$, and the set

$$
\left\{r_{k}^{(\alpha)} M\left[r_{k}^{(\alpha)} M-\left(1+c_{k}\right) A\right]^{-1}: k \in \mathbb{Z}\right\}
$$

is norm bounded,
where $r_{k}^{(\alpha)}$ is defined by (2.3).

3. Well-posedness of $\left(P_{\alpha}\right)$ in Besov and Triebel-Lizorkin

 spaces. In this section, we study the well-posedness of $\left(P_{\alpha}\right)$ in Besov spaces $B_{p, q}^{s}(\mathbb{T} ; X)$ and Triebel-Lizorkin spaces $F_{p, q}^{s}(\mathbb{T} ; X)$. Firstly, we briefly recall the definition of Besov spaces in the vector-valued case introduced in [3]. Let $\mathcal{S}(\mathbb{R})$ be the Schwartz space of all rapidly decreasing smooth functions on \mathbb{R}. Let $\mathcal{D}(\mathbb{T})$ be the space of all infinitely differentiable functions on \mathbb{T} equipped with the locally convex topology given by the seminorms $\|f\|_{\alpha}=\sup _{x \in \mathbb{T}}\left|f^{(\alpha)}(x)\right|$ for $\alpha \in \mathbb{N}_{0}:=$ $\mathbb{N} \cup\{0\}$. Let $\mathcal{D}^{\prime}(\mathbb{T} ; X):=\mathcal{L}(\mathcal{D}(\mathbb{T}), X)$ be the space of all continuous linear operators from $\mathcal{D}(\mathbb{T})$ to X. In order to define Besov spaces, we consider the dyadic-like subsets of \mathbb{R} :$$
I_{0}=\{t \in \mathbb{R}:|t| \leq 2\}, \quad I_{k}=\left\{t \in \mathbb{R}: 2^{k-1}<|t| \leq 2^{k+1}\right\}
$$

for $k \in \mathbb{N}$. Let $\phi(\mathbb{R})$ be the set of all systems $\phi=\left(\phi_{k}\right)_{k \in \mathbb{N}_{0}} \subset \mathcal{S}(\mathbb{R})$ satisfying $\operatorname{supp}\left(\phi_{k}\right) \subset \bar{I}_{k}$ for each $k \in \mathbb{N}_{0}, \sum_{k \in \mathbb{N}_{0}} \phi_{k}(x)=1$ for $x \in \mathbb{R}$, and, for each $\alpha \in \mathbb{N}_{0}, \sup _{x \in \mathbb{R}, k \in \mathbb{N}_{0}} 2^{k \alpha}\left|\phi_{k}^{(\alpha)}(x)\right|<\infty$. Let $\phi=\left(\phi_{k}\right)_{k \in \mathbb{N}_{0}} \subset \phi(\mathbb{R})$ be fixed. For $1 \leq p, q \leq \infty, s \in \mathbb{R}$, the X-valued Besov space is defined by

$$
\begin{aligned}
& B_{p, q}^{s}(\mathbb{T} ; X)=\left\{f \in \mathcal{D}^{\prime}(\mathbb{T} ; X):\|f\|_{B_{p, q}^{s}}\right. \\
&\left.:=\left(\sum_{j \geq 0} 2^{s j q}\left\|\sum_{k \in \mathbb{Z}} e_{k} \otimes \phi_{j}(k) \widehat{f}(k)\right\|_{p}^{q}\right)^{1 / q}<\infty\right\}
\end{aligned}
$$

with the usual modification if $q=\infty$. The space $B_{p, q}^{s}(\mathbb{T} ; X)$ is independent from the choice of ϕ, and different choices of ϕ lead to equivalent norms on $B_{p, q}^{s}(\mathbb{T} ; X)$. $\quad B_{p, q}^{s}(\mathbb{T} ; X)$ equipped with the norm $\|\cdot\|_{B_{p, q}}$ is a Banach space. It is known that, if $s_{1} \leq s_{2}$, then $B_{p, q}^{s_{1}}(\mathbb{T} ; X) \subset B_{p, q}^{s_{2}}(\mathbb{T} ; X)$, and the embedding is continuous [3, Theorem 2.3]. It was shown [3, Theorem 2.3] that, when $s>0$, then $f \in B_{p, q}^{s+1}(\mathbb{T} ; X)$ if and only if f is differentiable almost everywhere on \mathbb{T} and $f^{\prime} \in B_{p, q}^{s}(\mathbb{T} ; X)$ (this is equivalent to saying that $D f \in B_{p, q}^{s}(\mathbb{T} ; X)$). More generally, for $\alpha>0$ and $s>0, f \in B_{p, q}^{\alpha+s}(\mathbb{T} ; X)$ if and only if $D^{\alpha} f \in B_{p, q}^{s}(\mathbb{T} ; X)$. See [3, Section 2] for more information about the space $B_{p, q}^{s}(\mathbb{T} ; X)$.

Next, we give the definition of operator-valued Fourier multipliers in the context of Besov spaces, which is fundamental in the proof of our main result of this section.

Definition 3.1. Let X and Y be Banach spaces, $1 \leq p, q \leq \infty, s \in \mathbb{R}$, and let $\left(M_{k}\right)_{k \in \mathbb{Z}} \subset \mathcal{L}(X, Y)$. We say that $\left(M_{k}\right)_{k \in \mathbb{Z}}$ is a $B_{p, q}^{s}$ Fourier multiplier if, for each $f \in B_{p, q}^{s}(\mathbb{T} ; X)$, there exists $u \in B_{p, q}^{s}(\mathbb{T} ; Y)$, such that $\widehat{u}(k)=M_{k} \widehat{f}(k)$ for all $k \in \mathbb{Z}$.

The next result was obtained in [3, Theorem 4.5], which gives a sufficient condition for an operator-valued sequence to be a $B_{p, q}^{s}$ Fourier multiplier.

Theorem 3.2. Let X, Y be Banach spaces, and let $\left(M_{k}\right)_{k \in \mathbb{Z}} \subset$ $\mathcal{L}(X, Y)$. We assume that

$$
\begin{align*}
& \sup _{k \in \mathbb{Z}}\left(\left\|M_{k}\right\|+\left\|k\left(M_{k+1}-M_{k}\right)\right\|\right)<\infty, \tag{3.1}\\
& \sup _{k \in \mathbb{Z}}\left\|k^{2}\left(M_{k+2}-2 M_{k+1}+M_{k}\right)\right\|<\infty . \tag{3.2}
\end{align*}
$$

Then $\left(M_{k}\right)_{k \in \mathbb{Z}}$ is a $B_{p, q}^{s}$-multiplier whenever $1 \leq p, q \leq \infty$ and $s \in \mathbb{R}$. If X is B-convex, then the first order condition (3.1) is already sufficient for $\left(M_{k}\right)_{k \in \mathbb{Z}}$ to be a $B_{p, q}^{s}$-multiplier.

Recall that a Banach space X is B-convex if it does not contain l_{1}^{n} uniformly. This is equivalent to saying that X has a Fourier type $1<p \leq 2$, i.e., the Fourier transform is a bounded linear operator from $L^{p}(\mathbb{R} ; X)$ to $L^{q}(\mathbb{R} ; X)$, where $1 / p+1 / q=1$. It is well known that, when $1<p<\infty$, then $L^{p}(\mu)$ has Fourier type $\min \{p, p /(p-1)\}[3]$.

Remark 3.3.

(i) If $\left(M_{k}\right)_{k \in \mathbb{Z}}$ is a $B_{p, q}^{s}$ Fourier multiplier, then there exists a bounded linear operator T from $B_{p, q}^{s}(\mathbb{T} ; X)$ to $B_{p, q}^{s}(\mathbb{T} ; Y)$ satisfying $\widehat{T f}(k)=M_{k} \widehat{f}(k)$ when $k \in \mathbb{Z}$. This implies in particular that $\left(M_{k}\right)_{k \in \mathbb{Z}}$ must be bounded.
(ii) If $\left(M_{k}\right)_{k \in \mathbb{Z}}$ and $\left(N_{k}\right)_{k \in \mathbb{Z}}$ are $B_{p, q}^{s}$ Fourier multipliers, it can be easily seen that the product sequence $\left(M_{k} N_{k}\right)_{k \in \mathbb{Z}}$ and the sum sequence $\left(M_{k}+N_{k}\right)_{k \in \mathbb{Z}}$ are still $B_{p, q}^{s}$ Fourier multipliers.
(iii) It is easy to see that the sequence $\left((1 / k) I_{X}\right)_{k \in \mathbb{Z}}$ satisfies conditions (3.1) and (3.2). Thus, the sequence $\left((1 / k) I_{X}\right)_{k \in \mathbb{Z}}$ is a $B_{p, q}^{s}$ Fourier multiplier by Theorem 3.2.

Letting $1 \leq p, q \leq \infty, s>0$ and $a \in L^{1}\left(\mathbb{R}_{+}\right)$, we define the solution space of $\left(P_{\alpha}\right)$ in the $B_{p, q}^{s}$ well-posedness case by

$$
S_{p, q, s}(A, M):=\left\{u \in B_{p, q}^{s}(\mathbb{T} ; D(A)): M u \in B_{p, q}^{\alpha+s}(\mathbb{T} ; X)\right\}
$$

Here again we consider $D(A)$ as a Banach space equipped with its graph norm. When $u \in S_{p, q, s}(A, M)$, then $a * A u \in B_{p, q}^{s}(\mathbb{T} ; X)$, by Young's inequality. $S_{p, q, s}(A, M)$ is a Banach space with the norm

$$
\|u\|_{S_{p, q, s}(A, M)}:=\|u\|_{B_{p, q}^{s}}+\|A u\|_{B_{p, q}^{s}}+\|M u\|_{B_{p, q}^{s+\alpha}}
$$

Now, we give the definition of the $B_{p, q}^{s}$ well-posedness of $\left(P_{\alpha}\right)$.
Definition 3.4. Let $1 \leq p, q \leq \infty, s>0$ and $f \in B_{p, q}^{s}(\mathbb{T} ; X)$; $u \in S_{p, q, s}(A, M)$ is called a strong $B_{p, q}^{s}$-solution of $\left(P_{\alpha}\right)$, if $\left(P_{\alpha}\right)$ is satisfied almost everywhere on \mathbb{T}. We say that $\left(P_{\alpha}\right)$ is $B_{p, q}^{s}$ well-posed if, for each $f \in B_{p, q}^{s}(\mathbb{T} ; X)$, there exists a unique strong $B_{p, q}^{s}$-solution of $\left(P_{\alpha}\right)$.

If $\left(P_{\alpha}\right)$ is $B_{p, q}^{s}$ well-posed, a constant $C>0$ exists such that, for each $f \in B_{p, q}^{s}(\mathbb{T} ; X)$, if $u \in S_{p, q, s}(A, M)$ is the unique strong $B_{p, q}^{s}$-solution of $\left(P_{\alpha}\right)$, then

$$
\begin{equation*}
\|u\|_{S_{p, q, s}(A, M)} \leq C\|f\|_{B_{p, q}^{s}} . \tag{3.3}
\end{equation*}
$$

This can easily be obtained by the closedness of the operators A and M and the closed graph theorem.

We need the following preparation in the proof of our main result of this section.

Proposition 3.5. Let $1 \leq p, q \leq \infty, s>0$, and let A and M be closed linear operators defined on a Banach space X such that $D(A) \subset D(M), a \in L^{1}\left(\mathbb{R}_{+}\right)$. We assume that $\left(a_{k}\right)_{k \in \mathbb{Z}} \subset \mathbb{C}$ is 2 -regular, and $\left(c_{k}\right)_{k \in \mathbb{Z}} \subset \mathbb{C} \backslash\{0\}$ defined by (2.6) satisfies $(\mathbf{A} 2)$, such that

$$
\left\{\frac{a_{k}}{1+c_{k}}: k \in \mathbb{Z}\right\} \subset \rho_{M}(A)
$$

Then the following assertions are equivalent:
(i) $\left(a_{k} M\left[a_{k} M-\left(1+c_{k}\right) A\right]^{-1}\right)_{k \in \mathbb{Z}}$ is a $B_{p, q}^{s}$-Fourier multiplier.
(ii) $\sup _{k \in \mathbb{Z}}\left\|a_{k} M\left[a_{k} M-\left(1+c_{k}\right) A\right]^{-1}\right\|<\infty$.

Proof. Let $M_{k}=a_{k} M N_{k}$, where $N_{k}=\left[a_{k} M-\left(1+c_{k}\right) A\right]^{-1}$ when $k \in \mathbb{Z}$. The implication (i) \Rightarrow (ii) is clearly true by Remark 3.3.

We need only show that the implication (ii) \Rightarrow (i) is true. Assume that $\sup _{k \in \mathbb{Z}}\left\|M_{k}\right\|<\infty$. It follows from the proof of Proposition 2.9 that

$$
\begin{equation*}
\sup _{k \in \mathbb{Z}}\left\|k\left(M_{k+1}-M_{k}\right)\right\|<\infty \tag{3.4}
\end{equation*}
$$

On the other hand, we observe that

$$
\begin{aligned}
& k^{2}(\left.M_{k+2}-2 M_{k+1}+M_{k}\right) \\
&=k^{2}\left[a_{k+2} M N_{k+2}-2 a_{k+1} M N_{k+1}+a_{k} M N_{k}\right] \\
&=k^{2} M N_{k+2}[\left.a_{k+2} N_{k}^{-1}-2 a_{k+1} N_{k+2}^{-1} N_{k+1} N_{k}^{-1}+a_{k} N_{k+2}^{-1}\right] N_{k} \\
&=k^{2} M N_{k+2}\{ a_{k+2} N_{k}^{-1}-2 a_{k+1}\left[a_{k+2} M-\left(1+c_{k+2}\right) A\right] N_{k+1} N_{k}^{-1} \\
&\left.\quad+a_{k}\left[a_{k+2} M-\left(1+c_{k+2}\right) A\right]\right\} N_{k} \\
&=k^{2} M N_{k+2}\{ a_{k+2} N_{k}^{-1}-2 a_{k+1}\left[N_{k+1}^{-1}+\left(a_{k+2}-a_{k+1}\right) M\right. \\
&\left.\quad+\left(c_{k+1}-c_{k+2}\right) A\right] N_{k+1} N_{k}^{-1} \\
&\left.+a_{k}\left[N_{k}^{-1}+\left(a_{k+2}-a_{k}\right) M+\left(c_{k}-c_{k+2}\right) A\right]\right\} N_{k} \\
&=k^{2} M N_{k+2}\left\{\left(a_{k+2}-2 a_{k+1}+a_{k}\right) I_{X}\right. \\
& \quad-2\left(a_{k+2}-a_{k+1}\right) M_{k+1}+\left(a_{k+2}-a_{k}\right) M_{k} \\
&\left.\quad+2 a_{k+1}\left(c_{k+2}-c_{k+1}\right) A N_{k+1}-a_{k}\left(c_{k+2}-c_{k}\right) A N_{k}\right\}
\end{aligned}
$$

$$
\begin{align*}
& =k^{2} M N_{k+2}\left\{\left(a_{k+2}-2 a_{k+1}+a_{k}\right)\left(I_{X}-M_{k+1}\right)\right. \tag{3.5}\\
& \\
& \quad-\left(a_{k+2}-a_{k}\right)\left(M_{k+1}-M_{k}\right) \\
& \\
& +2\left(a_{k+1}-a_{k}\right)\left(c_{k+2}-c_{k+1}\right) A N_{k+1} \\
& \\
& +a_{k}\left(c_{k+2}-2 c_{k+1}+c_{k}\right) A N_{k+1} \\
& \left.+a_{k}\left(c_{k+2}-c_{k}\right) A\left(N_{k+1}-N_{k}\right)\right\} \\
& = \\
& M_{k+2}\left\{\frac{k^{2}\left(a_{k+2}-2 a_{k+1}+a_{k}\right)}{a_{k+2}}\left(I_{X}-M_{k+1}\right)\right.
\end{align*}
$$

$$
\begin{aligned}
& -\frac{k\left(a_{k+2}-a_{k}\right)}{a_{k+2}} k\left(M_{k+1}-M_{k}\right) \\
& +\frac{2 k\left(a_{k+1}-a_{k}\right)}{a_{k+2}} k\left(c_{k+2}-c_{k+1}\right) \frac{\left(M_{k+1}-I_{X}\right)}{1+c_{k+1}} \\
& +\frac{a_{k}}{a_{k+2}} k^{2}\left(c_{k+2}-2 c_{k+1}+c_{k}\right) \frac{\left(M_{k+1}-I_{X}\right)}{1+c_{k+1}} \\
& \left.\quad+\frac{a_{k}}{a_{k+2}} k\left(c_{k+2}-c_{k}\right) k A\left(N_{k+1}-N_{k}\right)\right\}
\end{aligned}
$$

when $k \neq-2$. We note that, by (2.8),

$$
\begin{align*}
k A & \left(N_{k+1}-N_{k}\right) \\
= & A N_{k+1} \frac{k\left(a_{k}-a_{k+1}\right)}{a_{k}} M_{k}+A N_{k+1} k\left(c_{k+1}-c_{k}\right) A N_{k} \\
= & \frac{\left(M_{k+1}-I_{X}\right)}{1+c_{k+1}} \frac{k\left(a_{k}-a_{k+1}\right)}{a_{k}} M_{k} \tag{3.6}\\
& \quad+\frac{\left(M_{k+1}-I_{X}\right)}{1+c_{k+1}} k\left(c_{k+1}-c_{k}\right) \frac{\left(M_{k}-I_{X}\right)}{1+c_{k}},
\end{align*}
$$

when $k \neq 0$. Noticing the assumption that $\left(a_{k}\right)_{k \in \mathbb{Z}}$ satisfies (A2) and $\left(c_{k}\right)_{k \in \mathbb{Z}}$ is 2-regular, we deduce from (3.5) and (3.6) that

$$
\begin{equation*}
\sup _{k \in \mathbb{Z}}\left\|k^{2}\left(M_{k+2}-2 M_{k+1}+M_{k}\right)\right\|<\infty \tag{3.7}
\end{equation*}
$$

This implies that $\left(M_{k}\right)_{k \in \mathbb{Z}}$ is a $B_{p, q}^{s}$-Fourier multiplier by Theorem 3.2. Therefore, the implication (ii) \Rightarrow (i) is also true. This completes the proof.

Lemma 3.6. Let X be a Banach space and $1 \leq p, q \leq \infty, s>0$, $a \in L^{1}\left(\mathbb{R}_{+}\right)$. Suppose that $\left(c_{k}\right)_{k \in \mathbb{Z}}$ defined by (2.6) satisfies $(\mathbf{A} 2)$. Then $\left(1 /\left(1+c_{k}\right) I_{X}\right)_{k \in \mathbb{Z}}$ is a $B_{p, q}^{s}$-Fourier multiplier.

Proof. It is clear that $\left(c_{k}\right)_{k \in \mathbb{Z}}$ and $\left(1 /\left(1+c_{k}\right)\right)_{k \in \mathbb{Z}}$ are bounded by Remark 2.3. We observe that

$$
\begin{equation*}
k\left(\frac{1}{1+c_{k+1}}-\frac{1}{1+c_{k}}\right)=\frac{-k\left(c_{k+1}-c_{k}\right)}{\left(1+c_{k}\right)\left(1+c_{k+1}\right)} \tag{3.8}
\end{equation*}
$$

and

$$
\begin{align*}
& k^{2}\left(\frac{1}{1+c_{k+2}}-\frac{2}{1+c_{k+1}}+\frac{1}{1+c_{k}}\right) \tag{3.9}\\
&=\frac{k^{2}}{\left(1+c_{k}\right)\left(1+c_{k+1}\right)\left(1+c_{k+2}\right)}[\left(1+c_{k}\right)\left(1+c_{k+1}\right)-2\left(1+c_{k}\right)\left(1+c_{k+2}\right) \\
&+\left.\left(1+c_{k+1}\right)\left(1+c_{k+2}\right)\right] \\
&=\frac{k^{2}}{\left(1+c_{k}\right)\left(1+c_{k+1}\right)\left(1+c_{k+2}\right)}\left[-\left(1+c_{k}\right)\left(c_{k+2}-2 c_{k+1}+c_{k}\right)\right. \\
&\left.+\left(c_{k+2}-c_{k}\right)\left(c_{k+1}-c_{k}\right)\right] \\
&=\frac{1}{\left(1+c_{k}\right)\left(1+c_{k+1}\right)\left(1+c_{k+2}\right)}\left[-\left(1+c_{k}\right) k^{2}\left(c_{k+2}-2 c_{k+1}+c_{k}\right)\right. \\
&\left.+k\left(c_{k+2}-c_{k}\right) k\left(c_{k+1}-c_{k}\right)\right]
\end{align*}
$$

Noting that assumption $\left(c_{k}\right)_{k \in \mathbb{Z}}$ satisfies (A2), it follows from (3.8) and (3.9) that

$$
\sup _{k \in \mathbb{Z}}\left|k\left(\frac{1}{1+c_{k+1}}-\frac{1}{1+c_{k}}\right)\right|<\infty
$$

and

$$
\sup _{k \in \mathbb{Z}}\left|k^{2}\left(\frac{1}{1+c_{k+2}}-\frac{2}{1+c_{k+1}}+\frac{1}{1+c_{k}}\right)\right|<\infty .
$$

By Theorem 3.2, $\left(1 /\left(1+c_{k}\right) I_{X}\right)_{k \in \mathbb{Z}}$ is a $B_{p, q}^{s}$-Fourier multiplier. This finishes the proof.

The next theorem is the main result of this section which gives a necessary and sufficient condition for $\left(P_{\alpha}\right)$ to be $B_{p, q}^{s}$ well-posed.

Theorem 3.7. Let X be a Banach space, $1 \leq p, q \leq \infty$, $s>0$, and let A and M be closed linear operators on X satisfying $D(A) \subset D(M)$, $\alpha>0$ and $a \in L^{1}\left(\mathbb{R}_{+}\right)$. We assume that $\left(c_{k}\right)_{k \in \mathbb{Z}}$ defined by (2.6) satisfies (A2). Then the following assertions are equivalent:
(i) $\left(P_{\alpha}\right)$ is $B_{p, q}^{s}$-well-posed;
(ii) $\left\{r_{k}^{(\alpha)} /\left(1+c_{k}\right): k \in \mathbb{Z}\right\} \subset \rho_{M}(A)$ and $\sup _{k \in \mathbb{Z}} \| r_{k}^{(\alpha)} M\left[r_{k}^{(\alpha)} M-\right.$ $\left.\left(1+c_{k}\right) A\right]^{-1}| |<\infty$.

Proof.

(ii) \Rightarrow (i). We assume that

$$
\left\{\frac{r_{k}^{(\alpha)}}{1+c_{k}}: k \in \mathbb{Z}\right\} \subset \rho_{M}(A)
$$

and $\sup _{k \in \mathbb{Z}}\left\|M_{k}\right\|<\infty$, where $N_{k}=\left[r_{k}^{(\alpha)} M-\left(1+c_{k}\right) A\right]^{-1}$ and $M_{k}=r_{k}^{(\alpha)} M N_{k}$ when $k \in \mathbb{Z}$. It follows from Proposition 3.5 that $\left(M_{k}\right)_{k \in \mathbb{Z}}$ is a $B_{p, q}^{s}$-Fourier multiplier. Then, for all $f \in B_{p, q}^{s}(\mathbb{T} ; X)$, there exists $u \in B_{p, q}^{s}(\mathbb{T} ; X)$ satisfying

$$
\begin{equation*}
\widehat{u}(k)=M_{k} \widehat{f}(k) \tag{3.10}
\end{equation*}
$$

for all $k \in \mathbb{Z}$. By Lemma 3.6, $\left(I_{X} /\left(1+c_{k}\right)\right)_{k \in \mathbb{Z}}$ is a $B_{p, q}^{s}$-Fourier multiplier. We note that

$$
\begin{equation*}
A N_{k}=\frac{1}{1+c_{k}}\left[M_{k}-I_{X}\right] . \tag{3.11}
\end{equation*}
$$

Thus, $\left(A N_{k}\right)_{k \in \mathbb{Z}}$ is a $B_{p, q}^{s}$-Fourier multiplier by Remark 3.3. Thus, $v \in B_{p, q}^{s}(\mathbb{T} ; X)$ exists and satisfies $\widehat{v}(k)=A N_{k} \widehat{f}(k)$ for all $k \in \mathbb{Z}$. We note that A^{-1} is an isomorphism from X onto $D(A)$ as $0 \in \rho_{M}(A)$. By assumption, here we consider $D(A)$ as a Banach space equipped with its graph norm. Hence,, $A^{-1} \widehat{v}(k)=N_{k} \widehat{f}(k)$. Putting $w=A^{-1} v$, then $w \in B_{p, q}^{s}(\mathbb{T} ; D(A))$ and

$$
\begin{equation*}
\widehat{w}(k)=N_{k} \widehat{f}(k) \tag{3.12}
\end{equation*}
$$

for all $k \in \mathbb{Z}$. This implies, in particular, that $\left(N_{k}\right)_{k \in \mathbb{Z}}$ is a $B_{p, q^{-}}^{s}$ Fourier multiplier. It is clear that the sequence $\left(I_{X} / r_{k}^{(\alpha)}\right)_{k \in \mathbb{Z}}$ satisfies the second order Marcinkiewicz condition in Theorem 3.7; thus, it is a $B_{p, q}^{s}$-Fourier multiplier. We deduce that $\left(M N_{k}\right)_{k \in \mathbb{Z}}$ is a $B_{p, q}^{s}$-Fourier multiplier. This implies that $w \in B_{p, q}^{s}(\mathbb{T} ; D(M))$. Here, $D(M)$ is equipped with its graph norm so that it becomes a Banach space.

Combining (3.10) and (3.12), we obtain that

$$
\widehat{u}(k)=r_{k}^{(\alpha)} M \widehat{w}(k)=r_{k}^{(\alpha)} \widehat{M w}(k)
$$

for all $k \in \mathbb{Z}$, which implies that $M w \in B_{p, q}^{\alpha+s}(\mathbb{T} ; X)$. We have shown
that $w \in S_{p, q, s}(A, M)$. By (3.12), we have

$$
r_{k}^{(\alpha)} \widehat{M w}(k)=A \widehat{w}(k)+c_{k} A \widehat{w}(k)+\widehat{f}(k)
$$

for $k \in \mathbb{Z}$. Thus, $D^{\alpha}(M w)(t)=A w(t)+(a * A w)(t)+f(t)$ for $t \in \mathbb{T}$ by the uniqueness theorem [7, page 314]. This shows the existence.

To show the uniqueness, we let $u \in S_{p, q, s}(A, M)$ be another solution of $D^{\alpha}(M w)(t)=A w(t)+(a * A w)(t)+f(t)$. Then $D^{\alpha} M(u-w)(t)=$ $A(u-w)(t)+(a * A(u-w))(t)$. Taking the Fourier transform, we have

$$
\left.r_{k}^{(\alpha)} M(u-w)^{\wedge}(k)=\left(1+c_{k}\right) A(u-w)^{\wedge}(k)\right)
$$

This implies that $\left.\left[r_{k}^{(\alpha)} M-\left(1+c_{k}\right) A\right](u-w)^{\wedge}(k)\right)=0$. Thus, $(u-w)^{\wedge}(k)=0$ as $r_{k}^{(\alpha)} M-\left(1+c_{k}\right) A$ is invertible, and so $u=w$ by the uniqueness theorem [7, page 314]. Therefore, the implication (ii) \Rightarrow (i) is true.
(i) \Rightarrow (ii). Assume that $\left(P_{\alpha}\right)$ is $B_{p, q}^{s}$ well-posed. We shall show that $r_{k}^{(\alpha)} /\left(1+c_{k}\right) \in \rho_{M}(A)$ for all $k \in \mathbb{Z}$. Let $k \in \mathbb{Z}$ and $y \in X$ be fixed. We define $f(t)=e^{i k t} y, t \in \mathbb{T}$. Then, $f \in B_{p, q}^{s}(\mathbb{T} ; X), \widehat{f}(k)=y$ and $\widehat{f}(n)=0$ for $n \neq k$. There exists a unique $u \in S_{p, q, s}(A, M)$ satisfying

$$
D^{\alpha}(M u)(t)=A u(t)+(a * A u)(t)+f(t)
$$

almost everywhere on \mathbb{T}. We have $\widehat{u}(n) \in D(A)$ when $n \in \mathbb{Z}$ by [7, Lemma 3.1]. Taking Fourier transforms on both sides, we obtain

$$
\begin{equation*}
\left(r_{k}^{(\alpha)} M-\left(1+c_{k}\right) A\right) \widehat{u}(k)=y \tag{3.13}
\end{equation*}
$$

and $\left(r_{n}^{(\alpha)} M-\left(1+c_{n}\right) A\right) \widehat{u}(n)=0$ when $n \neq k$. Thus, $r_{k}^{(\alpha)} M-\left(1+c_{k}\right) A$ is surjective. To show that $r_{k}^{(\alpha)} M-\left(1+c_{k}\right) A$ is also injective, we let $x \in D(A)$ be such that

$$
\left(r_{k}^{(\alpha)} M-\left(1+c_{k}\right) A\right) x=0
$$

Let $u(t)=e^{i k t} x$ when $t \in \mathbb{T}$. Then, clearly, we have $u \in S_{p, q, s}(A, M)$ and $\left(P_{\alpha}\right)$ holds almost everywhere on \mathbb{T} when $f=0$. Thus, u is a strong $B_{p, q^{q}}^{s}$-solution of $\left(P_{\alpha}\right)$ when $f=0$. We obtain $x=0$ by the uniqueness assumption. We have shown that $r_{k}^{(\alpha)} M-\left(1+c_{k}\right) A$ is injective. Therefore, $r_{k}^{(\alpha)} M-\left(1+c_{k}\right) A$ is bijective from $D(A)$ onto X.

Next, we show that $\left[r_{k}^{(\alpha)} M-\left(1+c_{k}\right) A\right]^{-1} \in \mathcal{L}(X)$. For $f(t)=e^{i k t} y$, we let u be the unique strong $B_{p, q}^{s}$-solution of $\left(P_{\alpha}\right)$. Then

$$
\widehat{u}(n)= \begin{cases}0 & n \neq k \\ {\left[r_{k}^{(\alpha)} M-\left(1+c_{k}\right) A\right]^{-1} y} & n=k\end{cases}
$$

by (3.13). This implies that $u(t)=e^{i k t}\left[r_{k}^{(\alpha)} M-\left(1+c_{k}\right) A\right]^{-1} y$. By (3.3), a constant $C>0$ exists independent from $f \in B_{p, q}^{s}(\mathbb{T} ; X)$ such that

$$
\|u\|_{B_{p, q}^{s}}+\|A u\|_{B_{p, q}^{s}}+\|M u\|_{B_{p, q}^{s+\alpha}} \leq C\|f\|_{B_{p, q}^{s}} .
$$

Hence,

$$
\left\|\left[r_{k}^{(\alpha)} M-\left(1+c_{k}\right) A\right]^{-1} y\right\| \leq C\|y\|
$$

which implies that $\left\|\left[r_{k}^{(\alpha)} M-\left(1+c_{k}\right) A\right]^{-1}\right\| \leq C$. We have shown $r_{k}^{(\alpha)} /\left(1+c_{k}\right) \in \rho_{M}(A)$ for all $k \in \mathbb{Z}$. Thus, $\left\{r_{k}^{(\alpha)} /\left(1+c_{k}\right): k \in \mathbb{Z}\right\} \subset$ $\rho_{M}(A)$.

Finally, we prove that, if $M_{k}=r_{k}^{(\alpha)} M\left[r_{k}^{(\alpha)} M-\left(1+c_{k}\right) A\right]^{-1}$ when $k \in$ \mathbb{Z}, then $\left(M_{k}\right)_{k \in \mathbb{Z}}$ defines a $B_{p, q}^{s}$-Fourier multiplier. Let $f \in B_{p, q}^{s}(\mathbb{T} ; X)$. Then there exists $u \in S_{p, q, s}(A, M)$, a strong $B_{p, q}^{s}$-solution of $\left(P_{\alpha}\right)$ by assumption. Taking Fourier transforms on both sides of $\left(P_{\alpha}\right)$ we have that $\widehat{u}(k) \in D(A)$ by Lemma 3.6 and

$$
\left[r_{k}^{(\alpha)} M-\left(1+c_{k}\right) A\right] \widehat{u}(k)=\widehat{f}(k)
$$

for all $k \in \mathbb{Z}$. Since $r_{k}^{(\alpha)} M-\left(1+c_{k}\right) A$ is invertible, we have

$$
\widehat{u}(k)=\left[r_{k}^{(\alpha)} M-\left(1+c_{k}\right) A\right]^{-1} \widehat{f}(k)
$$

for all $k \in \mathbb{Z}$. It follows from $M u \in B_{p, q}^{\alpha+s}(\mathbb{T} ; X)$ that $\left[D^{\alpha}(M u)\right]^{\wedge}(k)=$ $r_{k}^{(\alpha)} M \widehat{u}(k)$. We obtain

$$
\left[D^{\alpha}(M u)\right]^{\wedge}(k)=r_{k}^{(\alpha)} M \widehat{u}(k)=M_{k} \widehat{f}(k)
$$

when $k \in \mathbb{Z}$. We conclude that $\left(M_{k}\right)_{k \in \mathbb{Z}}$ defines a $B_{p, q}^{s}$-Fourier multiplier as $D^{\alpha}(M u) \in B_{p, q}^{s}(\mathbb{T} ; X)$. Thus, we have $\sup _{k \in \mathbb{Z}}\left\|M_{k}\right\|<\infty$ by Remark 3.3. Therefore, the implication (i) \Rightarrow (ii) is also true. The proof is completed.

Since Theorem 3.7 (ii) does not depend on the parameters p, q and s, we immediately have the next corollary.

Corollary 3.8. Let X be a Banach space, and let A and M be closed linear operators on X satisfying $D(A) \subset D(M), \alpha>0, a \in L^{1}\left(\mathbb{R}_{+}\right)$. We assume that $\left(c_{k}\right)_{k \in \mathbb{Z}}$ defined by (2.6) satisfies (A2). Then, if $\left(P_{\alpha}\right)$ is $B_{p, q}^{s}$ well-posed for some $1 \leq p, q \leq \infty$ and $s>0$, then it is $B_{p, q}^{s}$ well-posed for all $1 \leq p, q \leq \infty$ and $s>0$.

When the underlying Banach space X is B-convex and $1 \leq p, q \leq \infty$, $s \in \mathbb{R}$, the first order condition (3.1) is already sufficient for an operatorvalued sequence to be a $B_{p, q}^{s}$-Fourier multiplier by Theorem 3.7. From this fact and the proof of Theorem 2.10, we easily deduce the following result on the $B_{p, q}^{s}$ well-posedness of the problem $\left(P_{\alpha}\right)$ under a weaker assumption on the sequence $\left(c_{k}\right)_{k \in \mathbb{Z}}$ when X is B-convex.

Corollary 3.9. Let X be a B-convex Banach space, $1 \leq p, q \leq \infty$, $s>0$, and let A and M be closed linear operators on X satisfying $D(A) \subset D(M), \alpha>0, a \in L^{1}\left(\mathbb{R}_{+}\right)$. We assume that $\left(c_{k}\right)_{k \in \mathbb{Z}}$ defined by (2.6) satisfies (A1). Then the following assertions are equivalent:
(i) $\left(P_{\alpha}\right)$ is $B_{p, q}^{s}$-well-posed;
(ii) $\left\{r_{k}^{(\alpha)} / 1+c_{k}: k \in \mathbb{Z}\right\} \subset \rho_{M}(A)$ and

$$
\sup _{k \in \mathbb{Z}}\left\|r_{k}^{(\alpha)} M\left[r_{k}^{(\alpha)} M-\left(1+c_{k}\right) A\right]^{-1}\right\|<\infty
$$

A Hölder continuous function space is a particular case of Besov space $B_{p, q}^{s}(\mathbb{T} ; X)$. From [8, Theorem 3.1], we have $B_{\infty, \infty}^{\beta}(\mathbb{T} ; X)=$ $C_{\text {per }}^{\beta}(\mathbb{T} ; X)$ whenever $0<\beta<1$, where $C_{\mathrm{per}}^{\beta}(\mathbb{T} ; X)$ is the space of all X-valued functions f defined on \mathbb{T} satisfying $f(0)=f(2 \pi)$ and

$$
\sup _{s \neq t} \frac{\|f(s)-f(t)\|}{|s-t|^{\beta}}<\infty .
$$

Moreover, the norm

$$
\|f\|_{C_{\text {per }}^{\beta}}:=\max _{t \in \mathbb{T}}\|f(t)\|+\sup _{s \neq t} \frac{\|f(s)-f(t)\|}{|s-t|^{\beta}}
$$

on $C_{\mathrm{per}}^{\beta}(\mathbb{T} ; X)$ is an equivalent norm of the Besov space $B_{\infty, \infty}^{\alpha}(\mathbb{T} ; X)$. We can similarly give the definition of C^{β} well-posedness of $\left(P_{\alpha}\right)$ when $0<\beta<1$ as well as a characterization of the C^{β}-well-posedness of $\left(P_{\alpha}\right)$
as a special case of Theorem 3.7 when $p=q=+\infty$ and $0<s<1$. We omit the details.

We may also introduce the well-posedness of $\left(P_{\alpha}\right)$ in Triebel-Lizorkin spaces $F_{p, q}^{s}(\mathbb{T} ; X)$. Using known operator-valued Fourier multiplier results on $F_{p, q}^{s}(\mathbb{T} ; X)$, we may give a similar characterization of the $F_{p, q}^{s}$ well-posedness under a stronger condition than (A2) on the sequence $\left(c_{k}\right)_{k \in \mathbb{Z}}$.
4. Applications. In this section, we give some examples where our abstract results (Theorems 2.10 and 3.7) may be applied. The degenerate fractional differential equations we consider depend on the value of $\alpha>0$.

Example 4.1. Let Ω be a bounded domain in \mathbb{R}^{n} with smooth boundary $\partial \Omega$ and m a non-negative bounded measurable function defined on Ω. Let X be the Hilbert space $H^{-1}(\Omega)$. We consider the following degenerate fractional differential equations with infinite delay:
where $a \in L^{1}\left(\mathbb{R}_{+}\right)$, the fractional derivative D^{α} in the sense of Weyl, acts on the first variable $t \in[0,2 \pi]$ and the Laplacian operator Δ acts on the second variable $x \in \Omega$.

Let M be the multiplication operator by m on $H^{-1}(\Omega)$ with domain of definition $D(M)$. We assume that $D(\Delta) \subset D(M)$, where Δ is the Laplacian operator on $H^{-1}(\Omega)$ with Dirichlet boundary condition. Then, it follows from [6, Section 3.7] that a constant $C \geq 0$ exists such that

$$
\begin{equation*}
\left\|M(z M-\Delta)^{-1}\right\| \leq \frac{C}{1+|z|} \tag{4.1}
\end{equation*}
$$

when $\operatorname{Re}(\mathrm{z}) \geq-\beta(1+|\operatorname{Im}(\mathrm{z})|)$ for some positive constant β depending only on m. We assume that $\left\{r_{k}^{(\alpha)} / 1+c_{k}: k \in \mathbb{Z}\right\} \subset \rho_{M}(\Delta)$ and

$$
\sup _{k \in \mathbb{Z}}\left\|r_{k}^{(\alpha)} M\left[r_{k}^{(\alpha)} M-\left(1+c_{k}\right) \Delta\right]^{-1}\right\|<\infty
$$

where c_{k} is defined by (2.6).

We note that, if $\alpha>0$, then $\arg \left(r_{k}^{(\alpha)}\right)=\alpha \pi / 2$ when $k \geq 1$, and $\arg \left(r_{k}^{(\alpha)}\right)=-\alpha \pi / 2$ when $k \leq-1$. This, together with fact that $\lim _{|k| \rightarrow+\infty} c_{k}=0$, implies that

$$
\begin{equation*}
\lim _{|k| \rightarrow+\infty} \arg \left(\frac{r_{k}^{(\alpha)}}{1+c_{k}}\right)=\operatorname{sgn}(k) \frac{\alpha \pi}{2} \tag{4.2}
\end{equation*}
$$

when $k \neq 0$. If $4 n \leq \alpha \leq 4 n+1 / 2$ for some non negative integer n, then the estimates (4.1) and (4.2) imply that the above problem is L^{p} wellposed for all $1<p<\infty$ by Theorem 2.10 whenever $\left(c_{k}\right)_{k \in \mathbb{Z}}$ satisfies (A1). Here, we have used the fact that, in a Hilbert space H, every norm bounded subset $\mathbf{T} \subset \mathcal{L}(H)$ is actually R-bounded [7, Proposition 1.13].

When the sequence $\left(c_{k}\right)_{k \in \mathbb{Z}}$ defined by (2.6) satisfies (A2), the estimates (4.1) and (4.2) imply that the above problem is $B_{p, q}^{s}$ wellposed for all $1 \leq p, q \leq \infty$ and $s>0$ by Theorem 3.7.

Under the same assumptions on Ω, m and a, one may also consider the degenerate fractional differential equations:

$$
\left\{\begin{aligned}
D^{\alpha}(m(x) u(t, x))+\Delta u(t, x) & =-\int_{-\infty}^{t} a(t-s)(\Delta u)(s, x) d s+f(t, x) \\
(t, x) & \in[0,2 \pi] \times \Omega \\
u(t, x)=0 \quad(t, x) & \in[0,2 \pi] \times \partial \Omega
\end{aligned}\right.
$$

The same argument used above shows that, when $\left\{r_{k}^{(\alpha)} /\left(1+c_{k}\right): k \in\right.$ $\mathbb{Z}\} \subset \rho_{M}(-\Delta)$ and

$$
\sup _{k \in \mathbb{Z}}\left\|r_{k}^{(\alpha)} M\left[r_{k}^{(\alpha)} M+\left(1+c_{k}\right) \Delta\right]^{-1}\right\|<\infty
$$

if $4 n+1 \leq \alpha \leq 4 n+2$ for some non negative integer n and $\left(c_{k}\right)_{k \in \mathbb{Z}}$ defined by (2.6) satisfies (A1), then the above problem is L^{p} well-posed for all $1<p<\infty$ by Theorem 2.10. If, furthermore, $\left(c_{k}\right)_{k \in \mathbb{Z}}$ defined by (2.6) satisfies ($\mathbf{A} 2$), then the above problem is $B_{p, q}^{s}$ well-posed for all $1 \leq p, q \leq \infty$ and $s>0$ by Theorem 3.7.

REFERENCES

1. E. Alvarez-Pardo and C. Lizama, Mild solutions for multi-term timefractional differential equations with nonlocal initial conditions, Electr. J. Diff. Eq. 39 (2014), 173-184.
2. W. Arendt and S. Bu, The operator-valued Marcinkiewicz multiplier theorem and maximal regularity, Math. Z. 240 (2002), 311-343.
3. \qquad , Operator-valued Fourier multipliers on periodic Besov spaces and applications, Proc. Edinburgh Math. Soc. 47 (2004), 15-33.
4. S. Bu, Well-posedness of second order degenerate differential equations in vector-valued function spaces, Stud. Math. 214 (2013), 1-16.
5. \qquad Well-posedness of fractional differentiable equations on vector-valued function spaces, Int. Eq. Op. Th. 71 (2011), 259-274.
6. A. Favini and A. Yagi, Degenerate differential equations in Banach spaces, Pure Appl. Math. 215, Dekker, New York, 1999.
7. V. Keyantuo and C. Lizama, Maximal regularity for a class of integrodifferential equations with infinite delay in Banach spaces, Stud. Math. 168 (2005), 25-50.
8. C. Lizama and F. Poblete, Regularity of mild solutions for a class of fractional order differential equations, Appl. Math. Comp. 224 (2013), 803-816.
9. \qquad , Periodic solutions of fractional differential equations with delay, J. Evol. Eq. 11 (2011), 57-70.
10. C. Lizama and R. Ponce, Periodic solutions of degenerate differential equations in vector-valued function spaces, Stud. Math. 202 (2011), 49-63.
11. C. Martinez Carracedo and M. Sanz Alix, The theory of fractional powers of operators, North-Holland Math. Stud. 187, Elsevier, Amsterdam, 2001.
12. V. Poblete, Solutions of second-order integro-differential equations on periodic Besov spaces. Proc. Edinburgh Math. Soc. 50 (2007), 477-492.
13. V. Poblete and J.C. Pozo, Periodic solutions of a fractional neutral equations with finite delay, J. Evol. Eq. 14 (2014), 417-444.
14. L. Weis, Operator-valued Fourier multiplier theorems and maximal L^{p} regularity, Math. Ann. 319 (2001), 735-758.
15. A. Zygmund, Trigonometric series, Volume 2, Cambridge University Press, Cambridge, 1959.

Tsinghua University, Department of Mathematical Sciences, 100084 Beijing, China

Email address: sbu@math.tsinghua.edu.cn

Chongqing Normal University, School of Mathematical Sciences, ChongQing 401331, China
Email address: caigang-aaaa@163.com

[^0]: 2010 AMS Mathematics subject classification. Primary 26A33, 34C25, 34K37, 43A15, 45N05.

 Keywords and phrases. Well-posedness, Fourier multiplier, degenerate fractional differential equation, vector-valued function spaces.

 This work was supported by the Natural Science Foundation of Chongqing, grant No. cstc2014jcyjA00016, NSF of China, grant Nos. 11571194 and 11401063 , Science and Technology Project of Chongqing Education Committee, grant No. KJ1703041, Talent Project of Chongqing Normal University, grant No. 02030307-00024 and the University Young Core Teacher Foundation of Chongqing, grant No. 020603011714. The second author is the corresponding author.

 Received by the editors on August 20, 2016.

