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ABSTRACT. We study the well-posedness of degenerate
fractional differential equations with infinite delay (Pα) :

Dα(Mu)(t) = Au(t)+
∫ t
−∞ a(t−s)Au(s) ds+f(t), 0 ≤ t ≤ 2π,

in Lebesgue-Bochner spaces Lp(T;X) and Besov spaces
Bs

p,q(T;X), where A and M are closed linear operators on

a Banach space X satisfying D(A) ⊂ D(M), α > 0 and
a ∈ L1(R+) are fixed. Using well known operator-valued
Fourier multiplier theorems, we completely characterize the
well-posedness of (Pα) in the above vector-valued function
spaces on T.

1. Introduction. In a series of publications, operator-valued Fourier
multipliers on vector-valued function spaces were studied, see e.g.,
[2, 3, 14]. They are needed to study the existence and uniqueness
of differential equations on Banach spaces [7, 8, 9, 10, 12, 13, 14].
Recently, problems of the characterization of well-posedness for degen-
erate differential equations with periodic initial conditions have been
extensively studied. For instance, first order degenerate differential
equations:

(1.1) (Mu)′(t) = Au(t) + f(t), 0 ≤ t ≤ 2π,
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with periodic boundary condition (Mu)(0) = (Mu)(2π), have recently
been studied by Lizama and Ponce [10], where A and M are closed
linear operators on a Banach space X. Under suitable assumptions
on the modified resolvent operator determined by (1.1), they gave
necessary and sufficient conditions to ensure the well-posedness of
(1.1) in Lebesgue-Bochner spaces Lp(T;X), periodic Besov spaces
Bs

p,q(T;X) and periodic Triebel-Lizorkin spaces F s
p,q(T;X). In [4], Bu

studied the second order degenerate differential equations:

(1.2) (Mu′)′(t) = Au(t) + f(t), 0 ≤ t ≤ 2π,

with periodic boundary conditions u(0)=u(2π), (Mu′)(0)=(Mu′)(2π),
where A and M are closed linear operators on a Banach space X. He
also obtained necessary or sufficient conditions for the well-posedness
of (1.2) in Lebesgue-Bochner spaces Lp(T;X), periodic Besov spaces
Bs

p,q(T;X) and periodic Triebel-Lizorkin spaces F s
p,q(T;X) under some

suitable conditions on the modified resolvent operator determined by
(1.2).

Poblete and Pozo studied fractional order neutral differential equa-
tions with finite delay:

(1.3) Dα(u(t)−Bu(t−r)) = Au(t)+Fut+GDβut+f(t), 0 ≤ t ≤ 2π,

where r > 0 is fixed, A and B are closed linear operators on a Banach
space X satisfying D(A) ⊂ D(B), ut(θ) = u(t + θ), and F and G
are bounded linear operators on an appropriate space. Under suitable
assumptions on delay operators F and G, the authors were able to
give a sufficient condition for (1.3) to be well-posed in Besov spaces
Bs

p,q(T;X) and Triebel-Lizorkin spaces F s
p,q(T;X) [13].

On the other hand, Bu considered the well-posedness in different
function spaces of the following equations with fractional derivative
with infinite delay:

(1.4) Dαu(t) = Au(t) +

∫ t

−∞
a(t− s)Au(s) ds+ f(t), 0 ≤ t ≤ 2π,

with symmetric boundary conditions, where A is a closed linear oper-
ator on a Banach space X, α > 0 and Dαu is the fractional derivative
of u in the sense of Weyl, a ∈ L1(R+). Under suitable assumptions
on the Laplace transform of a, the author completely characterized
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the well-posedness of (1.4) on Lebesgue-Bochner spaces Lp(T;X) and
Besov spaces Bs

p,q(T;X) [5].

In this paper, we study the following degenerate fractional differen-
tial equations with infinite delay:

(Pα) Dα(Mu)(t) = Au(t) +

∫ t

−∞
a(t− s)Au(s) ds+ f(t), 0 ≤ t ≤ 2π,

where A and M are closed linear operators on a Banach space X
satisfying D(A) ⊂ D(M), a ∈ L1(R+), α > 0. It is clear that (1.4) is a
special case of (Pα) when M = IX . When Ω is a bounded domain in Rn

with smooth boundary ∂Ω, m is a non-negative bounded measurable
function defined on Ω and X is the Hilbert space H−1(Ω), we can
consider M as the multiplication operator on X by m. One may also
considerM as a differential operator onH−1(Ω) or L2(Ω) with different
boundary conditions on ∂Ω.

The purpose of this paper is to characterize the well-posedness of
(Pα) in Lebesgue-Bochner spaces Lp(T;X) and Besov spacesBs

p,q(T;X).
Our characterizations of the well-posedness of (Pα) involve the Rade-
macher boundedness (or norm boundedness) of the M -resolvent set
of A. Our main tools in the study of the well-posedness of (Pα) are the
operator-valued Fourier multiplier theorems obtained by Arendt and
Bu [2, 3] on Lp(T;X) and Bs

p,q(T;X). Indeed, we will transform the
well-posedness of (Pα) to an operator-valued Fourier multiplier prob-
lem in the corresponding vector-valued function space. In this paper,
we are able to characterize the well-posedness of (Pα) by the bound-
edness of the M -resolvent set of A. For instance, we show that, under
suitable assumptions on a, when the underlying Banach space X is a
UMD Banach space and 1 < p < ∞, then (Pα) is L

p well-posed if and
only if {

r
(α)
k

1 + ck
: k ∈ Z

}
⊂ ρM (A)

and the set {
r
(α)
k M [r

(α)
k M − (1 + ck)A]

−1 : k ∈ Z
}

is R-bounded, where ρM (A) is the M -resolvent set of A (see the precise
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definition in Section 2), r
(α)
k = |k|αe(1/2) sgn(k)πiα when k ̸= 0, and

r
(α)
0 = 0, ck =

∫ +∞
0

e−ikta(t) dt is the Fourier transform of a.

The results obtained in this paper recover the known results pre-
sented in [5] in the simpler case when M = IX . Our results also
recover the results obtained in [10] in the special case when α = 1,
a = 0. Thus, one may also consider our results as generalizations of
the previous results obtained in [2, 3].

This work is organized as follows. In Section 2, we study the
well-posedness of (Pα) in vector-valued Lebesgue spaces Lp(T;X). In
Section 3, we consider the well-posedness of (Pα) in Besov spaces
Bs

p,q(T;X). In the last section, we give some examples that our abstract
results may be applied.

2. Well-posedness of (Pα) in Lebesgue-Bochner spaces. Let
X and Y be complex Banach spaces, and let T := [0, 2π]. We denote
by L(X,Y ) the space of all bounded linear operators from X to Y . If
X = Y , we will simply denote it by L(X). For 1 ≤ p < ∞, we denote
by Lp(T;X) the space of all equivalent classes of X-valued measurable
functions f defined on T satisfying

∥f∥Lp :=

(∫ 2π

0

∥f(t)∥p dt
2π

)1/p

< ∞.

For f ∈ L1(T;X), we denote by

f̂(k) :=
1

2π

∫ 2π

0

e−k(t)f(t) dt

the kth Fourier coefficient of f , where k ∈ Z and ek(t) = eikt when
t ∈ T. We denote by ek ⊗ x the X-valued function defined on T by
(ek ⊗ x)(t) = ek(t)x.

The main tool in our study of Lp well-posedness of (Pα) is the next
Lp-Fourier multiplier theorem [2].

Definition 2.1. Letting X and Y be complex Banach spaces and
1 ≤ p < ∞, we say that (Mk)k∈Z ⊂ L(X,Y ) is an Lp-Fourier multiplier
if, for each f ∈ Lp(T;X), there exists a u ∈ Lp(T;Y ) such that

û(k) = Mkf̂(k) for all k ∈ Z.
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It easily follows from the Closed Graph theorem that, when (Mk)k∈Z
⊂ L(X,Y ) is an Lp-Fourier multiplier, then there exists a bounded lin-

ear operator T ∈ L(Lp(T;X), Lp(T;Y )) satisfying (Tf)∧(k) = Mkf̂(k)
when f ∈ Lp(T;X) and k ∈ Z. The operator-valued Fourier multi-
plier theorem on Lp(T;X) obtained in [2] involves the Rademacher
boundedness for sets of bounded linear operators. Let γj be the jth
Rademacher function on [0, 1] given by γj(t) = sgn(sin(2jπt)) when
j ≥ 1. For x ∈ X, we denote by γj ⊗ x the vector-valued function
t → rj(t)x on [0, 1].

Definition 2.2. Let X and Y be Banach spaces. A set T ⊂ L(X,Y )
is said to be Rademacher bounded (R-bounded, in short), if a C > 0
exists such that∥∥∥∥ n∑

j=1

γj ⊗ Tjxj

∥∥∥∥
L1([0,1];Y )

≤ C

∥∥∥∥ n∑
j=1

γj ⊗ xj

∥∥∥∥
L1([0,1];X)

for all T1, . . . , Tn ∈ T, x1, . . . , xn ∈ X and n ∈ N.

Remark 2.3.

(i) Let S,T ⊂ L(X) be R-bounded sets. Then it can be easily seen
from the definition that

ST := {ST : S ∈ S, T ∈ T}

and

S+T := {S + T : S ∈ S, T ∈ T}

are still R-bounded.

(ii) Let X be a UMD Banach space, and let Mk = mkIX with
mk ∈ C, where IX is the identity operator on X, if supk∈Z |mk| < ∞
and supk∈Z |k(mk+1 −mk)| < ∞. Then (Mk)k∈Z is an Lp-Fourier
multiplier whenever 1 < p < ∞ [2].

The next results will be fundamental in the proof of our main result
of this section. For the notion of UMD Banach spaces, we refer the
reader to [2] and the references therein.
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Proposition 2.4 ([2, Proposition 1.11]). Let X and Y be Banach
spaces, 1 ≤ p < ∞, and let (Mk)k∈Z ⊂ L(X,Y ) be an Lp-Fourier
multiplier. Then the set {Mk : k ∈ Z} is R-bounded.

Theorem 2.5 ([2, Theorem 1.3]). Let X and Y be UMD Banach
spaces and (Mk)k∈Z ⊂ L(X,Y ). If the sets {Mk : k ∈ Z} and
{k(Mk+1 − Mk) : k ∈ Z} are R-bounded, then (Mk)k∈Z defines an
Lp-Fourier multiplier whenever 1 < p < ∞.

The derivative operator (of order 1), denoted by D in Lp(T;X), was
defined in [2] as

Du :=
∑
k∈Z

ikek ⊗ û(k)

with domain W 1,p(T;X), where

(2.1) W 1,p(T;X) :=
{
u ∈ Lp(T;X) : there exists v ∈ Lp(T;X)

such that v̂(k) = ikû(k) for k ∈ Z
}

is the first periodic Sobolev space. Let u ∈ Lp(T;X). Then u ∈
W 1,p(T;X) if and only if u is differentiable almost everywhere on T and
u′ ∈ Lp(T;X). In this case, u is actually continuous and u(0) = u(2π)
[2, Lemma 2.1].

The unbounded operator D is non negative in Lp(T;X) [11]; thus,
its fractional power makes sense. Let α > 0. The fractional power Dα

of D is given by

Dαu :=
∑
k∈Z

r
(α)
k ek ⊗ û(k)

with domain Wα,p(T;X), where Wα,p(T;X) is the fractional Sobolev
space of order α defined by

(2.2) Wα,p(T;X) :=
{
u ∈ Lp(T;X) : there exists v ∈ Lp(T;X)

such that v̂(k) = r
(α)
k û(k) for k ∈ Z

}
.

Here,

(2.3) r
(α)
k :=

{
|k|αe(1/2) sgn(k)πiα k ̸= 0,

0 k = 0.
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This notation r
(α)
k will be fixed throughout this paper. Dα is called the

fractional derivative (in the sense of Weyl) of u of order α [11]. It is
clear that definition (2.2) coincides with (2.1) when α = 1 and D = D1.
See [9] for an equivalent definition of the fractional derivative Dα on
Lp(T;X). Wα,p(T;X) is a Banach space with the norm

∥u∥Wα,p := ∥u∥Lp + ∥Dαu∥Lp .

For β > 0, we let ak = 1/r
(β)
k for k ̸= 0 and a0 = 0, and

Fβ :=
∑
k∈Z

ek ⊗ ak.

Then Fβ ∈ L1(T) [15, Chapter V, (1.5), (1.14)]. This implies that,
when α1 ≤ α2, thenWα2,p(T;X) ⊂ Wα1,p(T;X) by Young’s inequality.
It is clear from the definition and [2, Lemma 2.1] that, when α > 1,
then u ∈ Wα,p(T;X) if and only if u is differentiable almost everywhere
and u′ ∈ Wα−1,p(T;X).

It was shown in [15, Chapter XII, (9.1)] that, when 1/p < α <

1 + 1/p, then Wα,p(T;X) ⊂ C
α−1/p
per (T;X), where C

α−1/p
per (T;X) is the

space of all X valued (α − 1/p)-Hölder continuous functions u on T
satisfying u(0) = u(2π). This implies that, if α > 0, n ∈ N0 := N∪ {0}
are such that

n+
1

p
< α < n+ 1 +

1

p
,

and, if u ∈ Wα,p(T;X), then u is n-times continuously differentiable
on T, and u(k)(0) = u(k)(2π) when 0 ≤ k ≤ n. This means that (Pα) is
in fact a problem with symmetric boundary conditions when 1/p < α.

A scalar sequence (b)k∈Z ⊂ C\{0} is called 1-regular if the sequence
(k(bk+1 − bk)/bk)k∈Z is bounded; it is called 2-regular if it is 1-regular
and the sequence (k2(bk+2 − 2bk+1 + bk)/bk)k∈Z is bounded.

Remark 2.6. An easy computation shows that (r
(α)
k )k∈Z is 2-regular

whenever α > 0.

For a ∈ L1(R+) and u ∈ Lp(T;D(A)), we define

(2.4) (a ∗Au)(t) :=
∫ t

−∞
a(t− s)Au(s) ds, t ∈ T.
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Here we consider D(A) as a Banach space equipped with its graph
norm. It is clear that a ∗ Au ∈ Lp(T;X) by Young’s inequality and

∥a ∗ Au∥Lp ≤ ∥a∥L1∥Au∥Lp . Let ã(λ) :=
∫ +∞
0

e−λta(t) dt be the
Laplace transform of a for Reλ ≥ 0. An easy computation shows that:

(2.5) â ∗Au(k) = ã(ik)Aû(k)

when k ∈ Z. We note that ã(ik) exists for all k ∈ Z as a ∈ L1(R+). In
what follows, we always use the notation:

(2.6) ck := ã(ik),

for all k ∈ Z.

Remark 2.7. Under the above assumptions on a, if ã(ik) ̸= −1 for
all k ∈ Z, then the sequences (ã(ik))k∈Z and (1/(1 + ã(ik)))k∈Z are
bounded by the Riemann-Lebesgue lemma.

Let (bk)k∈Z ⊂ C be a scalar sequence. We will use the following
hypotheses:

(A1) bk ̸= −1 for all k ∈ Z, (k(bk+1 − bk))k∈Z is bounded.

(A2) bk ̸= −1 for all k ∈ Z, (k(bk+1 − bk))k∈Z and (k2(bk+2 − 2bk+1

+ bk)k∈Z are bounded.

Note that the sequences (bk+1− bk)k∈Z, (bk+2− 2bk+1+ bk))k∈Z and
(bk+3−3bk+2+3bk+1−bk))k∈Z may be considered as the first derivative,
the second derivative and the third derivative of (bk)k∈Z, respectively.

Let 1 ≤ p < ∞, a ∈ L1(R+). We define the solution space of (Pα)
in the Lp well-posedness case by

Sp(A,M) := {u ∈ Lp(T;D(A)) : Mu ∈ Wα,p(T;X)}.

Here, again, we consider D(A) to be a Banach space equipped with
its graph norm. If u ∈ Sp(A,M), then a ∗ Au ∈ Lp(T;X) by Young’s
inequality. Sp(A,M) is a Banach space with the norm

∥u∥Sp(A,M) := ∥u∥Lp + ∥Au∥Lp + ∥Mu∥Wα,p .

Now we are ready to introduce the well-posedness of (Pα).
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Definition 2.8. Let 1 ≤ p < ∞ and f ∈ Lp(T;X); u ∈ Sp(A,M)
is called a strong Lp-solution of (Pα), if (Pα) is satisfied almost every-
where on T. We say that (Pα) is L

p well-posed if, for each f ∈ Lp(T;X),
there exists a unique strong Lp-solution of (Pα).

If (Pα) is L
p well-posed, there exists a constant C > 0 such that, for

each f ∈ Lp(T;X), if u ∈ Sp(A,M) is the unique strong Lp-solution of
(Pα), then

(2.7) ∥u∥Sp(A,M) ≤ C∥f∥Lp .

This is an easy consequence of the Closed Graph theorem.

Now we introduce the M -resolvent set of A. We recall that, under
the assumption that D(A) ⊂ D(M), for any λ ∈ C, the sum operator
λM −A is a linear operator D(A) into X. We define

ρM (A) := {λ ∈ C : λM −A : D(A) → X is bijective and

(λM −A)−1 ∈ L(X)}

as the M -resolvent set of A. If λ ∈ ρM (A), then the operator
M(λM − A)−1 is well defined by the assumption D(A) ⊂ D(M), and
M(λM − A)−1 ∈ L(X) by the closedness of M and the boundedness
of (λM −A)−1.

In the proof of our main result of this section, we will use the next
result.

Proposition 2.9. Let A and M be closed linear operators defined
on a UMD Banach space X such that D(A) ⊂ D(M), a ∈ L1(R+).
Assume that (ck)k∈Z defined by (2.6) satisfies (A1). We assume that
(ak)k∈Z ⊂ C is 1-regular and satisfies{

ak
1 + ck

: k ∈ Z
}

⊂ ρM (A).

Then the following assertions are equivalent.

(i) (akM [akM − (1 + ck)A]
−1)k∈Z is an Lp-Fourier multiplier for

1 < p < ∞;
(ii) the set {akM [akM − (1 + ck)A]

−1 : k ∈ Z} is R-bounded.
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Proof. Let Nk = [akM − (1 + ck)A]
−1 and Mk = akMNk. The

implication (i) ⇒ (ii) is clearly true by Proposition 2.4. Now assume
that the set {Mk : k ∈ Z} is R-bounded. To show that (i) is true, it
will suffice to show that the set {k(Mk+1 −Mk) : k ∈ Z} is R-bounded
by Theorem 2.5. We have

Nk+1 −Nk = Nk+1[N
−1
k −N−1

k+1]Nk

(2.8)

= Nk+1[akM − (1 + ck)A− ak+1M + (1 + ck+1)A]Nk

= Nk+1(ak − ak+1)MNk +Nk+1(ck+1 − ck)ANk

= Nk+1
ak − ak+1

ak
Mk +Nk+1(ck+1 − ck)ANk,

when k ̸= 0. It follows that

k(Mk+1 −Mk)

= k[ak+1MNk+1 − akMNk]

= k[ak+1M(Nk+1 −Nk) + (ak+1 − ak)MNk]

= kak+1MNk+1
ak − ak+1

ak
Mk

+ kak+1MNk+1(ck+1 − ck)ANk + k(ak+1 − ak)MNk

= Mk+1
k(ak − ak+1)

ak
Mk

+Mk+1k(ck+1 − ck)
1

1 + ck
[Mk − IX ] +

k(ak+1 − ak)

ak
Mk,

when k ̸= 0. Hence, the set {k(Mk+1 − Mk) : k ∈ Z} is R-bounded
as (ak)k∈Z is 1-regular and (ck)k∈Z satisfies (A1). This completes the
proof. �

The next result gives a necessary and sufficient condition for (Pα)
to be Lp-well-posed.

Theorem 2.10. Let X be a UMD Banach space, 1 < p < ∞, α > 0,
and let A,M be closed linear operators on X satisfying D(A) ⊂ D(M),
a ∈ L1(R+). We assume that (ck)k∈Z defined by (2.6) satisfies (A1).
Then the following assertions are equivalent :

(i) (Pα) is Lp-well-posed ;
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(ii)
{
r
(α)
k 1 + ck : k ∈ Z

}
⊂ ρM (A) and the set{

r
(α)
k M [r

(α)
k M − (1 + ck)A]

−1 : k ∈ Z
}

is R-bounded, where r
(α)
k is defined by (2.3).

Proof.

(ii) ⇒ (i). We assume that{
r
(α)
k

1 + ck
: k ∈ Z

}
⊂ ρM (A)

and the set {Mk : k ∈ Z} is R-bounded, where Nk = [r
(α)
k M −

(1 + ck)A]
−1 and Mk = r

(α)
k MNk. It follows from Proposition 2.9

that (Mk)k∈Z is an Lp-Fourier multiplier as the sequence (r
(α)
k )k∈Z is

clearly 1-regular. Then, for all f ∈ Lp(T;X), there exists u ∈ Lp(T;X)
satisfying

(2.9) û(k) = Mkf̂(k)

for all k ∈ Z. We note that

(2.10) ANk =
1

1 + ck
[Mk − IX ].

(IX/1 + ck)k∈Z is an Lp-Fourier multiplier by Theorem 2.5 as we have
assumed that (ck)k∈Z satisfies (A1). We deduce that (ANk)k∈Z is
an Lp Fourier multiplier as the product of Lp Fourier multipliers is
still an Lp Fourier multiplier. Thus, v ∈ Lp(T;X) exists and satisfies

v̂(k) = ANkf̂(k) for all k ∈ Z. We note that A−1 is an isomorphism
from X onto D(A) as 0 ∈ ρM (A) by assumption; here, we consider
D(A) as a Banach space equipped with its graph norm. Hence,

A−1v̂(k) = Nkf̂(k). Setting w = A−1v, then w ∈ Lp(T;D(A)) and

(2.11) ŵ(k) = Nkf̂(k)

for all k ∈ Z. This implies, in particular, that (Nk)k∈Z is an Lp Fourier

multiplier. It is clear that the sequence (IX/r
(α)
k )k∈Z satisfies the first

order Marcinkiewicz condition in Theorem 2.1; thus, it is an Lp Fourier
multiplier. We deduce that (MNk)k∈Z is an Lp Fourier multiplier. This
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implies that w ∈ Lp(T;D(M)). Here, D(M) is equipped with its graph
norm so that it becomes a Banach space.

Following from (2.9) and (2.11), we obtain that

û(k) = r
(α)
k Mŵ(k) = r

(α)
k (Mw)∧(k),

which implies that Mw ∈ Wα,p(T;X). We have shown that w ∈
Sp(A,M). By (2.11), we have

r
(α)
k (Mw)∧(k) = Aŵ(k) + ckAŵ(k) + f̂(k)

for all k ∈ Z. Thus, Dα(Mw)(t) = Aw(t)+ (a ∗Aw)(t)+ f(t) for t ∈ T
by the uniqueness theorem [2, page 314]. This shows the existence.

To show the uniqueness, we let u ∈ Sp(A,M) be another solution
of Dα(Mw)(t) = Aw(t) + (a ∗Aw)(t) + f(t). Then DαM(u− w)(t) =
A(u − w)(t) + (a ∗ A(u − w))(t) almost everywhere on T. Taking the

Fourier transform on both sides, we obtain r
(α)
k M(û(k) − v̂(k)) =

(1 + ck)A(û(k) − ŵ(k)) when k ∈ Z. This implies that [r
(α)
k M −

(1 + ck)A](û(k) − ŵ(k)) = 0 when k ∈ Z. Thus, û(k) − ŵ(k) = 0

as r
(α)
k M − (1 + ck)A is invertible, and so u = w by the uniqueness

theorem [2, page 314]. We have shown that the implication (ii) ⇒ (i)
is true.

(i) ⇒ (ii). Assume that (Pα) is Lp well-posed. We shall show that

r
(α)
k /1 + ck ∈ ρM (A) for all k ∈ Z. Let k ∈ Z and y ∈ X be fixed.

We define f(t) = eikty (t ∈ T). Then, f ∈ Lp(T;X), f̂(k) = y and

f̂(n) = 0 when n ̸= k. There exists a unique u ∈ Sp(A,M) such that

(2.12) Dα(Mu)(t) = Au(t) + (a ∗Au)(t) + f(t)

almost everywhere on T. We have û(n) ∈ D(A) when n ∈ Z by [2,
Lemma 3.1] as u ∈ Lp(T;D(A)). Taking Fourier transforms on both
sides of (2.12), we obtain

(2.13) (r
(α)
k M − (1 + ck)A)û(k) = y

and (r
(α)
n M−(1+cn)A)û(n) = 0 when n ̸= k. Thus, r

(α)
k M−(1+ck)A

is surjective. To show that r
(α)
k M − (1+ ck)A is also injective, we take

x ∈ D(A) such that

(r
(α)
k M − (1 + ck)A)x = 0.
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Let u(t) = eiktx when t ∈ T. Then u ∈ Sp(A,M) and (Pα) hold
almost everywhere on T when taking f = 0. Thus, u is a strong Lp-
solution of (Pα) when f = 0. We obtain x = 0 by the uniqueness

assumption. We have shown that r
(α)
k M − (1 + ck)A is injective.

Therefore, r
(α)
k M − (1 + ck)A is bijective from D(A) onto X.

Next, we show that [r
(α)
k M − (1+ck)A]

−1 ∈ L(X). For f(t) = eikty,
we let u be the unique strong Lp-solution of (Pα). Then

û(n) =

{
0 n ̸= k,

[r
(α)
k M − (1 + ck)A]

−1y n = k,

by (2.13). This means that u(t) = eikt[r
(α)
k M − (1 + ck)A]−1y. By

(2.7), there exists a constant C > 0 independent from f ∈ Lp(T;X)
such that

∥u∥Lp + ∥Au∥Lp + ∥Mu∥Wα,p ≤ C∥f∥Lp .

In particular ∥u∥Lp ≤ C∥f∥Lp . Hence,

||[r(α)k M − (1 + ck)A]
−1y|| ≤ C∥y∥,

which implies

||[r(α)k M − (1 + ck)A]
−1|| ≤ C.

We have shown that r
(α)
k /1 + ck ∈ ρM (A) for all k ∈ Z. Thus,{
r
(α)
k

1 + ck
: k ∈ Z

}
⊂ ρM (A).

Finally, we prove that, if Mk = r
(α)
k M [r

(α)
k M − (1 + ck)A]−1 when

k ∈ Z, then (Mk)k∈Z defines an Lp Fourier multiplier. Let f ∈
Lp(T;X). Then there exists u ∈ Sp(A,M), a strong Lp-solution of
(Pα) by assumption. Taking Fourier transforms on both sides of (Pα),
we obtain that û(k) ∈ D(A) by [2, Lemma 3.1] and

[r
(α)
k M − (1 + ck)A]û(k) = f̂(k), (k ∈ Z)

for all k ∈ Z. Since r
(α)
k M − (1 + ck)A is invertible, we have

û(k) = [r
(α)
k M − (1 + ck)A]

−1f̂(k)
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for all k ∈ Z. It follows from Mu ∈ Wα,p(T;X) that [Dα(Mu)]∧(k) =

r
(α)
k Mû(k), which implies that

[Dα(Mu)]∧(k) = r
(α)
k Mû(k) = Mkf̂(k)

for all k ∈ Z. We conclude that (Mk)k∈Z defines an Lp-Fourier
multiplier as Mu ∈ Wα,p(T;X) ⊂ Lp(T;X). We deduce that (Mk)k∈Z
is R-bounded by Proposition 2.4. Therefore, the implication (i) ⇒ (ii)
is also true. This finishes the proof. �

Since the second statement in Theorem 2.10 does not depend on the
space parameter p, we immediately have the next corollary.

Corollary 2.11. Let X be a UMD Banach space, and let A,M
be closed linear operators on X satisfying D(A) ⊂ D(M), α > 0,
a ∈ L1(R+). We assume that (ck)k∈Z defined by (2.6) satisfies (A1).
Then, if (Pα) is Lp well-posed for some 1 < p < ∞, then it is Lp

well-posed for all 1 < p < ∞.

When the underlying Banach space is isomorphic to a Hilbert space,
then each norm bounded subset of L(X) is actually R-bounded [2,
Proposition 1.13]. This fact, together with Theorem 2.5, immediately
gives the following result.

Corollary 2.12. Let H be a Hilbert space, 1 < p < ∞, α > 0, and
let A,M be closed linear operators on H satisfying D(A) ⊂ D(M),
a ∈ L1(R+). We assume that (ck)k∈Z defined by (2.6) satisfies (A1).
Then the following assertions are equivalent :

(i) (Pα) is Lp well-posed ;

(ii) {r(α)k /(1 + ck) : k ∈ Z} ⊂ ρM (A), and the set{
r
(α)
k M [r

(α)
k M − (1 + ck)A]

−1 : k ∈ Z
}

is norm bounded,

where r
(α)
k is defined by (2.3).
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3. Well-posedness of (Pα) in Besov and Triebel-Lizorkin
spaces. In this section, we study the well-posedness of (Pα) in Besov
spaces Bs

p,q(T;X) and Triebel-Lizorkin spaces F s
p,q(T;X). Firstly, we

briefly recall the definition of Besov spaces in the vector-valued case
introduced in [3]. Let S(R) be the Schwartz space of all rapidly
decreasing smooth functions on R. Let D(T) be the space of all
infinitely differentiable functions on T equipped with the locally convex
topology given by the seminorms ∥f∥α = supx∈T |f (α)(x)| for α ∈ N0 :=
N ∪ {0}. Let D′(T;X) := L(D(T), X) be the space of all continuous
linear operators from D(T) to X. In order to define Besov spaces, we
consider the dyadic-like subsets of R:

I0 = {t ∈ R : |t| ≤ 2}, Ik = {t ∈ R : 2k−1 < |t| ≤ 2k+1}

for k ∈ N. Let ϕ(R) be the set of all systems ϕ = (ϕk)k∈N0
⊂ S(R)

satisfying supp(ϕk) ⊂ Ik for each k ∈ N0,
∑

k∈N0
ϕk(x) = 1 for

x ∈ R, and, for each α ∈ N0, supx∈R,k∈N0
2kα|ϕ(α)

k (x)| < ∞. Let
ϕ = (ϕk)k∈N0 ⊂ ϕ(R) be fixed. For 1 ≤ p, q ≤ ∞, s ∈ R, the X-valued
Besov space is defined by

Bs
p,q(T;X) =

{
f ∈ D′(T;X) : ∥f∥Bs

p,q

:=

(∑
j≥0

2sjq
∥∥∥∥∑

k∈Z

ek ⊗ ϕj(k)f̂(k)

∥∥∥∥q
p

)1/q

< ∞
}

with the usual modification if q = ∞. The space Bs
p,q(T;X) is

independent from the choice of ϕ, and different choices of ϕ lead
to equivalent norms on Bs

p,q(T;X). Bs
p,q(T;X) equipped with the

norm ∥·∥Bs
p,q

is a Banach space. It is known that, if s1 ≤ s2,

then Bs1
p,q(T;X) ⊂ Bs2

p,q(T;X), and the embedding is continuous [3,
Theorem 2.3]. It was shown [3, Theorem 2.3] that, when s > 0, then
f ∈ Bs+1

p,q (T;X) if and only if f is differentiable almost everywhere on T
and f ′ ∈ Bs

p,q(T;X) (this is equivalent to saying thatDf ∈ Bs
p,q(T;X)).

More generally, for α > 0 and s > 0, f ∈ Bα+s
p,q (T;X) if and only if

Dαf ∈ Bs
p,q(T;X). See [3, Section 2] for more information about the

space Bs
p,q(T;X).

Next, we give the definition of operator-valued Fourier multipliers in
the context of Besov spaces, which is fundamental in the proof of our
main result of this section.
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Definition 3.1. Let X and Y be Banach spaces, 1 ≤ p, q ≤ ∞, s ∈ R,
and let (Mk)k∈Z ⊂ L(X,Y ). We say that (Mk)k∈Z is a Bs

p,q Fourier
multiplier if, for each f ∈ Bs

p,q(T;X), there exists u ∈ Bs
p,q(T;Y ), such

that û(k) = Mkf̂(k) for all k ∈ Z.

The next result was obtained in [3, Theorem 4.5], which gives a
sufficient condition for an operator-valued sequence to be a Bs

p,q Fourier
multiplier.

Theorem 3.2. Let X,Y be Banach spaces, and let (Mk)k∈Z ⊂
L(X,Y ). We assume that

sup
k∈Z

(
∥Mk∥+ ∥k(Mk+1 −Mk)∥

)
< ∞,(3.1)

sup
k∈Z

∥k2
(
Mk+2 − 2Mk+1 +Mk

)
∥ < ∞.(3.2)

Then (Mk)k∈Z is a Bs
p,q-multiplier whenever 1 ≤ p, q ≤ ∞ and s ∈ R. If

X is B-convex, then the first order condition (3.1) is already sufficient
for (Mk)k∈Z to be a Bs

p,q-multiplier.

Recall that a Banach space X is B-convex if it does not contain
ln1 uniformly. This is equivalent to saying that X has a Fourier type
1 < p ≤ 2, i.e., the Fourier transform is a bounded linear operator from
Lp(R;X) to Lq(R;X), where 1/p + 1/q = 1. It is well known that,
when 1 < p < ∞, then Lp(µ) has Fourier type min{p, p/(p− 1)} [3].

Remark 3.3.

(i) If (Mk)k∈Z is a Bs
p,q Fourier multiplier, then there exists a

bounded linear operator T from Bs
p,q(T;X) to Bs

p,q(T;Y ) satisfying

T̂ f(k) = Mkf̂(k) when k ∈ Z. This implies in particular that (Mk)k∈Z
must be bounded.

(ii) If (Mk)k∈Z and (Nk)k∈Z are Bs
p,q Fourier multipliers, it can be

easily seen that the product sequence (MkNk)k∈Z and the sum sequence
(Mk +Nk)k∈Z are still Bs

p,q Fourier multipliers.

(iii) It is easy to see that the sequence ((1/k)IX)k∈Z satisfies condi-
tions (3.1) and (3.2). Thus, the sequence ((1/k)IX)k∈Z is a Bs

p,q Fourier
multiplier by Theorem 3.2.
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Letting 1 ≤ p, q ≤ ∞, s > 0 and a ∈ L1(R+), we define the solution
space of (Pα) in the Bs

p,q well-posedness case by

Sp,q,s(A,M) := {u ∈ Bs
p,q(T;D(A)) : Mu ∈ Bα+s

p,q (T;X)}.

Here again we considerD(A) as a Banach space equipped with its graph
norm. When u ∈ Sp,q,s(A,M), then a ∗ Au ∈ Bs

p,q(T;X), by Young’s
inequality. Sp,q,s(A,M) is a Banach space with the norm

∥u∥Sp,q,s(A,M) := ∥u∥Bs
p,q

+ ∥Au∥Bs
p,q

+ ∥Mu∥Bs+α
p,q

.

Now, we give the definition of the Bs
p,q well-posedness of (Pα).

Definition 3.4. Let 1 ≤ p, q ≤ ∞, s > 0 and f ∈ Bs
p,q(T;X);

u ∈ Sp,q,s(A,M) is called a strong Bs
p,q-solution of (Pα), if (Pα) is

satisfied almost everywhere on T. We say that (Pα) is B
s
p,q well-posed

if, for each f ∈ Bs
p,q(T;X), there exists a unique strong Bs

p,q-solution
of (Pα).

If (Pα) is B
s
p,q well-posed, a constant C > 0 exists such that, for each

f ∈ Bs
p,q(T;X), if u ∈ Sp,q,s(A,M) is the unique strong Bs

p,q-solution
of (Pα), then

(3.3) ∥u∥Sp,q,s(A,M) ≤ C∥f∥Bs
p,q

.

This can easily be obtained by the closedness of the operators A and
M and the closed graph theorem.

We need the following preparation in the proof of our main result of
this section.

Proposition 3.5. Let 1 ≤ p, q ≤ ∞, s > 0, and let A and M
be closed linear operators defined on a Banach space X such that
D(A) ⊂ D(M), a ∈ L1(R+). We assume that (ak)k∈Z ⊂ C is 2-regular,
and (ck)k∈Z ⊂ C\{0} defined by (2.6) satisfies (A2), such that{

ak
1 + ck

: k ∈ Z
}

⊂ ρM (A).

Then the following assertions are equivalent :
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(i) (akM [akM − (1 + ck)A]
−1)k∈Z is a Bs

p,q-Fourier multiplier.

(ii) supk∈Z ∥akM [akM − (1 + ck)A]
−1∥ < ∞.

Proof. Let Mk = akMNk, where Nk = [akM − (1 + ck)A]
−1 when

k ∈ Z. The implication (i) ⇒ (ii) is clearly true by Remark 3.3.

We need only show that the implication (ii) ⇒ (i) is true. Assume
that supk∈Z ∥Mk∥ < ∞. It follows from the proof of Proposition 2.9
that

(3.4) sup
k∈Z

∥k(Mk+1 −Mk)∥ < ∞.

On the other hand, we observe that

k2(Mk+2 − 2Mk+1 +Mk)

= k2[ak+2MNk+2 − 2ak+1MNk+1 + akMNk]

= k2MNk+2[ak+2N
−1
k − 2ak+1N

−1
k+2Nk+1N

−1
k + akN

−1
k+2]Nk

= k2MNk+2{ak+2N
−1
k − 2ak+1[ak+2M − (1 + ck+2)A]Nk+1N

−1
k

+ ak[ak+2M − (1 + ck+2)A]}Nk

= k2MNk+2{ak+2N
−1
k − 2ak+1[N

−1
k+1 + (ak+2 − ak+1)M

+ (ck+1 − ck+2)A]Nk+1N
−1
k

+ ak[N
−1
k + (ak+2 − ak)M + (ck − ck+2)A]}Nk

= k2MNk+2{(ak+2 − 2ak+1 + ak)IX

− 2(ak+2 − ak+1)Mk+1 + (ak+2 − ak)Mk

+ 2ak+1(ck+2 − ck+1)ANk+1 − ak(ck+2 − ck)ANk}

= k2MNk+2{(ak+2 − 2ak+1 + ak)(IX −Mk+1)

(3.5)

− (ak+2 − ak)(Mk+1 −Mk)

+ 2(ak+1−ak)(ck+2−ck+1)ANk+1

+ ak(ck+2−2ck+1+ck)ANk+1

+ ak(ck+2 − ck)A(Nk+1 −Nk)}

= Mk+2

{
k2(ak+2 − 2ak+1 + ak)

ak+2
(IX −Mk+1)
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− k(ak+2 − ak)

ak+2
k(Mk+1 −Mk)

+
2k(ak+1 − ak)

ak+2
k(ck+2 − ck+1)

(Mk+1 − IX)

1 + ck+1

+
ak

ak+2
k2(ck+2 − 2ck+1 + ck)

(Mk+1 − IX)

1 + ck+1

+
ak

ak+2
k(ck+2 − ck)kA(Nk+1 −Nk)

}
,

when k ̸= −2. We note that, by (2.8),

kA(Nk+1 −Nk)

= ANk+1
k(ak − ak+1)

ak
Mk +ANk+1k(ck+1 − ck)ANk

=
(Mk+1 − IX)

1 + ck+1

k(ak − ak+1)

ak
Mk(3.6)

+
(Mk+1 − IX)

1 + ck+1
k(ck+1 − ck)

(Mk − IX)

1 + ck
,

when k ̸= 0. Noticing the assumption that (ak)k∈Z satisfies (A2) and
(ck)k∈Z is 2-regular, we deduce from (3.5) and (3.6) that

(3.7) sup
k∈Z

∥k2(Mk+2 − 2Mk+1 +Mk)∥ < ∞.

This implies that (Mk)k∈Z is a Bs
p,q-Fourier multiplier by Theorem 3.2.

Therefore, the implication (ii) ⇒ (i) is also true. This completes the
proof. �

Lemma 3.6. Let X be a Banach space and 1 ≤ p, q ≤ ∞, s > 0,
a ∈ L1(R+). Suppose that (ck)k∈Z defined by (2.6) satisfies (A2). Then
(1/(1 + ck)IX)k∈Z is a Bs

p,q-Fourier multiplier.

Proof. It is clear that (ck)k∈Z and (1/(1 + ck))k∈Z are bounded by
Remark 2.3. We observe that

(3.8) k

(
1

1 + ck+1
− 1

1 + ck

)
=

−k(ck+1 − ck)

(1 + ck)(1 + ck+1)
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and

k2
(

1

1 + ck+2
− 2

1 + ck+1
+

1

1 + ck

)(3.9)

=
k2

(1+ck)(1+ck+1)(1+ck+2)
[(1+ck)(1+ck+1)−2(1+ck)(1+ck+2)

+ (1 + ck+1)(1 + ck+2)]

=
k2

(1 + ck)(1 + ck+1)(1 + ck+2)
[−(1 + ck)(ck+2 − 2ck+1 + ck)

+ (ck+2 − ck)(ck+1 − ck)]

=
1

(1 + ck)(1 + ck+1)(1 + ck+2)
[−(1 + ck)k

2(ck+2 − 2ck+1 + ck)

+ k(ck+2 − ck)k(ck+1 − ck)].

Noting that assumption (ck)k∈Z satisfies (A2), it follows from (3.8) and
(3.9) that

sup
k∈Z

∣∣∣∣k( 1

1 + ck+1
− 1

1 + ck

)∣∣∣∣ < ∞,

and

sup
k∈Z

∣∣∣∣k2( 1

1 + ck+2
− 2

1 + ck+1
+

1

1 + ck

)∣∣∣∣ < ∞.

By Theorem 3.2, (1/(1 + ck)IX)k∈Z is a Bs
p,q-Fourier multiplier. This

finishes the proof. �

The next theorem is the main result of this section which gives a
necessary and sufficient condition for (Pα) to be Bs

p,q well-posed.

Theorem 3.7. Let X be a Banach space, 1 ≤ p, q ≤ ∞, s > 0, and
let A and M be closed linear operators on X satisfying D(A) ⊂ D(M),
α > 0 and a ∈ L1(R+). We assume that (ck)k∈Z defined by (2.6)
satisfies (A2). Then the following assertions are equivalent :

(i) (Pα) is Bs
p,q-well-posed ;

(ii) {r(α)k /(1 + ck) : k ∈ Z} ⊂ ρM (A) and supk∈Z ||r
(α)
k M [r

(α)
k M −

(1 + ck)A]
−1|| < ∞.
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Proof.

(ii) ⇒ (i). We assume that{
r
(α)
k

1 + ck
: k ∈ Z

}
⊂ ρM (A)

and supk∈Z ∥Mk∥ < ∞, where Nk = [r
(α)
k M − (1 + ck)A]

−1 and

Mk = r
(α)
k MNk when k ∈ Z. It follows from Proposition 3.5 that

(Mk)k∈Z is a Bs
p,q-Fourier multiplier. Then, for all f ∈ Bs

p,q(T;X),
there exists u ∈ Bs

p,q(T;X) satisfying

(3.10) û(k) = Mkf̂(k)

for all k ∈ Z. By Lemma 3.6, (IX/(1 + ck))k∈Z is a Bs
p,q-Fourier

multiplier. We note that

(3.11) ANk =
1

1 + ck
[Mk − IX ].

Thus, (ANk)k∈Z is a Bs
p,q-Fourier multiplier by Remark 3.3. Thus,

v ∈ Bs
p,q(T;X) exists and satisfies v̂(k) = ANkf̂(k) for all k ∈ Z. We

note that A−1 is an isomorphism from X onto D(A) as 0 ∈ ρM (A). By
assumption, here we consider D(A) as a Banach space equipped with

its graph norm. Hence,, A−1v̂(k) = Nkf̂(k). Putting w = A−1v, then
w ∈ Bs

p,q(T;D(A)) and

(3.12) ŵ(k) = Nkf̂(k)

for all k ∈ Z. This implies, in particular, that (Nk)k∈Z is a Bs
p,q-

Fourier multiplier. It is clear that the sequence (IX/r
(α)
k )k∈Z satisfies

the second order Marcinkiewicz condition in Theorem 3.7; thus, it is a
Bs

p,q-Fourier multiplier. We deduce that (MNk)k∈Z is a Bs
p,q-Fourier

multiplier. This implies that w ∈ Bs
p,q(T;D(M)). Here, D(M) is

equipped with its graph norm so that it becomes a Banach space.

Combining (3.10) and (3.12), we obtain that

û(k) = r
(α)
k Mŵ(k) = r

(α)
k M̂w(k)

for all k ∈ Z, which implies that Mw ∈ Bα+s
p,q (T;X). We have shown
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that w ∈ Sp,q,s(A,M). By (3.12), we have

r
(α)
k M̂w(k) = Aŵ(k) + ckAŵ(k) + f̂(k)

for k ∈ Z. Thus, Dα(Mw)(t) = Aw(t)+ (a ∗Aw)(t)+ f(t) for t ∈ T by
the uniqueness theorem [7, page 314]. This shows the existence.

To show the uniqueness, we let u ∈ Sp,q,s(A,M) be another solution
of Dα(Mw)(t) = Aw(t) + (a ∗Aw)(t) + f(t). Then DαM(u− w)(t) =
A(u−w)(t)+ (a ∗A(u−w))(t). Taking the Fourier transform, we have

r
(α)
k M(u− w)∧(k) = (1 + ck)A(u− w)∧(k)).

This implies that [r
(α)
k M − (1 + ck)A](u − w)∧(k)) = 0. Thus,

(u − w)∧(k) = 0 as r
(α)
k M − (1 + ck)A is invertible, and so u = w

by the uniqueness theorem [7, page 314]. Therefore, the implication
(ii) ⇒ (i) is true.

(i) ⇒ (ii). Assume that (Pα) is B
s
p,q well-posed. We shall show that

r
(α)
k /(1 + ck) ∈ ρM (A) for all k ∈ Z. Let k ∈ Z and y ∈ X be fixed.

We define f(t) = eikty, t ∈ T. Then, f ∈ Bs
p,q(T;X), f̂(k) = y and

f̂(n) = 0 for n ̸= k. There exists a unique u ∈ Sp,q,s(A,M) satisfying

Dα(Mu)(t) = Au(t) + (a ∗Au)(t) + f(t)

almost everywhere on T. We have û(n) ∈ D(A) when n ∈ Z by [7,
Lemma 3.1]. Taking Fourier transforms on both sides, we obtain

(3.13) (r
(α)
k M − (1 + ck)A)û(k) = y

and (r
(α)
n M−(1+cn)A)û(n) = 0 when n ̸= k. Thus, r

(α)
k M−(1+ck)A

is surjective. To show that r
(α)
k M − (1 + ck)A is also injective, we let

x ∈ D(A) be such that

(r
(α)
k M − (1 + ck)A)x = 0.

Let u(t) = eiktx when t ∈ T. Then, clearly, we have u ∈ Sp,q,s(A,M)
and (Pα) holds almost everywhere on T when f = 0. Thus, u is a
strong Bs

p,q-solution of (Pα) when f = 0. We obtain x = 0 by the

uniqueness assumption. We have shown that r
(α)
k M − (1 + ck)A is

injective. Therefore, r
(α)
k M − (1+ ck)A is bijective from D(A) onto X.
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Next, we show that [r
(α)
k M − (1+ck)A]

−1 ∈ L(X). For f(t) = eikty,
we let u be the unique strong Bs

p,q-solution of (Pα). Then

û(n) =

{
0 n ̸= k,

[r
(α)
k M − (1 + ck)A]

−1y n = k,

by (3.13). This implies that u(t) = eikt[r
(α)
k M − (1 + ck)A]

−1y. By
(3.3), a constant C > 0 exists independent from f ∈ Bs

p,q(T;X) such
that

∥u∥Bs
p,q

+ ∥Au∥Bs
p,q

+ ∥Mu∥Bs+α
p,q

≤ C∥f∥Bs
p,q

.

Hence,

||[r(α)k M − (1 + ck)A]
−1y|| ≤ C∥y∥,

which implies that ||[r(α)k M − (1 + ck)A]−1|| ≤ C. We have shown

r
(α)
k /(1 + ck) ∈ ρM (A) for all k ∈ Z. Thus, {r(α)k /(1 + ck) : k ∈ Z} ⊂
ρM (A).

Finally, we prove that, ifMk = r
(α)
k M [r

(α)
k M−(1+ck)A]

−1 when k ∈
Z, then (Mk)k∈Z defines a Bs

p,q-Fourier multiplier. Let f ∈ Bs
p,q(T;X).

Then there exists u ∈ Sp,q,s(A,M), a strong Bs
p,q-solution of (Pα) by

assumption. Taking Fourier transforms on both sides of (Pα) we have
that û(k) ∈ D(A) by Lemma 3.6 and

[r
(α)
k M − (1 + ck)A]û(k) = f̂(k)

for all k ∈ Z. Since r
(α)
k M − (1 + ck)A is invertible, we have

û(k) = [r
(α)
k M − (1 + ck)A]

−1f̂(k)

for all k ∈ Z. It follows from Mu ∈ Bα+s
p,q (T;X) that [Dα(Mu)]∧(k) =

r
(α)
k Mû(k). We obtain

[Dα(Mu)]∧(k) = r
(α)
k Mû(k) = Mkf̂(k)

when k ∈ Z. We conclude that (Mk)k∈Z defines a Bs
p,q-Fourier

multiplier as Dα(Mu) ∈ Bs
p,q(T;X). Thus, we have supk∈Z ∥Mk∥ < ∞

by Remark 3.3. Therefore, the implication (i) ⇒ (ii) is also true. The
proof is completed. �

Since Theorem 3.7 (ii) does not depend on the parameters p, q and
s, we immediately have the next corollary.
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Corollary 3.8. Let X be a Banach space, and let A and M be closed
linear operators on X satisfying D(A) ⊂ D(M), α > 0, a ∈ L1(R+).
We assume that (ck)k∈Z defined by (2.6) satisfies (A2). Then, if (Pα)
is Bs

p,q well-posed for some 1 ≤ p, q ≤ ∞ and s > 0, then it is Bs
p,q

well-posed for all 1 ≤ p, q ≤ ∞ and s > 0.

When the underlying Banach spaceX is B-convex and 1 ≤ p, q ≤ ∞,
s ∈ R, the first order condition (3.1) is already sufficient for an operator-
valued sequence to be a Bs

p,q-Fourier multiplier by Theorem 3.7. From
this fact and the proof of Theorem 2.10, we easily deduce the following
result on the Bs

p,q well-posedness of the problem (Pα) under a weaker
assumption on the sequence (ck)k∈Z when X is B-convex.

Corollary 3.9. Let X be a B-convex Banach space, 1 ≤ p, q ≤ ∞,
s > 0, and let A and M be closed linear operators on X satisfying
D(A) ⊂ D(M), α > 0, a ∈ L1(R+). We assume that (ck)k∈Z defined
by (2.6) satisfies (A1). Then the following assertions are equivalent :

(i) (Pα) is Bs
p,q-well-posed ;

(ii) {r(α)k /1 + ck : k ∈ Z} ⊂ ρM (A) and

sup
k∈Z

||r(α)k M [r
(α)
k M − (1 + ck)A]−1|| < ∞.

A Hölder continuous function space is a particular case of Besov
space Bs

p,q(T;X). From [8, Theorem 3.1], we have Bβ
∞,∞(T;X) =

Cβ
per(T;X) whenever 0 < β < 1, where Cβ

per(T;X) is the space of all
X-valued functions f defined on T satisfying f(0) = f(2π) and

sup
s̸=t

∥f(s)− f(t)∥
|s− t|β

< ∞.

Moreover, the norm

∥f∥Cβ
per

:= max
t∈T

∥f(t)∥+ sup
s̸=t

∥f(s)− f(t)∥
|s− t|β

on Cβ
per(T;X) is an equivalent norm of the Besov space Bα

∞,∞(T;X).

We can similarly give the definition of Cβ well-posedness of (Pα) when
0 < β < 1 as well as a characterization of the Cβ-well-posedness of (Pα)
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as a special case of Theorem 3.7 when p = q = +∞ and 0 < s < 1. We
omit the details.

We may also introduce the well-posedness of (Pα) in Triebel-Lizorkin
spaces F s

p,q(T;X). Using known operator-valued Fourier multiplier
results on F s

p,q(T;X), we may give a similar characterization of the F s
p,q

well-posedness under a stronger condition than (A2) on the sequence
(ck)k∈Z.

4. Applications. In this section, we give some examples where
our abstract results (Theorems 2.10 and 3.7) may be applied. The
degenerate fractional differential equations we consider depend on the
value of α > 0.

Example 4.1. Let Ω be a bounded domain in Rn with smooth
boundary ∂Ω and m a non-negative bounded measurable function
defined on Ω. Let X be the Hilbert space H−1(Ω). We consider the
following degenerate fractional differential equations with infinite delay:
Dα(m(x)u(t, x)) = ∆u(t, x) +

∫ t

−∞ a(t− s)(∆u)(s, x) ds+ f(t, x),

(t, x) ∈ [0, 2π]× Ω,

u(t, x) = 0 (t, x) ∈ [0, 2π]× ∂Ω,

where a ∈ L1(R+), the fractional derivative Dα in the sense of Weyl,
acts on the first variable t ∈ [0, 2π] and the Laplacian operator ∆ acts
on the second variable x ∈ Ω.

Let M be the multiplication operator by m on H−1(Ω) with domain
of definition D(M). We assume that D(∆) ⊂ D(M), where ∆ is
the Laplacian operator on H−1(Ω) with Dirichlet boundary condition.
Then, it follows from [6, Section 3.7] that a constant C ≥ 0 exists such
that

(4.1) ∥M(zM −∆)−1∥ ≤ C

1 + |z|

when Re (z) ≥ −β(1+ |Im (z)|) for some positive constant β depending

only on m. We assume that {r(α)k /1 + ck : k ∈ Z} ⊂ ρM (∆) and

sup
k∈Z

||r(α)k M [r
(α)
k M − (1 + ck)∆]−1|| < ∞,

where ck is defined by (2.6).
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We note that, if α > 0, then arg(r
(α)
k ) = απ/2 when k ≥ 1, and

arg(r
(α)
k ) = −απ/2 when k ≤ −1. This, together with fact that

lim|k|→+∞ ck = 0, implies that

(4.2) lim
|k|→+∞

arg

(
r
(α)
k

1 + ck

)
= sgn(k)

απ

2

when k ̸= 0. If 4n ≤ α ≤ 4n+1/2 for some non negative integer n, then
the estimates (4.1) and (4.2) imply that the above problem is Lp well-
posed for all 1 < p < ∞ by Theorem 2.10 whenever (ck)k∈Z satisfies
(A1). Here, we have used the fact that, in a Hilbert space H, every
norm bounded subset T ⊂ L(H) is actually R-bounded [7, Proposition
1.13].

When the sequence (ck)k∈Z defined by (2.6) satisfies (A2), the
estimates (4.1) and (4.2) imply that the above problem is Bs

p,q well-
posed for all 1 ≤ p, q ≤ ∞ and s > 0 by Theorem 3.7.

Under the same assumptions on Ω, m and a, one may also consider
the degenerate fractional differential equations:
Dα(m(x)u(t, x)) + ∆u(t, x) = −

∫ t

−∞ a(t− s)(∆u)(s, x) ds+ f(t, x),

(t, x) ∈ [0, 2π]× Ω,

u(t, x) = 0 (t, x) ∈ [0, 2π]× ∂Ω.

The same argument used above shows that, when {r(α)k /(1 + ck) : k ∈
Z} ⊂ ρM (−∆) and

sup
k∈Z

||r(α)k M [r
(α)
k M + (1 + ck)∆]−1|| < ∞,

if 4n + 1 ≤ α ≤ 4n + 2 for some non negative integer n and (ck)k∈Z
defined by (2.6) satisfies (A1), then the above problem is Lp well-posed
for all 1 < p < ∞ by Theorem 2.10. If, furthermore, (ck)k∈Z defined
by (2.6) satisfies (A2), then the above problem is Bs

p,q well-posed for
all 1 ≤ p, q ≤ ∞ and s > 0 by Theorem 3.7.
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