
JOURNAL OF INTEGRAL EQUATIONS
AND APPLICATIONS
Volume 28, Number 4, Winter 2016

EXISTENCE OF SOLUTIONS AND
CONTROLLABILITY FOR IMPULSIVE

FRACTIONAL ORDER DAMPED SYSTEMS

ZHENHAI LIU AND XUEMEI LI

Communicated by Da Xu

ABSTRACT. In this paper, we are concerned with the
controllability of linear and nonlinear Caputo impulsive
fractional order damped systems in Banach spaces. Our
main purpose is to establish some necessary and sufficient
conditions for controllability for this kind of impulsive
control system by using Mittag-Leffler matrix functions and
the Schauder fixed point theorem.

1. Introduction. Control theory is an area of application-oriented
mathematics which deals with basic principles underlying the analy-
sis and design of control systems. It is well known that the study
of controllability plays an important role in control theory and en-
gineering. Although most dynamical systems are analyzed in either
the continuous- or discrete-time domain, many real systems in physics,
chemistry, biology, engineering, and information science, may experi-
ence abrupt changes at certain instances during continuous dynamical
processes. These kinds of impulsive behaviors can be modeled by im-
pulsive systems. Instantaneous impulsive fractional differential equa-
tions are used to describe some practical dynamical systems including
evolutionary processes which are characterized by abrupt changes of
the state in certain instances. The theory of instantaneous impulsive
fractional differential equations has found its extensive applications
in realistic mathematical models and has emerged as an important
area of investigation in recent years. The study of impulsive control
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systems has received increasing interest and has had rapid develop-
ment in the past few years, since dynamical systems with impulsive
effects have great importance in applied sciences (see, for example,
[3, 4, 6, 8, 9, 10, 11, 12, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26]
and the references therein).

In this paper, we study controllability results for the following
fractional order damped impulsive linear control systems:

(1.1)


cDα

t x(t) = AcDβ
t x(t) +Bu(t) t ∈ J ′,

∆x(ti) := Ii(x(t
−
i )), ∆x′(ti) := Ji(x

′(t−i )) i = 1, 2, . . . , k,

x(0) = x0, x′(0) = x′
0,

and the following fractional order damped impulsive nonlinear control
systems:

(1.2)


cDα

t x(t) = AcDβ
t x(t) +Bu(t) + f(t, x(t)) t ∈ J ′,

∆x(ti) := Ii(x(t
−
i )), ∆x′(ti) := Ji(x

′(t−i )) i = 1, 2, . . . , k,

x(0) = x0, x′(0) = x′
0,

where 0 < β ≤ 1 < α ≤ 2, cDα
t and cDβ

t denote the Caputo fractional
derivatives of orders α and β with lower limit zero, respectively. A and
B are n× n and n×m matrices, respectively.

J = [0, T ], J ′ = J − {t1, t2, · · · , tk}

and

0 = t0 < t1 < t2 < · · · < ti < · · · < tk < tk+1 = T < ∞,

f : J×Rn → Rn, Ii, Ji : Rn → Rn, i = 1, 2, . . . , k. x(t) ∈ Rn is the state
variable. u(t) ∈ Rm is the control variable. ∆x(ti) := x(t+i ) − x(t−i ),
where x(t+i ) = lim

ϵ→0+
x(ti + ϵ) and x(t−i ) = lim

ϵ→0−
x(ti + ϵ) represent the

right and left limits of x(t) at t = ti, respectively. ∆x′(ti) is similarly
defined.

The fractional order damped control systems without impulse effect
in finite-dimensional spaces above were considered by Balachandran,
Govindaraj, Reiver and Trujillo [2]. They studied the controllability of
linear and nonlinear fractional order damped systems. In this paper, we
deal with the controllability of linear and nonlinear Caputo impulsive
fractional order damped systems. Our main purpose is to establish
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some necessary and sufficient conditions of controllability for this type
of impulsive control system by using Mittag-Leffler matrix functions
and the Schauder fixed point theorem.

This paper is organized as follows. In Section 2, we give some
notation and recall some preliminary material. In Section 3, we give
the solution expression of impulsive fractional systems. In Section 4,
we study the controllability of systems (1.1) and (1.2).

2. Preliminaries. In this section, we introduce some basic defini-
tions and preliminaries which are used throughout this paper. Let Rn

be the n-dimensional Euclidean space, R+ = [0,∞). Let C(J,Rn) be
the Banach space of all continuous functions from J into Rn with the
norm

∥u∥c := sup{∥u(t)∥Rn : t ∈ J} for u ∈ C(J,Rn).

For brevity, ∥u(t)∥Rn is taken as ∥u(t)∥. We also introduce the spaces:

PC(J,Rn) = {u : J → Rn | u ∈ C((ti, ti+1],Rn), u(t−i ), u(t
+
i ) exist

and u(t−i ) = u(ti), i = 0, 1, 2, . . . , k},

with the norms

∥u∥PC : = sup{∥u(t)∥ : t ∈ J},
PC1(J,Rn) = {u ∈ PC(J,Rn) : u′ ∈ PC(J,Rn)},

and

∥u∥PC1 : = max{∥u∥PC , ∥u′∥PC}.

Obviously, PC(J,Rn) and PC1(J,Rn) are Banach spaces. The Banach
space of all Lebesgue p-integrable functions from J into Rn with

∥f∥Lp :=

(∫
J

∥f(t)∥pdt
)1/p

are denoted by Lp(J,Rn).

Firstly, let us recall the following basic definitions from fractional
calculus. For more details, see [7, 15].
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Definition 2.1. The fractional integral of order α with lower limit 0
for a function f : [0,∞) → R is defined as

(2.1) Iαt f(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s) ds, α > 0, t > 0,

provided the right-hand side is pointwise defined on [0,∞), where Γ is
the Gamma function.

Definition 2.2. The Caputo derivative of order α with lower limit 0
for a function f : [0,∞) → R can be written as:

cDα
t f(t) =

1

Γ(n− α)

∫ t

0

(t− s)n−α−1f (n)(s) dt,

0 < n− 1 < α ≤ n.

Its Laplace transform is defined by

L{cDα
t f(t)}(s) = sαF (s)−

n−1∑
k=0

f (k)(0+)sα−1−k.

In particular, if 0 < α ≤ 1, then

L{cDα
t f(t)}(s) = sαF (s)− f(0+)sα−1,

and, if 1 < α ≤ 2, then

L{cDα
t f(t)}(s) = sαF (s)− f(0+)sα−1 − f ′(0+)sα−2.

Next, let us proceed to the definition and properties of the Mittag-
Leffler function which can be found in [7, 13, 14, 15].

Definition 2.3. The two-parameter Mittag-Leffler function is defined
by:

Eα,β(Z) =
∞∑
k=0

Zk

Γ(αk + β)
, α > 0, β > 0,

where Z ∈ C. The Laplace transform of the Mittag-Leffler function is:

L{tβ−1Eα,β(±atα)}(s) = sα−β

sα ∓ a
, Re (s) > |a|1/α.
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In particular, for β = 1,

Eα,1(Z) = Eα(Z) =
∞∑
k=0

Zk

Γ(αk + 1)
, Z ∈ C.

Remark 2.4. Let A ∈ Cn×n. The matrix extension of the aforemen-
tioned Mittag-Leffler function has the following representation:

Eα,β(At
α) =

∞∑
k=0

Aktkα

Γ(αk + β)
, α > 0, β > 0

and

L{tβ−1Eα,β(At
α)}(s) = (sαI −A)−1sα−β , Re (s) > ∥A∥1/α.

In order to define the solution of systems (1.1) and (1.2), we need:

Lemma 2.5 (cf. [9]). If f ∈ PCn(J,R), n− 1 < α < n, then we have
the following general expression:

Iαt
cDα

t f(t)

=



f(t)−
n−1∑
j=0

f(j)(0)
j! tj t ∈ [0, t1],

f(t)−
n−1∑
j=0

f(j)(0)
j! tj

−
i∑

m=1

n−1∑
j=0

∆f(j)(tm)
j! (t− tm)j t ∈ (ti, ti+1], i = 1, 2, . . . , k.

3. The solution of impulsive fractional systems. In the present
section, we turn our attention to the solution formula of the impulsive
fractional control systems. Now, according to Lemma 2.5, we have the
following.

Theorem 3.1. Let α ∈ (1, 2], β ∈ (0, 1], B ∈ Rn×m and u ∈
L1/p(J,Rm), p ∈ (0, α − 1), if x ∈ PC1(J,Rn), and x is a solution
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of the following problem:

(3.1)


cDα

t x(t) = AcDβ
t x(t) +Bu(t) t ∈ J ′,

∆x(ti) = Ii(x(t
−
i )),∆x′(ti) = Ji(x

′(t−i )) i = 1, 2, . . . , k,

x(0) = x0, x
′(0) = x′

0.

Then, x satisfies the following equation:
(3.2)

x(t) =



Eα−β(Atα−β)x0 + tEα−β,2(At
α−β)x′

0

−Atα−βEα−β,α−β+1(At
α−β)x0

+
∫ t

0
(t− s)α−1Eα−β,α(A(t− s)α−β)Bu(s) ds, t ∈ [0, t1],

Eα−β(At
α−β)x0 −Atα−βEα−β,α−β+1(Atα−β)x0

+tEα−β,2(At
α−β)x′

0 +
i∑

j=1

Eα−β(A(t− tj)
α−β)Ij(x(t

−
j ))

−A
i∑

j=1

(t− tj)
α−βEα−β,α−β+1(A(t− tj)

α−β)Ij(x(t
−
j ))

+
i∑

j=1

(t− tj)Eα−β,2(A(t− tj)
α−β)Jj(x

′(t−j ))

+
∫ t

0
(t− s)α−1Eα−β,α(A(t− s)α−β)Bu(s) ds,

t ∈ (ti, ti+1], i = 1, 2, . . . , k.

Proof. We observe that x(·) can be decomposed to v(·)+w(·), where
v is the continuous solution for

(3.3)

{
cDα

t v(t) = AcDβ
t v(t) +Bu(t) t ∈ J,

v(0) = x0, v
′(0) = x′

0,

and w is the solution for

(3.4)


cDα

t w(t) = AcDβ
t w(t) t ∈ J ′,

∆w(ti) = Ii(x(t
−
i )),∆w′(ti) = Ji(x

′(t−i )) i = 1, 2, . . . , k,

w(0) = 0, w′(0) = 0.

Firstly, by [2], we get that the solution of equation (3.3) is given by:

v(t) = Eα−β(Atα−β)x0 −Atα−βEα−β,α−β+1(Atα−β)x0

+ tEα−β,2(Atα−β)x′
0



IMPULSIVE FRACTIONAL ORDER DAMPED SYSTEMS 557

+

∫ t

0

(t− s)α−1Eα−β,α(A(t− s)α−β)Bu(s) ds, t ∈ J.

Next, we calculate the solution of equation (3.4).

In order to do this, we apply the Riemann-Liouville fractional
integral operator on both sides of the equation (3.4), to obtain

Iαt
cDα

t w(t) = AIαt
cDβ

t w(t) = AIα−β
t (Iβt

cDβ
t w(t)).

If t ∈ [0, t1], by Lemma 2.5, we have

w(t)− w(0)− w′(0)t = AIα−β
t w(t)−AIα−β

t w(0).

Since w(0) = 0, w′(0) = 0, then

(3.5) w(t) =
A

Γ(α− β)

∫ t

0

(t− s)α−β−1w(s) ds.

If t ∈ (ti, ti+1], i = 1, 2, . . . , k, again by Lemma 2.5, we have

w(t)− w(0)− w′(0)t−
i∑

j=1

∆w(tj)−
i∑

j=1

∆w′(tj)(t− tj)

= AIα−β
t [w(t)− w(0)−

i∑
j=1

∆w(tj)].

It follows from equation (3.4) that

w(t) =

i∑
j=1

∆w(tj) +

i∑
j=1

∆w′(tj)(t− tj) +AIα−β
t w(t)(3.6)

− A(t− tj)
α−β

Γ(α− β + 1)

i∑
j=1

∆w(tj)

=
i∑

j=1

Ij(x(t
−
j ))−

A(t− tj)
α−β

Γ(α− β + 1)

i∑
j=1

Ii(x(t
−
j ))

+
i∑

j=1

Jj(x
′(t−j ))(t− tj)
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+
A

Γ(α− β)

∫ t

0

(t− s)α−β−1w(s) ds.

Equations (3.5)and (3.6) can be rewritten as

w(t) =
i∑

j=1

Ij(x(t
−
j ))χj(t) +

i∑
j=1

Jj(x
′(t−j ))χj(t)(t− tj)(3.7)

− A(t− tj)
α−β

Γ(α− β + 1)

i∑
j=1

Ij(x(t
−
j ))χj(t)

+
A

Γ(α− β)

∫ t

0

(t− s)α−β−1w(s) ds, t ∈ (ti, ti+1],

where

χj(t) =

{
0 t ≤ tj ,

1 t > tj .

Let λ > 0. We adopt the idea in [25] and apply the Laplace
transformation to (3.7). Then

W (λ) =
i∑

j=1

e−λtj

λ
Ij(x(t

−
j )) +

i∑
j=1

e−λtj

λ2
Jj(x

′(t−j ))

−
i∑

j=1

Ae−λtj

λα−β+1
Ij(x(t

−
j )) +

A

λα−β
W (λ),

which implies

W (λ) =
i∑

j=1

λα−β−1(λα−βI −A)−1e−λtjIj(x(t
−
j ))

+
i∑

j=1

λα−β−2(λα−βI −A)−1e−λtjJj(x
′(t−j ))

−
i∑

j=1

λ−1A(λα−βI −A)−1e−λtjIj(x(t
−
j )).

Note that the Laplace transform of tβ−1Eα,β(Atα) is λα−β(λα−βI−
A)−1. Thus, we can calculate the solution of (3.4) as
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w(t) =
i∑

j=1

χj(t)Eα−β(A(t− tj)
α−β)Ij(x(t

−
j ))

+

i∑
j=1

χj(t)(t− tj)Eα−β,2(A(t− tα−β
j )Jj(x

′(t−j ))

−A
i∑

j=1

χj(t)(t− tj)
α−βEα−β,α−β+1(A(t− tj)

α−β)Ij(x(t
−
j )).

By the above, the solution of equation (3.1) can be given by:

x(t) = Eα−β(Atα−β)x0 −Atα−βEα−β,α−β+1(Atα−β)x0

+ tEα−β,2(Atα−β)x′
0 +

i∑
j=1

χj(t)Eα−β(A(t− tj)
α−β)Ij(x(t

−
j ))

+

i∑
j=1

χj(t)(t− tj)Eα−β,2(A(t− tα−β
j )Jj(x

′(t−j ))

−A
i∑

j=1

χj(t)(t− tj)
α−βEα−β,α−β+1(A(t− tj)

α−β)Ij(x(t
−
j ))

+

∫ t

0

(t− s)α−1Eα−β,α(A(t− s)α−β)Bu(s) ds, t ∈ (ti, ti+1],

that is,

x(t)=



Eα−β(At
α−β)x0−Atα−βEα−β,α−β+1(Atα−β)x0+tEα−β,2(Atα−β)x′

0

+
∫ t

0
(t− s)α−1Eα−β,α(A(t− s)α−β)Bu(s) ds, t ∈ [0, t1],

Eα−β(At
α−β)x0−Atα−βEα−β,α−β+1(Atα−β)x0+tEα−β,2(Atα−β)x′

0

+
∑i

j=1 Eα−β(A(t− tj)
α−β)Ij(x(t

−
j ))

+
∑i

j=1(t− tj)Eα−β,2(A(t− tj)
α−β)Jj(x

′(t−j ))

−A
∑i

j=1(t− tj)
α−βEα−β,α−β+1(A(t− tj)

α−β)Ij(x(t
−
j ))

+
∫ t

0
(t− s)α−1Eα−β,α(A(t− s)α−β)Bu(s) ds,

t ∈ (ti, ti+1], i = 1, 2, . . . , k.

The proof is completed. �
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Remark 3.2. The concept of the solution to the homogeneous im-
pulsive problem (3.4) is crucial. Recently, some different views on it,
cf. [19], have arisen. However, the authors in [5] have given a clear and
correct definition for the concept of the solution of the homogeneous
impulsive problem (3.4).

4. Main results. In this section, we present our main results on
controllability of linear system (1.1) and nonlinear system (1.2).

First, following [1], we give the concept of controllability as follows.

Definition 4.1. System (1.1) is said to be controllable on [0, tf ],
tf ∈ (0, T ], if, for each vector x0, x

′
0, xtf ∈ Rn, there exists a control

u ∈ L1/p([0, tf ],Rm), p ∈ (0, α − 1), such that the corresponding
solution of (1.1) satisfies x(tf ) = xtf .

4.1. Linear system case. We first give a necessary and sufficient
condition of controllability for linear system (1.1).

Theorem 4.2. Linear system (1.1) is controllable on [0, tf ] if and only
if the n× n Gramian matrix

W [0, tf ] =

∫ tf

0

(tf − s)2α−2[Eα−β,α(A(tf − s)α−β)B]

× [Eα−β,α(A(tf − s)α−β)B]∗ds

is non-singular. Here, ∗ denotes the matrix transpose.

Proof. Sufficiency. Suppose that W [0, tf ] is non-singular. Then its
inverse is well defined. For tf ∈ [0, t1], define the control function as

(4.1) u(t) = (tf − t)α−1B∗Eα−β,α(A
∗(tf − t)α−β)W−1[0, tf ]ytf ,

where

ytf = xtf − Eα−β(Atα−β
f )x0 −Atα−β

f Eα−β,α−β+1(Atα−β
f )x0(4.2)

+ tfEα−β,2(Atα−β
f )x′

0.
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Substituting t = tf in (3.2) and inserting (4.1) and (4.2), we have

x(tf ) = Eα−β(At
α−β
f )x0 −Atα−β

f Eα−β,α−β+1(Atα−β
f )x0

+ tfEα−β,2(At
α−β
f )x′

0 +

∫ tf

0

(tf−s)α−1Eα−β,α(A(tf−s)α−β)

×B(tf − s)α−1B∗Eα−β,α(A
∗(tf − s)α−β)W−1[0, tf ]ytf ds

= xtf − ytf +W [0, tf ]W
−1[0, tf ]ytf = xtf .

Thus, system (1.1) is controllable on [0, tf ] if tf ∈ [0, t1].

Next, for tf ∈ (t1, t2], define the control function as

u(t) = (tf − t)α−1B∗Eα−β,α(A
∗(tf − t)α−β)W−1[0, tf ](4.3) [

ytf − Eα−β(A(tf − t1)
α−β)I1(x(t

−
1 ))

+A(tf − t1)
α−βEα−β,α−β+1(A(tf − t1)

α−β)I1(x(t
−
1 ))

− (tf − t1)Eα−β,2(A(tf − t1)
α−β)J1(x

′(t−1 ))
]
.

Substituting t = tf in equation (3.2) and inserting (4.2) and (4.3), we
obtain

x(tf ) = Eα−β(At
α−β
f )x0 −Atα−β

f Eα−β,α−β+1(Atα−β
f )x0

+ tfEα−β,2(Atα−β
f )x′

0 + Eα−β(A(tf − t1)
α−β)I1(x(t

−
1 ))

+ (tf − t1)Eα−β,2(A(tf − t1)
α−β)J1(x

′(t−1 ))

−A(tf − t1)
α−βEα−β,α−β+1(A(tf − t1)

α−β)I1(x(t
−
1 ))

+

∫ tf

0

(tf − s)α−1Eα−β,α(A(tf − s)α−β)B(tf − s)α−1

×B∗Eα−β,α(A
∗(tf − s)α−β)W−1[0, tf ]

×
[
ytf +A(tf − t1)

α−βEα−β,α−β+1(A(tf − t1)
α−β)I1(x(t

−
1 ))

− Eα−β(A(tf − t1)
α−β)I1(x(t

−
1 ))

− (tf − t1)Eα−β,2(A(tf − t1)
α−β)J1(x

′(t−1 ))
]
ds

= xtf − ytf + Eα−β(A(tf − t1)
α−β)I1(x(t

−
1 ))

−A(tf − t1)
α−βEα−β,α−β+1(A(tf − t1)

α−β)I1(x(t
−
1 ))

+ (tf − t1)Eα−β,2(A(tf − t1)
α−β)J1(x

′(t−1 ))
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+W [0, tf ]W
−1[0, tf ]

[
ytf − Eα−β(A(tf − t1)

α−β)I1(x(t
−
1 ))

+A(tf − t1)
α−βEα−β,α−β+1(A(tf − t1)

α−β)I1(x(t
−
1 ))

− (tf − t1)Eα−β,2(A(tf − t1)
α−β)J1(x

′(t−1 ))
]

= xtf .

Thus system (1.1) is controllable on [0, tf ], if tf ∈ (t1, t2].

Moreover, for tf ∈ (ti, ti+1], i = 1, 2, . . . , k, define the control
function as

u(t) = (tf − t)α−1B∗Eα−β,α(A
∗(tf − t)α−β)W−1[0, tf ]

(4.4)

[
ytf −

i∑
j=1

Eα−β(A(tf − tj)
α−β)Ij(x(t

−
j ))

+A
i∑

j=1

(tf − tj)
α−βEα−β,α−β+1(A(tf − tj)

α−β)Ij(x(t
−
j ))

−
i∑

j=1

(tf − tj)Eα−β,2(A(tf − tj)
α−β)Jj(x

′(t−j ))
]
.

Substituting t = tf into (3.2) and inserting (4.2) and (4.4), we have

x(tf ) = Eα−β(Atα−β
f )x0 −Atα−β

f Eα−β,α−β+1(At
α−β
f )x0

+ tfEα−β,2(At
α−β
f )x′

0 +

i∑
j=1

Eα−β(A(tf − tj)
α−β)Ij(x(t

−
j ))

+
i∑

j=1

(tf − tj)Eα−β,2(A(tf − tj)
α−β)Jj(x

′(t−j ))

−A
i∑

j=1

(tf − tj)
α−βEα−β,α−β+1(A(tf − tj)

α−β)Ij(x(t
−
j ))

+

∫ tf

0

(tf − s)α−1Eα−β,α(A(tf − s)α−β)B(tf − s)α−1

×B∗Eα−β,α(A
∗(tf − s)α−β)W−1[0, tf ]
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[
ytf −

i∑
j=1

Eα−β(A(tf − tj)
α−β)Ij(x(t

−
j ))

−
i∑

j=1

(tf − tj)Eα−β,2(A(tf − tj)
α−β)Jj(x

′(t−j ))

+A
i∑

j=1

(tf − tj)
α−βEα−β,α−β+1(A(tf − tj)

α−β)Ij(x(t
−
j ))

]
ds

= xtf − ytf +W [0, tf ]W
−1[0, tf ]ytf

= xtf .

Thus, system (1.1) is controllable on [0, tf ] if tf ∈ (0, T ].

Necessity. Suppose that system (1.1) is controllable. Now we prove
that W [0, tf ] is nonsingular. In fact, if W [0, tf ] is singular, without loss
of generality, for tf ∈ (ti, ti+1], i = 0, 1, . . . , k, there exists a nonzero z0
such that

z∗0W [0, tf ]z0 = 0,

that is,∫ tf

0

z∗0(tf − s)2α−2Eα−β,α(A(tf − s)α−β)BB∗

× Eα−β,α(A
∗(tf − s)α−β)z0 ds = 0.

Then, it follows that

z∗0(tf − s)α−1Eα−β,α(A(tf − s)α−β)B = 0,

on s ∈ [0, tf ]. Since system (1.1) is controllable, then there exists a
control u1(t) such that it steers x0, x

′
0 ∈ Rn to the origin xtf = 0, i.e.,

0 = x(tf )(4.5)

= Eα−β(At
α−β
f )x0 + tfEα−β,2(At

α−β
f )x′

0

−Atα−β
f Eα−β,α−β+1(At

α−β
f )x0

+
i∑

j=1

Eα−β(A(tf − tj)
α−β)Ij(x(t

−
j ))
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+
i∑

j=1

(tf − tj)Eα−β,2(A(tf − tj)
α−β)Jj(x

′(t−j ))

−A

i∑
j=1

(tf − tj)
α−βEα−β,α−β+1(A(tf − tj)

α−β)Ij(x(t
−
j ))

+

∫ tf

0

(tf − s)α−1Eα−β,α(A(tf − s)α−β)Bu1(s) ds.

Similarly, for the above vectors x0, x
′
0 ∈ Rn and the final state x∗

tf
= z0,

there is also a control u2(t) such that

z0 = x(tf )(4.6)

= Eα−β(Atα−β
f )x0 + tfEα−β,2(At

α−β
f )x′

0

−Atα−β
f Eα−β,α−β+1(At

α−β
f )x0

+
i∑

j=1

Eα−β(A(tf − tj)
α−β)Ij(x(t

−
j ))

+

i∑
j=1

(tf − tj)Eα−β,2(A(tf − tj)
α−β)Jj(x

′(t−j ))

−A
i∑

j=1

(tf − tj)
α−βEα−β,α−β+1(A(tf − tj)

α−β)Ij(x(t
−
j ))

+

∫ tf

0

(tf − s)α−1Eα−β,α(A(tf − s)α−β)Bu2(s) ds.

We obtain the following from (4.5) and (4.6).

(4.7) z0+

∫ tf

0

(tf−s)α−1Eα−β,α(A(tf−s)α−β)B(u1(s)−u2(s)) ds = 0.

Multiplying z∗0 on both sides of (4.7), we obtain

z∗0z0 +

∫ tf

0

(tf − s)α−1z∗0Eα−β,α(A(tf − s)α−β)B(u1(s)−u2(s)) ds = 0.

By the fact that z∗0W [0, tf ]z0 = 0, we have z∗0z0 = 0. Thus, z0 = 0.
This is a contraction. The proof is completed. �



IMPULSIVE FRACTIONAL ORDER DAMPED SYSTEMS 565

Theorem 4.2 is a geometric type condition. By simple transforma-
tion, we can get an algebraic type condition.

Theorem 4.3. System (1.1) is controllable on [0, tf ], tf ∈ (0, T ], if
and only if

rankQ = rank(B|AB| · · · |An−1B) = n;

here (B|AB| · · · |An−1B) is an n× nm matrix composed by the column
vectors of B, . . . , An−1B and the mark | denotes the block of the matrix.

Proof. By the Cayley-Hamilton theorem, we have

tα−1Eα−β,α(Atα−β) =

∞∑
m=0

t(α−β)m+α−1

Γ(m(α− β) + α)
Am =

n−1∑
m=0

cm(t)Am,

where cm(t) is a polynomial in t, and it follows that

(tf − s)α−1Eα−β,α(A(tf − s)α−β) =

n−1∑
m=0

cm(tf − s)Am.

By Theorem 4.2, for tf ∈ [0, t1], we have

xtf = Eα−β(At
α−β
f )x0(4.8)

+ tfEα−β,2(At
α−β
f )x′

0 −Atα−β
f Eα−β,α−β+1(Atα−β

f )x0

+

∫ tf

0

(tf − s)α−1Eα−β,α(A(tf − s)α−β)Bu(s) ds.

For convenience, we denote

(4.9) η1 = Eα−β(Atα−β
f )x0 + tfEα−β,2(At

α−β
f )x′

0

−Atα−β
f Eα−β,α−β+1(At

α−β
f )x0.

Combining (4.8) and (4.9) yields

xtf − η1 =

∫ tf

0

(tf − s)α−1Eα−β,α(A(tf − s)α−β)Bu(s) ds

=
n−1∑
m=0

AmB

∫ tf

0

cm(tf − s)u(s) ds
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= (B|AB| · · · |An−1B)


d0
d1
...

dn−1

 ,

where

dm =

∫ tf

0

cm(tf − s)u(s) ds.

Note that xtf , x0 and x′
0 are arbitrary; to have a unique solution of

u(t), the necessary and sufficient condition is clearly that

rankQ = rank(B|AB| · · · |An−1B) = n.

For tf ∈ (ti, ti+1], i = 1, 2, . . . , k, we obtain

xtf = Eα−β(Atα−β
f )x0 + tfEα−β,2(At

α−β
f )x′

0

(4.10)

−Atα−β
f Eα−β,α−β+1(At

α−β
f )x0

+

i∑
j=1

Eα−β(A(tf − tj)
α−β)Ij(x(t

−
j ))

+
i∑

j=1

(tf − tj)Eα−β,2(A(tf − tj)
α−β)Jj(x

′(t−j ))

−A
i∑

j=1

(tf − tj)
α−βEα−β,α−β+1(A(tf − tj)

α−β)Ij(x(t
−
j ))

+

∫ tf

0

(tf − s)α−1Eα−β,α(A(tf − s)α−β)Bu(s) ds.

Denote

ηi = Eα−β(At
α−β
f )x0 + tfEα−β,2(At

α−β
f )x′

0

(4.11)

−Atα−β
f Eα−β,α−β+1(At

α−β
f )x0

+
i∑

j=1

Eα−β(A(tf − tj)
α−β)Ij(x(t

−
j ))
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+
i∑

j=1

(tf − tj)Eα−β,2(A(tf − tj)
α−β)Jj(x

′(t−j ))

−A

i∑
j=1

(tf − tj)
α−βEα−β,α−β+1(A(tf − tj)

α−β)Ij(x(t
−
j )).

Combining equations (4.10) and (4.11), we have

xtf − ηi =

∫ tf

0

(tf − s)α−1Eα−β,α(A(tf − s)α−β)Bu(s) ds

=

n−1∑
m=0

AmB

∫ tf

0

cm(tf − s)u(s) ds

= (B|AB| · · · |An−1B)


d0
d1
...

dn−1

 .

Note that xtf , x0 and x′
0 are arbitrary. In order to have a unique

solution of u(t), the necessary and sufficient condition is clear that

rankQ = rank(B|AB| · · · |An−1B) = n.

The proof is completed. �

4.2. Nonlinear system case. Here, we study the controllability of
the nonlinear system (1.2) by Schauder’s fixed point theorem. In order
to obtain the main result we make the following assumptions:

H(1): The function f : J × Rn → Rn satisfies the following:

(i) f is measurable for all t ∈ J and for every fixed x ∈ Rn.
(ii) There exists a constant Lf > 0 such that, for almost every t ∈ J ,

∥f(t, x)− f(t, y)∥ ≤ Lf∥x− y∥, for all x, y ∈ Rn.

(iii) There exist a function Ψ ∈ L1/γ(J,R+), γ ∈ (0, α − 1) and a
constant θ > 0, such that

∥f(t, x)∥ ≤ Ψ(t) + θ∥x∥, for almost every t ∈ J.

H(2): Ii, Ji : Rn → Rn, i = 1, 2, . . . , k, satisfy the following: Ii and
Ji are continuous, and there exist constants hi, di > 0, i = 1, . . . , k,
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such that

∥Ii(x)− Ii(y)∥ ≤ hi∥x− y∥, for all x, y ∈ Rn,

∥Ji(x)− Ji(y)∥ ≤ di∥x− y∥, for all x, y ∈ Rn.

In the sequel, for convenience, let us set

∥I(0)∥ = sup{∥Ii(0)∥}, ∥J(0)∥ = sup{∥Ji(0)∥} i = 1, 2, . . . , k;

a1 = sup
t∈J

∥Eα−β(At
α−β)∥,

a2 = sup
t∈J

∥AEα−β,α−β+1(At
α−β)tα−β∥;

a3 = sup
t∈J

∥Eα−β,2(At
α−β)t∥,

a4 = sup
t∈J

∥(T − t)α−1Eα−β,α(A(T − t)α−β)∥;

a5 = sup
t∈J

∥Eα−β,α−1(A(T − t)α−β)∥,

b = max{a1, a2, a3, a4, a5};

a6 = sup
t∈J

∥(T − t)α−1B∗Eα−β,α(A
∗(T − t)α−β)W−1[0, T ]∥;

a7 = ∥yT ∥,

δ1 =

(
1− γ

α− 1− γ
T (α−1−γ)/(1−γ)

)1−γ

, δ2 = max

{
T,

Tα−1

α− 1

}
;

∥B∥ = MB;

c1 = 1 + bMBTa6, c2 = 1 + bMB
Tα−1

α− 1
a6,

c = max{c1, c2};

ρ1 = T 1−γ + bMBT
2−γa6, ρ2 = δ1 + bMB

Tα−γ

α− 1
a6,

ρ = max{ρ1, ρ2}.

Now, we are in a position to provide the main result of this part.

Theorem 4.4. If H(1) and H(2) are satisfied and the linear system
(1.1) is controllable on [0, tf ] for some tf ∈ (0, T ], then system (1.2) is
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also controllable on [0, tf ], provided that

( k∑
i=1

(2hi + di) + θT

)
bc < 1.

Proof. From the controllability of linear system (1.1) on [0, tf ] for
tf ∈ (ti, ti+1] ⊂ (0, T ], we can define the control as follows:

u(t) =



(T − t)α−1B∗Eα−β,α(A
∗(T − t)α−β)W−1[0, T ]

×[ytf −
T∫
0

(T − s)α−1Eα−β,α(A(T − s)α−β)f(s, x(s)) ds],

t ∈ [0, t1],

(T − t)α−1B∗Eα−β,α(A
∗(T − t)α−β)W−1[0, T ]

×
[
ytf −

i∑
j=1

Eα−β(A(T − tj)
α−β)Ij(x(t

−
j ))

−
i∑

j=1

(T − tj)Eα−β,2(A(T − tj)
α−β)Jj(x

′(t−j ))

+A
i∑

j=1

(T − tj)
α−βEα−β,α−β+1(A(T − tj)

α−β)Ij(x(t
−
j ))

−
T∫
0

(T − s)α−1Eα−β,α(A(T − s)α−β)f(s, x(s)) ds
]
,

t ∈ (ti, ti+1], i = 1, 2, . . . , k,

where

ytf = xtf − Eα−β(AT
α−β)x0 −ATα−βEα−β,α−β+1(AT

α−β)x0

+ TEα−β,2(AT
α−β)x′

0.

According to this control, the operator F : PC1(J,Rn) → PC1(J,Rn)
is well defined by
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(Fx)(t)=



Eα−β(Atα−β)x0 −Atα−βEα−β,α−β+1(Atα−β)x0

+tEα−β,2(At
α−β)x′

0

+
∫ t

0
(t−s)α−1Eα−β,α(A(t−s)α−β)[Bu(s)+f(s, x(s))]ds,

t ∈ [0, t1],

Eα−β(Atα−β)x0 −Atα−βEα−β,α−β+1(Atα−β)x0

+tEα−β,2(At
α−β)x′

0+
∑i

j=1 Eα−β(A(t−tj)
α−β)Ij(x(t

−
j ))

+
∑i

j=1(t− tj)Eα−β,2(A(t− tj)
α−β)Jj(x

′(t−j ))

−A
∑i

j=1(t− tj)
α−βEα−β,α−β+1(A(t− tj)

α−β)Ij(x(t
−
j ))

+
∫ t

0
(t− s)α−1Eα−β,α(A(t− s)α−β)[Bu(s)+f(s, x(s))]ds,

t ∈ (ti, ti+1], i = 1, 2, . . . , k.

We easily observe that (Fx)(tf ) = xtf . Hence, in order to prove the
controllability of system (1.2), we only need to show that F has a fixed
point.

For tf ∈ (0, t1], we know that system (1.2) is controllable on [0, tf ]
from [2]. Now we show system (1.2) is controllable on [0, tf ] for
tf ∈ (ti, ti+1], i = 1, . . . , k.

First, we choose

b[(2∥x0∥+ ∥x′
0∥) + kc(2∥I(0)∥+ ∥J(0)∥) + ρ∥Ψ∥L1/γ +MBδ2a6a7]

×
(
1− bc

k∑
i=1

(2hi + di)− bcTθ

)−1

≤ r,

and consider the bounded set Br = {x ∈ PC1(J,Rn) : ∥x∥PC1 ≤ r}.
Next, we divide the proof into three steps.

Step 1: We prove that FBr ⊆ Br. For all x ∈ Br and for all
t ∈ (ti, ti+1], i = 1, 2, . . . , k, we have

∥u(t)∥ ≤ ∥(T − t)α−1B∗Eα−β,α(A
∗(T − t)α−β)W−1[0, T ]∥

×
[
∥ytf ∥+

∥∥∥∥ i∑
j=1

Eα−β(A(T − tj)
α−β)Ij(x(t

−
j ))

∥∥∥∥
+

∥∥∥∥ i∑
j=1

(T − tj)Eα−β,2(A(T − tj)
α−β)Jj(x

′(t−j ))

∥∥∥∥
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+

∥∥∥∥A i∑
j=1

(T − tj)
α−βEα−β,α−β+1(A(T − tj)

α−β)Ij(x(t
−
j ))

∥∥∥∥
+

∥∥∥∥ ∫ T

0

(T − s)α−1Eα−β,α(A(T − s)α−β)f(s, x(s)) ds

∥∥∥∥]
≤ a6 ×

[
a7 + b

k∑
i=1

hi∥x(t−i )∥+ bk∥I(0)∥

+ b

k∑
i=1

di∥x′(t−i )∥+ bk∥J(0)∥+ b

k∑
i=1

hi∥x(t−i )∥+ bk∥I(0)∥

+ b

∫ T

0

[Ψ(s) + θ∥x(s)∥] ds
]

≤ a6 ×
[
a7 + bk(2∥I(0)∥+ ∥J(0)∥) + b

k∑
i=1

(2hi + di)r

+ bT 1−γ∥Ψ∥L1/γ + bTθr

]
.

From the above estimate, we have

∥(Fx)(t)∥ ≤ ∥Eα−β(At
α−β)x0∥

+ ∥tEα−β,2(Atα−β)x′
0∥

+ ∥Atα−βEα−β,α−β+1(At
α−β)x0∥

+

∥∥∥∥ i∑
j=1

Eα−β(A(t− tj)
α−β)Ij(x(t

−
j ))

∥∥∥∥
+

∥∥∥∥ i∑
j=1

(t− tj)Eα−β,2(A(t− tj)
α−β)Jj(x

′(t−j ))

∥∥∥∥
+

∥∥∥∥A i∑
j=1

(t− tj)
α−βEα−β,α−β+1(A(t− tj)

α−β)Ij(x(t
−
j ))

∥∥∥∥
+

∥∥∥∥∫ t

0

(t−s)α−1Eα−β,α(A(t−s)α−β)[Bu(s)+f(s, x(s))]ds

∥∥∥∥
≤ b (2∥x0∥+ ∥x′

0∥) + b
k∑

i=1

hi∥x(t−i )∥+ bk∥I(0)∥
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+ b
k∑

i=1

di∥x′(t−i )∥+ bk∥J(0)∥+ b
k∑

i=1

hi∥x(t−i )∥+ bk∥I(0)∥

+ b

∥∥∥∥∫ t

0

Bu(s) ds

∥∥∥∥+ b

∫ t

0

[Ψ(s) + θ∥x(s)∥] ds

≤ b(2∥x0∥+∥x′
0∥)+bk(2∥I(0)∥+∥J(0)∥)+b

k∑
i=1

(2hi+di)∥x∥

+ bMBTa6 ×
[
a7 + bk(2∥I(0)∥+ ∥J(0)∥)

+ b
k∑

i=1

(2hi + di)r + bT 1−γ∥Ψ∥L1/γ + bTθr
]

+ bT 1−γ∥Ψ∥L1/γ + b

∫ t

0

θ∥x(s)∥ ds

≤ b(2∥x0∥+ ∥x′
0∥) + bk(1 + bMBTa6)(2∥I(0)∥+ ∥J(0)∥)

+ bMBTa6a7 + b(T 1−γ + bMBT
2−γa6)∥Ψ∥L1/γ

+ b(1 + bMBTa6)

( k∑
i=1

(2hi + di) + Tθ

)
r

≤ b(2∥x0∥+ ∥x′
0∥) + bkc(2∥I(0)∥+ ∥J(0)∥) + bρ∥Ψ∥L1/γ

+ bMBδ2a6a7 + bc

( k∑
i=1

(2hi + di) + Tθ

)
r ≤ r.

Next, from the definition of F and the Mittag-Leffer function, we
obtain:

∥(Fx)′(t)∥ ≤ ∥Eα−β(At
α−β)x′

0∥

+

∥∥∥∥ i∑
j=1

Eα−β(A(t−tj)
α−β)Jj(x

′(t−j ))

∥∥∥∥
+

∥∥∥∥∫ t

0

(t−s)α−2Eα−β,α−1(A(t−s)α−β)[Bu(s)+f(s, x(s))]ds

∥∥∥∥
≤ b∥x′

0∥+ b
k∑

i=1

di∥x′(t−i )∥+ bk∥J(0)∥
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+ bMB

∥∥∥∥ ∫ t

0

(t− s)α−2u(s) ds

∥∥∥∥
+ b

∫ t

0

(t− s)α−2[Ψ(s) + θ∥x(s)∥] ds

≤ b∥x′
0∥+ b

k∑
i=1

di∥x′∥+ bk∥J(0)∥+ bMB∥u∥Tα−1

α− 1

+ b∥Ψ∥L1/γ

(
1− γ

α− 1− γ
T (α−1−γ)/(1−γ)

)1−γ

+ bTθ∥x∥

≤ b∥x′
0∥+ bk∥J(0)∥+ bMBT

α−1a6
α− 1[

a7 + bk(2∥I(0)∥+ ∥J(0)∥)

+ b

k∑
i=1

(2hi + di)r + bT 1−γ∥Ψ∥L1/γ + bTθr
]

+ b∥Ψ∥L1/γ δ1 + b

( k∑
i=1

di + θT

)
r

≤ b∥x′
0∥+ kb

(
1 +

bMBT
α−1a6

α− 1

)
(2∥I(0)∥+ ∥J(0)∥)

+ b

(
δ1 +

bMBT
α−γa6

α− 1

)
∥Ψ∥L1/γ +

bMBT
α−1a6a7

α− 1

+ b

(
1 +

bMBT
α−1a6

α− 1

)( k∑
i=1

(2hi + di) + θT

)
r

≤ b∥x′
0∥+ kbc(2∥I(0)∥+ ∥J(0)∥) + bρ∥Ψ∥L1/γ + bMBδ2a6a7

+ bc

( k∑
i=1

(2hi + di) + θT

)
r

≤ r.

Hence, according to the above, we obtain ∥Fx∥PC1 ≤ r, which means
that FBr ⊆ Br.

Step 2: We show that F is continuous. Let {xn} be a sequence
such that xn → x, x′

n → x′ in PC1(J,Rn) as n → ∞. Then, for each
t ∈ (ti, ti+1], i = 1, 2, . . . , k, we obtain:
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∥(Fxn)(t)− (Fx)(t)∥

≤
∥∥∥∥ i∑

j=1

Eα−β(A(t− tj)
α−β)[Ij(xn(t

−
j ))− Ij(x(t

−
j ))]

∥∥∥∥
+

∥∥∥∥ i∑
j=1

(t−tj)Eα−β,2(A(t−tj)
α−β)[Jj(x

′
n(t

−
j ))−Jj(x

′(t−j ))]

∥∥∥∥
+

∥∥∥∥A i∑
j=1

(t− tj)
α−βEα−β,α−β+1(A(t− tj)

α−β)

[Ij(xn(t
−
j ))− Ij(x(t

−
j ))]

∥∥∥∥
+

∥∥∥∥∫ t

0

(t− s)α−1Eα−β,α(A(t− s)α−β)[f(s, xn(s))− f(s, x(s))]) ds

∥∥∥∥
≤ b

k∑
i=1

hi∥xn(t
−
i )− x(t−i )∥+ b

k∑
i=1

di∥x′
n(t

−
i )− x′(t−i )∥

+ b
k∑

i=1

hi∥xn(t
−
i )− x(t−i )∥+ bLf

∫ t

0

∥xn(s)− x(s)∥ ds

≤ b

( k∑
i=1

2hi + LfT

)
∥xn − x∥+ b

k∑
i=1

di∥x′
n − x′∥,

∥(Fxn)
′(t)− (Fx)′(t)∥

≤
∥∥∥∥ i∑

j=1

(t− tj)Eα−β(A(t− tα−β
j )[Jj(x

′
n(t

−
j ))− Jj(x

′(t−j ))]

∥∥∥∥
+

∥∥∥∥∫ t

0

(t−s)α−2Eα−β,α−1(A(t−s)α−β)[f(s, xn(s))−f(s, x(s))]ds

∥∥∥∥
≤ b

k∑
i=1

di∥x′
n(t

−
i )− x′(t−i )∥+ bLf

∫ t

0

(t− s)α−2∥xn(s)− x(s)∥ ds

≤ b

k∑
i=1

di∥x′
n − x′∥+ bLf

Tα−1

α− 1
∥xn − x∥.
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As xn → x, x′
n → x′, it is easy to see that

∥(Fxn)(t)−(Fx)(t)∥ −→ 0, ∥(Fxn)
′(t)−(Fx)′(t)∥ −→ 0, as n → ∞.

Hence, ∥Fxn−Fx∥PC1 → 0, as xn → x, x′
n → x′. Then F is continuous

on interval Br.

Step 3: We prove F is equicontinuous on Br. Let 0 ≤ ti ≤ τ1 < τ2 ≤
ti+1 ≤ T, then for each x ∈ Br, we obtain:

∥(Fx)(τ2)− (Fx)(τ1)∥

≤ ∥Eα−β(Aτα−β
2 )x0 − Eα−β(Aτ

α−β
1 )x0∥

+ ∥τ2Eα−β,2(Aτ
α−β
2 )x′

0 − τ1Eα−β,2(Aτ
α−β
1 )x′

0∥

+ ∥Aτα−β
1 Eα−β,α−β+1(Aτα−β

1 )x0 −Aτα−β
2 Eα−β,α−β+1(Aτα−β

2 )x0∥

+

i∑
j=1

∥Eα−β(A(τ2 − tj)
α−β)− Eα−β(A(τ1 − tj)

α−β)∥∥Ij(x(t−j ))∥

+
i∑

j=1

∥(τ2 − tj)Eα−β,2(A(τ2 − tj)
α−β)

− (τ1 − tj)Eα−β,2(A(τ1 − tj)
α−β)∥∥Jj(x′(t−j ))∥

+
i∑

j=1

∥(τ1 − tj)
α−βAEα−β,α−β+1(A(τ1 − tj)

α−β)

− (τ2 − tj)
α−βAEα−β,α−β+1(A(τ2 − tj)

α−β)∥∥Ij(x(t−j ))∥

+

∥∥∥∥∫ τ2

0

(τ2 − s)α−1Eα−β,α(A(τ2 − s)α−β)[Bu(s) + f(s, x(s))] ds

−
∫ τ1

0

(τ1 − s)α−1Eα−β,α(A(τ1 − s)α−β)[Bu(s) + f(s, x(s))] ds

∥∥∥∥
≤ ∥Eα−β(Aτα−β

2 )− Eα−β(Aτ
α−β
1 )∥∥x0∥

+ ∥τ2Eα−β,2(Aτα−β
2 )− τ1Eα−β,2(Aτ

α−β
1 )∥∥x′

0∥

+ ∥Aτα−β
1 Eα−β,α−β+1(Aτ

α−β
1 )−Aτα−β

2 Eα−β,α−β+1(Aτα−β
2 )∥∥x0∥

+
i∑

j=1

∥Eα−β(A(τ2 − tj)
α−β)− Eα−β(A(τ1 − tj)

α−β)∥
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× (hj∥x(t−j )∥+ ∥I(0)∥) +
i∑

j=1

∥(τ2 − tj)Eα−β,2(A(τ2 − tj)
α−β)

− (τ1 − tj)Eα−β,2(A(τ1 − tj)
α−β)∥(dj∥x′(t−j )∥+ ∥J(0)∥)

+
i∑

j=1

A∥(τ1 − tj)
α−βEα−β,α−β+1(A(τ1 − tj)

α−β)

− (τ2 − tj)
α−βEα−β,α−β+1(A(τ2 − tj)

α−β)∥(hj∥x(t−j )∥+ ∥I(0)∥)

+

∫ τ1

0

∥(τ2 − s)α−1Eα−β,α(A(τ2 − s)α−β)

− (τ1 − s)α−1Eα−β,α(A(τ1 − s)α−β)∥∥f(s, x(s)) +Bu(s)∥ ds

+

∥∥∥∥∫ τ2

τ1

(τ2 − s)α−1Eα−β,α(A(τ2 − s)α−β)[f(s, x(s)) +Bu(s)] ds

∥∥∥∥.
By Hölder’s inequality and H(1) and H(3), we obtain:

∥(Fx)(τ2)− (Fx)(τ1)∥

≤ ∥Eα−β(Aτα−β
2 )− Eα−β(Aτ

α−β
1 )∥∥x0∥

+ ∥τ2Eα−β,2(Aτ
α−β
2 )− τ1Eα−β,2(Aτ

α−β
1 )∥∥x′

0∥

+ ∥Aτα−β
1 Eα−β,α−β+1(Aτ

α−β
1 )−Aτα−β

2 Eα−β,α−β+1(Aτα−β
2 )∥∥x0∥

+
i∑

j=1

∥Eα−β(A(τ2 − tj)
α−β)− Eα−β(A(τ1 − tj)

α−β)∥

× (hj∥x(t−j )∥+ ∥I(0)∥) +
i∑

j=1

∥(τ2 − tj)Eα−β,2(A(τ2 − tj)
α−β)

− (τ1 − tj)Eα−β,2(A(τ1 − tj)
α−β)∥(dj∥x′(t−j )∥+ ∥J(0)∥)

+

i∑
j=1

∥(τ1 − tj)
α−βAEα−β,α−β+1(A(τ1 − tj)

α−β)

− (τ2 − tj)
α−βAEα−β,α−β+1(A(τ2 − tj)

α−β)∥(hj∥x(t−j )∥+ ∥I(0)∥)

+ sup
s∈[0,τ1]

∥(τ2 − s)α−1Eα−β,α(A(τ2 − s)α−β)

− (τ1 − s)α−1Eα−β,α(A(τ1 − s)α−β)∥(∥Ψ∥L1/γT 1−γ + θTr +MBϱT )

+ b∥Ψ∥L1/γ (τ2 − τ1)
1−γ + b(θr +MBϱ)(τ2 − τ1),



IMPULSIVE FRACTIONAL ORDER DAMPED SYSTEMS 577

where

ϱ := a6 × [a7 + bk(2∥I(0)∥+ ∥J(0)∥) + b
k∑

i=1

(2hi + di)r

+ bT 1−γ∥Ψ∥L1/γ + bTθr.

Similarly, we also have

∥(Fx)′(τ2)− (Fx)′(τ1)∥

≤∥Eα−β(Aτα−β
2 )−Eα−β(Aτα−β

1 )∥∥x′
0∥+

i∑
j=1

∥Eα−β(A(τ2−tj)
α−β)

− Eα−β(A(τ1 − tj)
α−β)∥(dj∥x′(t−j )∥+ ∥J(0)∥)

+ sup
s∈[0,τ1]

∥(τ2 − s)α−2Eα−β,α−1(A(τ2 − s)α−β)

− (τ1 − s)α−2Eα−β,α−1(A(τ1 − s)α−β)∥
(∥Ψ∥L1/γT 1−γ + Tθr +MBϱT ) + ω(τ2 − τ1)

α−1−γ

+
b(θr +MBϱ)

α− 1
(τ2 − τ1)

α−1,

where

ω := b∥Ψ∥L1/γ

(
1− γ

α− 1− γ

)1−γ

.

From the above arguments, let τ2 → τ1. Then we have

∥(Fx)(τ2)− (Fx)(τ1)∥ −→ 0,

and

∥(Fx)′(τ2)− (Fx)′(τ1)∥ −→ 0.

Thus, F is equicontinuous on interval Br.

By Arzela-Ascoli’s theorem, we obtain that the operator F is com-
pletely continuous and by the Schauder fixed-point theorem, we obtain
that F has a fixed point x on Br. This further implies that system (1.2)
has a solution x in PC1(J,Rn). Hence, system (1.2) is controllable on J .
The proof is completed. �
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