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ABSTRACT. In this paper, we obtain some estimates
of essential norm of the Volterra-type integral operator Tg ,
where

Tgf(z) =

∫ z

0
f(ζ)g′(ζ) dζ,

from Hardy spaces to the BMOA space, Besov spaces, Berg-
man spaces and Bloch-type spaces.

1. Introduction. The space of all analytic functions on the unit
disk D = {z : |z| < 1} in the complex plane is denoted by H(D). Let
0 < p < ∞. The Bergman space, denoted by Ap, is the space of all
f ∈ H(D) satisfying

∥f∥pAp =

∫
D
|f(z)|pdA(z) <∞,

where dA is the normalized Lebesgue area measure in D such that
A(D) = 1. The Hardy space Hp consists of all f ∈ H(D) such that

∥f∥pHp = sup
0<r<1

1

2π

∫ 2π

0

|f(reiθ)|pdθ <∞.
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As usual, H∞ denotes the space of bounded analytic function. We say
that an f ∈ H(D) belongs to the BMOA space, if

∥f∥2∗ = sup
I⊆∂D

1

|I|

∫
I

|f(ζ)− fI |2
dζ

2π
<∞,

where fI = (1/|I|)
∫
I
f(ζ)(dζ/2π). It is well known that BMOA is a

Banach space under the norm ∥f∥BMOA = |f(0)| + ∥f∥∗. From [4],
we have ∥f∥∗ is comparable with supw∈D ∥f ◦ σw − f(w)∥H2 , where
σw(z) = (w − z)/(1− wz) is a Möbius transformation of D. We say
that an f ∈ H(D) belongs to the VMOA space if

lim
|w|→1

∥f ◦ σw − f(w)∥H2 = 0.

For α > 0, we say that an f ∈ H(D) belongs to Bloch-type space
Bα if

∥f∥Bα = sup
z∈D

(1− |z|2)α|f ′(z)| <∞.

An f ∈ H(D) belongs to the little Bloch-type space Bα
0 if

lim
|z|→1

(1− |z|2)α|f ′(z)| = 0.

Let p > 1. The Besov space Bp consists of all f ∈ H(D) such that

∥f∥pBp
=

∫
|f ′(z)|p(1− |z|2)p−2dA(z) <∞.

Let 0 < p, s < ∞, −2 < q < ∞. An f ∈ H(D) is said to belong to
the space F (p, q, s) if, see [19],

∥f∥pp,q,s = sup
a∈D

∫
D
|f ′(z)|p(1− |z|2)q(1− |σa(z)|2)sdA(z) <∞.

An f ∈ H(D) belongs to the space F0(p, q, s) if

lim
|a|→1

∫
D
|f ′(z)|p(1− |z|2)q(1− |σa(z)|2)sdA(z) = 0.

The F (p, q, s) space becomes a Banach space with the norm ∥f∥F (p,q,s)

= |f(0)| + ∥f∥p,q,s. F (p, q, s) is called general function space since it
can get many function spaces by taking special parameters of p, q, s.
For example, F (2, 1, 0) = H2, F (p, p, 0) = Ap, F (2, 0, 1) = BMOA
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and F (p, q, s) = B(q+2)/p for s > 1. We denote F (p, pα − 2, 1) and
F0(p, pα− 2, 1) by BMOAα

p and BMOAα
p,0, respectively.

LetX and Y be two Banach spaces. The essential norm of a bounded
linear operator T between X and Y is defined as follows.

∥T∥X→Y
e = inf{||T −K||X→Y : K is compact},

where ∥·∥X→Y is the operator norm. It is easy to see that ∥T∥X→Y
e = 0

if and only if T is compact. For two Banach spaces X and Y with
Y ⊂ X, if f ∈ X, then the distance of f to the space Y is defined by

distX(f, Y ) = inf
h∈Y

∥f − h∥X .

For any g ∈ H(D), the Volterra-type integral operator Tg is defined
as follows:

Tgf(z) =

∫ z

0

f(ζ)g′(ζ)dζ, z ∈ D, f ∈ H(D).

The operator Tg was introduced by Pommerenke [14], and he proved
that Tg is bounded on the Hardy space H2 if and only if g belongs
to BMOA. In [1], Aleman and Siskakis showed that Pommerenke’s
boundedness characterization is valid on each Hp for 1 ≤ p < ∞ and
that Tg is compact on Hp if and only if g ∈ VMOA. The boundedness
and compactness of the operator Tg on some holomorphic spaces, as
well as its extension on the unit ball, were investigated, for example,
[1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22] (and
related references therein).

Recently, many researchers have also been interested in the study
of the essential norm of various operators. Laitila, Miihkinen and
Nieminen [7] studied the essential norm of the operator Tg on the
Hardy space. Liu, Lou and Xiong [13] studied the essential norm of
the operator Tg on the Bloch space and some other spaces. Zhuo and
Ye studied the essential norm of the operator Tg from Morrey spaces
to the Bloch space [22].

Zhao [20] obtained some characterizations of the operator Tg from
Hardy spaces to some other analytic function spaces. Therefore, it is
also interesting to study the essential norm of the operator Tg on these
spaces. The main purpose of this paper is to obtain some estimates
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for the essential norm of the operator Tg from Hardy spaces Hp to the
BMOA space, Besov spaces, Bergman spaces and Bloch-type spaces.

Throughout the paper, we say that A . B if there exists a constant
C such that A ≤ CB. The symbol A ≈ B means that A . B . A.

2. Essential norms of Tg. In this section, we will state our main
results and proofs. For this purpose, we need some useful lemmas as
follows.

Lemma 2.1 ([20]). Let g ∈ H(D), p ≥ 1, α > 0 and α − 1/p > 0.
Then the following statements hold.

(i) Tg : Hp → BMOA (p > 1) is bounded if and only if g ∈ B1−1/p,

Tg : Hp → BMOA is compact if and only if g ∈ B1−1/p
0 .

(ii) Tg : Hp → Bα is bounded if and only if g ∈ Bα−1/p, Tg : Hp → Bα

is compact if and only if g ∈ Bα−1/p
0 .

(iii) Tg : Hp → Bp (p > 1) is bounded if and only if g ∈ BMOA 1−1/p
p ,

Tg : Hp → Bp is compact if and only if g ∈ BMOA
1−1/p
p,0 .

(iv) Tg : Hp → Ap is bounded if and only if g ∈ BMOA 1+1/p
p ,

Tg : Hp → Ap is compact if and only if g ∈ BMOA
1+1/p
p,0 .

Remark 2.2. When p = 1, from [20, Theorem 11], we see that Tg :
H1 → BMOA is bounded if and only if g′ ∈ H∞. Tg : H1 → BMOA is
compact if and only if g is a constant.

The next lemma can be proved similarly as [18]. For the complete-
ness of this paper, we include the proof here.

Lemma 2.3. If α > 0 and g ∈ Bα, then

distBα(g,Bα
0 ) ≈ lim sup

|z|→1

(1− |z|2)α|g′(z)|.

Proof. Denote by fr(z) = f(rz) for 0 < r < 1. For any given g ∈ Bα,
then gr ∈ Bα

0 and ∥gr∥Bα . ∥g∥Bα . For any given δ ∈ (0, 1), it is easy
to see that

lim
r→1

sup
|z|≤δ

(1− |z|2)|g′(z)− g′r(z)| = 0,
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which implies

distBα(g,Bα
0 ) = inf

f∈Bα
0

∥g − f∥Bα ≤ lim
r→1

∥g − gr∥Bα

= lim
r→1

sup
|z|>δ

(1− |z|2)α|g′(z)− rg′(rz)|

+ lim
r→1

sup
|z|≤δ

(1− |z|2)|g′(z)− g′r(z)|

≤ sup
|z|>δ

(1− |z|2)α|g′(z)|+ lim
r→1

sup
|z|>δ

(1− |z|2)α|rg′(rz)|.

Since δ is arbitrary, we have distBα(g,Bα
0 ) . lim sup|z|→1(1−|z|2)α|g′(z)|.

On the other hand, for any f ∈ Bα
0 ,

∥g − f∥Bα ≥ lim sup
|z|→1

(1− |z|2)|g′(z)− f ′(z)|

= lim sup
|z|→1

(1− |z|2)α|g′(z)|.

This yields

distBα(g,Bα
0 ) = inf

f∈Bα
0

∥g − f∥Bα ≥ lim sup
|z|→1

(1− |z|2)α|g′(z)|,

as desired. The proof is complete. �

Lemma 2.4. ([7, Lemma 3]). Suppose g ∈ BMOA. Then

distBMOA(g,VMOA) ≈ lim sup
r→1

∥g − gr∥BMOA

≈ lim sup
|a|→1

∥g ◦ σa − g(a)∥H2 .

Here gr(z) = g(rz) with 0 < r < 1.

Lemma 2.5. Let p > 0 and α > 0. If g ∈ BMOAα
p , then

distBMOAα
p
(g,BMOAα

p,0)

≈ lim sup
|a|→1

∫
D
|g′(z)|2(1− |z|2)pα−2(1− |σa(z)|2) dA(z).

Proof. Denote by fr(z) = f(rz) for 0 < r < 1. For any given
g ∈ BMOAα

p , then gr ∈ BMOAα
p,0 and ∥gr∥BMOAα

p
. ∥g∥BMOAα

p
. Let
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δ ∈ (0, 1). We choose a ∈ (0, δ). Then σa(z) lies in a compact subset
of D. So

lim
r→1

sup
z∈D

|g′(σa(z))− rg′(rσa(z))| = 0.

Making a change of variables, we have

lim
r→1

sup
|a|≤δ

∫
D
|g′(z)− g′r(z)|p(1− |z|2)pα−2(1− |σa(z)|2) dA(z)

= lim
r→1

sup
|a|≤δ

∫
D
|g′(σa(z))− g′r(σa(z))|p(1− |z|2)pα−1|σ′

a(z)|pαdA(z)

= lim
r→1

sup
|a|≤δ

sup
z∈D

|g′(σa(z))−g′r(σa(z))|p
∫
D
(1−|z|2)pα−1|σ′

a(z)|pαdA(z)=0.

By the definition of distance, we obtain

distBMOAα
p
(g,BMOAα

p,0) = inf
f∈BMOAα

p,0

∥g − f∥BMOAα
p

≤ lim
r→1

∥g − gr∥BMOAα
p

= lim
r→1

sup
|a|>δ

∫
D
|g′(z)− g′r(z)|p(1− |z|2)pα−2(1− |σa(z)|2) dA(z)

+ lim
r→1

sup
|a|≤δ

∫
D
|g′(z)− g′r(z)|p(1− |z|2)pα−2(1− |σa(z)|2) dA(z)

. sup
|a|>δ

∫
D
|g′(z)|p(1− |z|2)pα−2(1− |σa(z)|2) dA(z)

+ lim
r→1

sup
|a|>δ

∫
D
|g′r(z)|p(1− |z|2)pα−2(1− |σa(z)|2) dA(z).

Denote by ψr,a(z) = σra ◦ rσa(z). Then ψr,a is an analytic self-map
of D and ψr,a(0) = 0. Making a change of variable of z = σa(z) and
applying Littlewood’s subordination theorem (see [3, Theorem 1.7]),
we have∫

D
|g′r(z)|p(1− |z|2)pα−2(1− |σa(z)|2) dA(z)

=

∫
D
|g′r(σa(z))|p(1− |σa(z)|2)pα(1− |z|2)−1dA(z)

≤
∫
D
|g′ ◦ σra ◦ ψr,a(z)|p(1− |σra ◦ ψr,a(z)|2)pα(1− |z|2)−1dA(z)
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≤
∫
D
|g′ ◦ σra ◦ ψr,a(z)|p(1− |σra ◦ ψr,a(z)|2)pα(1− |z|2)−1dA(z)

≤
∫
D
|g′ ◦ σra(z)|p(1− |σra(z)|2)pα(1− |z|2)−1dA(z)

≤
∫
D
|g′(z)|p(1− |z|2)pα−2(1− |σra(z)|2) dA(z).

Since δ is arbitrary, we get

(2.1) distBMOAα
p
(g,BMOAα

p,0)

. lim sup
|a|→1

∫
D
|g′(z)|p(1− |z|2)pα−2(1− |σa(z)|2) dA(z).

On the other hand, for any f ∈ BMOAα
p ,

distBMOAα
p
(g,BMOAα

p,0) = inf
f∈BMOAα

p,0

∥g − f∥BMOAα
p

& lim sup
|a|→1

∫
D
|g′(z)|p(1− |z|2)pα−2(1− |σa(z)|2) dA(z),

which, together with equation (2.1), implies the desired result. The
proof is complete. �

Theorem 2.6. Let g ∈ H(D) and p > 1. Suppose that Tg : Hp →
BMOA is bounded. Then

∥Tg∥H
p→BMOA

e ≈ lim sup
|z|→1

(1− |z|2)1−1/p|g′(z)|.

Proof. First, we prove the upper estimate for the essential norm of

Tg. For each h ∈ B1−1/p
0 , the operator Th : Hp → BMOA is compact

by Lemma 2.1. Moreover, by the linearity of Tg respect to g, we have

∥Tg∥H
p→BMOA

e ≤∥Tg−Th∥H
p→BMOA=∥Tg−h∥H

p→BMOA.∥g−h∥B1−1/p .

Hence,
(2.2)

∥Tg∥H
p→BMOA

e . inf
h∈B1−1/p

0

∥g − h∥B1−1/p = distB1−1/p(g,B1−1/p
0 )

≈ lim sup
|z|→1

(1− |z|2)1−1/p|g′(z)|.
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For any a ∈ D, we define

(2.3) fa(z) =

[
1− |a|2

(1− az)2

]1/p
.

Taking z = reiθ and the Poisson integral formula gives the following:

∥fa∥Hp = sup
0<r<1

(
1

2π

∫ 2π

0

|fa(reiθ)|pdθ
)1/p

= sup
0<r<1

(
1

2π

∫ 2π

0

1− |a|2

|1− areiθ|2
dθ

)1/p

= sup
0<r<1

(
1− |a|2

1− |ar|2

)1/p

= 1.

In the meantime, we have |fa(a)|(1−|a|2)1/p = 1. Since fa → 0 weakly
in Hp as |a| → 1, we have ∥Kfa∥BMOA → 0 as |a| → 1 for any compact
operator K : Hp → BMOA. Moreover,

∥Tg−K∥H
p→BMOA ≥ ∥(Tg−K)fa∥BMOA ≥ ∥Tgfa∥BMOA−∥Kfa∥BMOA.

Therefore,

∥Tg−K∥H
p→BMOA ≥ lim sup

|a|→1

∥(Tg−K)fa∥BMOA ≥ lim sup
|a|→1

∥Tgfa∥BMOA,

which implies that

∥Tg∥H
p→BMOA

e ≥ lim sup
|a|→1

∥Tgfa∥BMOA.

In addition, by [19, Lemma 2.9], we have

∥Tgfa∥BMOA =

√
sup
b∈D

∫
D
|(Tgfa)′(z)|2(1− |σb(z)|) dA(z)

≥

√∫
D
|(Tgfa)′(z)|2(1− |σa(z)|) dA(z)

=

√∫
D
|g′(z)|2(1− |z|2)−2/p(1− |σa(z)|2)1+2/p dA(z)

& (1− |a|2)1−1/p|g′(a)|.
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Therefore,

∥Tg∥H
p→BMOA

e ≥ lim sup
|a|→1

∥Tgfa∥BMOA & lim sup
|a|→1

(1− |a|2)1−1/p|g′(a)|.

Then inequality (2.2) combined with the last inequality gives the
desired result. The proof is complete. �

Remark 2.7. When p = 1, from Remark 2.2 and the definition of the

essential norm operator we see that ∥Tg∥H
1→BMOA

e = 0.

Theorem 2.8. Let g ∈ H(D), p ≥ 1 and α > 1/p. Suppose that
Tg : Hp → Bα is bounded. Then

∥Tg∥H
p→Bα

e ≈ lim sup
|z|→1

(1− |z|2)α−1/p|g′(z)|.

Proof. The upper estimate for the essential norm of Tg is similar to
the proof of Theorem 2.6. We omit the details of the proof.

Now we only give the proof for the lower estimate. For any a ∈ D,
we choose the test function fa which is defined in equation (2.3). Since
fa → 0 weakly in Hp as |a| → 1, we have

∥Kfa∥Bα −→ 0 as |a| → 1,

for any compact operator K : Hp → Bα. Thus,

∥Tg −K∥H
p→Bα

≥ lim sup
|a|→1

∥(Tg −K)fa∥Bα

≥ lim sup
|a|→1

∥Tgfa∥Bα − lim sup
|a|→1

∥Kfa∥Bα .

Note that

∥Tgfa∥Bα = sup
z∈D

|(Tgfa)′(z)|(1− |z|2)α ≥ |(Tgfa)′(z)|(1− |a|2)α

= |g′(a)|(1− |a|2)α−1/p.

The last inequality gives

∥Tg∥H
p→Bα

e ≥ lim sup
|a|→1

∥Tgfa∥Bα & lim sup
|a|→1

(1− |a|2)α−1/p|g′(a)|.

The proof is complete. �
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Theorem 2.9. Let g ∈ H(D) and p > 1. Suppose that Tg : Hp → Bp

is bounded. Then,

∥Tg∥H
p→Bp

e ≈ lim sup
|a|→1

∫
D
|g′(z)|p(1− |z|2)p−3(1− |σa(z)|2) dA(z).

Proof. First, we consider the upper estimate for the essential norm

of Tg. Indeed, for each h ∈ BMOA
1−1/p
p,0 , the operator Th is compact

from Hp to Bp by Lemma 2.1. Moreover,
(2.4)

∥Tg∥H
p→Bp

e ≤ ∥Tg − Th∥H
p→Bp = ∥Tg−h∥H

p→Bp . ∥g − h∥
BMOA

1−1/p
p

.

Hence, by Lemma 2.4 and inequality (2.4) we have

∥Tg∥H
p→Bp

e . inf
h∈BMOA

1−1/p
p,0

∥g − h∥
BMOA

1−1/p
p

(2.5)

= dist
BMOA

1−1/p
p

(g,BMOA
1−1/p
p,0 )

≈ lim sup
|a|→1

∫
D
|g′(z)|p(1− |z|2)p−3(1− |σa(z)|2) dA(z).

Let fa be defined as in equation (2.3). Since fa → 0 weakly in Hp

as |a| → 1, we have ∥Kfa∥Bp
→ 0 as |a| → 1 for any compact operator

K : Hp → Bp. In addition,

∥Tg −K∥H
p→Bp ≥ ∥(Tg −K)fa∥Bp ≥ ∥Tgfa∥Bp − ∥Kfa∥Bp ,

we have

∥Tg −K∥H
p→Bp ≥ lim sup

|a|→1

∥(Tg −K)fa∥Bp ≥ lim sup
|a|→1

∥Tgfa∥Bp .

Since

∥Tgfa∥Bp =

∫
D
|(Tgfa)′(z)|p(1− |z|2)p−2dA(z)

=

∫
D
|g′(z)|p(1− |z|2)p−3(1− |σa(z)|) dA(z),
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we get

(2.6) ∥Tg∥H
p→Bp

e & lim sup
|a|→1

∫
D
|g′(z)|p(1−|z|2)p−3(1−|σa(z)|2) dA(z).

Then, inequality (2.5) combined with inequality (2.6) gives the desired
result. The proof is complete. �

Remark 2.10. When p = 1, the definition of Besov space is completely
different than the case of p > 1. The analytic Besov space B1 is defined
to be the set of all f ∈ H(D) which can be written as

f(z) =
∞∑

n=1

anσλn(z)

for {an} in l1 and λn ∈ D. The norm of B1 is defined by

∥f∥B1 = inf

{ ∞∑
n=1

|an| : f(z) =
∞∑

n=1

anσλn(z)

}
.

It is obvious that B1 ⊂ H∞ ⊂ BMOA. From Remarks 2.2 and 2.7
we see that Tg : H1 → B1 is compact if and only if g is a constant.

Moreover, ∥Tg∥H
1→BMOA

e = 0.

Similarly to the proof of Theorem 2.9, we immediately get the
following result. We omit the proof here. �

Theorem 2.11. Let g ∈ H(D) and p ≥ 1. Suppose that Tg : Hp → Ap

is bounded. Then

∥Tg∥H
p→Ap

e ≈ lim sup
|a|→1

∫
D
|g′(z)|p(1− |z|2)p−1(1− |σa(z)|2) dA(z).
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