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EQUATION WITH A RANDOM FORCING TERM AND
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ABSTRACT. The existence and approximation of a solu-
tion to a delay equation with a random forcing term and non
local conditions is studied by using a stochastic version of
the well-known Banach fixed point theorem and semigroup
theory. Moreover, the convergence of Faedo-Galerkin approx-
imations of the solution is shown. An example is given which
illustrates the results.

1. Introduction. The differential equations that involve random-
ness in the mathematical description of a given phenomenon are known
as stochastic differential equations. Due to randomness, these differen-
tial equations can provide more accurate descriptions than the deter-
ministic differential equations. In recent years, stochastic differential
equations in both finite and infinite dimensions have attracted much
attention in many areas such as physics, population dynamics, electri-
cal engineering, ecology, medicine, biology and other areas of science
and engineering, because of their practical applications in these areas.
In fact, real phenomena in different fields of science and engineering,
and especially in finance, involving stochastic excitations of a Gaussian
white noise type have been extensively investigated, both theoretically
and experimentally, over a long period of time. Remember that Gauss-
ian white noise–mathematically described as the formal derivative of
a Brownian motion process–is a tolerable abstraction and is never a
completely faithful representation of a physical noise source.
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For various stochastic differential systems, qualitative properties,
such as existence, uniqueness, controllability and stability have been
studied by many researchers (see [6, 29, 30] and references therein).
Although theoretical procedures for determining the solution of a
stochastic integro-differential equation have been widely studied by
several authors, in most cases these equations are still not solvable in
closed form. Therefore, it is important to find approximate solutions
in an explicit form or in a form suitable for applications of numerical
methods. For more details on stochastic differential equations and
applications, we refer to [13, 15, 16, 23, 27].

Non local conditions for an unknown function are given by an expres-
sion involving the value(s) of this function at regular intervals rather
than continuously over the history period. The nonlocal Cauchy prob-
lem was first introduced by Byszewski [11]. He has done pioneering
work on nonlocal condition problems [8, 9, 10]. These types of condi-
tions are of great importance because they are usually more precise for
physical measurements than the classical ones. For instance, Deng [14]
showed that the diffusion of a small amount of gas in a transparent tube
can be described using the nonlocal conditions better than using local
conditions. Therefore, non local conditions are useful in the applied
sciences and engineering. For more details on non local conditions we
refer to [1, 2, 3] and the references therein.

The theory of the approximation of solutions to stochastic differen-
tial equations has been studied by many authors. Maruyama [24] intro-
duced the Cauchy-Maruyama approximation. Barbu [7] studied Picard
type methods to find an approximate solution of a stochastic semi-
linear equation in a Hilbert space. Balasubramaniam and Dauer [6]
gave a Caratheodory successive approximate solution to a semilinear
stochastic evolution equation with time delays in Hilbert space. The
Taylor series approximation has been studied by Jankovic and Ilic [18]
for obtaining an approximate solution of a stochastic differential equa-
tion. Kovács and Printems [19, 20] studied the weak and strong or-
der convergence of a fully discrete approximation of a linear stochastic
evolution equation. Balasubramaniam [5] studied the Faedo-Galerkin
approximate solution of a stochastic semilinear integrodifferential equa-
tion in Hilbert space.

Our main concern in this paper is to treat the Faedo-Galerkin
approximate solution to a delay equation with a random forcing term
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and non local conditions. Faedo-Galerkin approximate solutions for
deterministic differential equations have been studied by many authors
[4, 25, 26], but this approach is new to the literature on the study
of delay equations with a random forcing term. For recent work on
the Faedo-Galerkin approximations of solutions to different differential
equations see [12, 21, 22] and the references therein.

Let H and K be two separable Hilbert spaces, and let L(K,H) be
the space of bounded linear operators from K into H. For convenience,
we will use the same notation ∥ · ∥ to denote the norms in H, K and
L(K,H), and use (·, ·) to denote inner products in H and K. To the
best of our knowledge, existence and approximation of solutions to
delay equations with a random forcing term and non local conditions
have not been considered in the literature. Motivated by the above
consideration, and based on the semigroup theory of operators and the
Banach fixed point theorem, in the present work we shall use Faedo-
Galerkin approximations to prove the existence of solutions to the
following delay equation with a random forcing term and non local
conditions:

(1.1)
du(t)

dt
+Au(t) = f

(
t, u(t), ut

)
+

∫ t

0

a(t− s)g
(
s, u(s), us

)
dω(s), t ∈ (0, T ],

subject to the non local condition

(1.2) κ(u0) = ϕ on [−τ, 0],

where u(·) is a random variable with values in a separable Hilbert
space H. The linear operator A : D(A) ⊂ H → H is closed,
densely defined, positive definite and self-adjoint, and is assumed to
have a pure point spectrum 0 < λ0 ≤ λ1 ≤ · · · and corresponding
complete orthonormal eigensystem {ψi}, so that Aψi = λiψi and
(ψi, ψj) = δij , where δij is the Kronecker delta function. These
assumptions on A guarantee that −A is the infinitesimal generator
of an analytic semigroup {e−tA : t ≥ 0} in H. The history ut is defined
by

ut(θ) = u(t+ θ) for θ ∈ [−τ, 0].

The functions f and g depend on the history of u over the time
interval (t − τ, t) and are required to meet the hypotheses (H4) and
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(H5) in Section 2. The given K-valued Wiener process {ω(t) : t ≥ 0}
is assumed to possess a finite trace, nuclear covariance operator Q ≥ 0
defined on a complete probability space (Ω, µ, {µt}t≥0,P). In the
nonlocal condition, κ is a map defined from C0 into C0, where C0

is the space of all continuous functions from [−τ, 0] into H endowed
with the supremum norm

∥φ∥0 = sup
−τ≤ν≤0

∥φ(ν)∥.

The rest of the paper is organized as follows. In Section 2, we provide
some necessary notation, spaces and preliminaries which will be used
throughout the paper, and reformulate (1.1) as a stochastic integral
equation. In Section 3, we use a sequence of projection operators to
define a corresponding sequence of approximate integral equations. The
existence and uniqueness of the solution to each approximate integral
equation is established. Then, the convergence of these solutions to the
desired solution of the original integral equation is shown. In Section 4,
we consider the Faedo-Galerkin approximate solution and prove the
main result concerning the convergence of such an approximation. In
Section 5, we give an example as an application of the proposed theory.

2. Preliminaries and assumptions. Let (Ω, µ, {µt}t≥0,P) be a
filtered complete probability space satisfying the usual conditions (i.e.,
the filtration is a right-continuous increasing family and µ0 contains all
P-null sets) and {µt}t≥0 ⊂ µ. A random variable u(t) is a µ-measurable
function from Ω into H, and a collection of random variables

S = {u(t) : Ω −→ H}t∈[0,T ]

is called a stochastic process. Let Bn(t), n = 1, 2, 3, . . ., be a sequence
of one-dimensional Brownian motions defined on the probability space,
and set

ω(t) =
∞∑

n=1

√
λ̂nBn(t)ςn, t ≥ 0,

where λ̂n ≥ 0, n = 1, 2, . . ., are nonnegative real numbers and {ςn} is a
complete orthonormal basis for K. Let Q ∈ L(K,K) be the operator
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defined by Qςn = λ̂nςn with finite trace

Tr(Q) =
∞∑

n=1

λ̂n <∞.

Then, the above K-valued stochastic process ω(t) is called a Q-Wiener
process. We assume that µt = σ(ω(s) : 0 ≤ s ≤ t) is the σ-algebra
generated by ω and that µt = µ. Let ϕ ∈ L(K,H), and define

∥ϕ∥2Q = Tr(ϕQϕ∗) =

∞∑
n=1

∥∥√λ̂n ϕ ςn
∥∥2.

If ∥ϕ∥Q < ∞, then ϕ is called a Q-Hilbert-Schmidt operator. Let
LQ(K,H) denote the space of all Q-Hilbert-Schmidt operators ϕ : K →
H. The completion LQ(K,H) of L(K,H) with respect to the topology
induced by the norm ∥ · ∥Q, where ∥ϕ∥2Q = ⟨ϕ, ϕ⟩, is a Hilbert space

with the above norm topology. Let L2(Ω, µ,P;H) ≡ L2(Ω;H) denote
the space of strongly-measurable, square integrable random variables
equipped with the norm

∥u∥L2(Ω,H) = (E∥u∥2H)1/2,

where E is defined as integration with respect to the probability
measure P. We recall that, for a stochastic process {F (t) : Ω →
LQ(K,H)},

E

∥∥∥∥ ∫ t

0

F (s) dω(s)

∥∥∥∥2 ≤
∫ t

0

E∥F (s)∥2Q ds

≤ Tr(Q)

∫ t

0

E∥F (s)∥2 ds;

see Da Prato and Zabczyk [13, Lemma 7.2].

A subspace of L2(Ω,H) is given by L0
2(Ω,H) = {f ∈ L2(Ω,H) :

f is µ0-measurable}. Our assumptions on A imply that 0 ∈ ρ(−A), the
resolvent set of −A. Then, for 0 < α ≤ 1, it is possible to define the
fractional power Aα as a closed linear operator on its domain D(Aα),
being dense in H, and we denote the Banach space D(Aα) by Hα

endowed with the norm

∥u∥α = ∥Aαu∥, u ∈ D(Aα),
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which is equivalent to the graph norm of Aα. For more details on
fractional power operators, see Pazy [28, page 69]. For all t ∈ [−τ, T ],
define the Banach space Cα

T = C([−τ, T ],Hα) endowed with the
supremum norm, as

∥u∥T,α = sup
t∈[−τ,T ]

∥Aαu(t)∥.

Recall that the time history ut is defined by ut(θ) = u(t + θ) for θ ∈
[−τ, 0] and belongs to the phase space Cα

0 . The norm ∥ut∥0,α is given
by:

∥ut∥0,α = sup
θ∈[−τ,0]

∥Aαut(θ)∥, ut ∈ Cα
0 .

To prove our main results, we assume the following hypotheses.

(H1) a ∈ L2p

loc
(0,∞) for some 1 < p <∞.

(H2) There exists a function h ∈ Cα
T such that κ(h0) = ϕ for all

t ∈ [−τ, 0].
(H3) The function h(t) ∈ D(Aα) for all t ∈ [−τ, 0] and h is locally

Hölder continuous on [−τ, 0].
(H4) The map f : [0, T ] × D(Aα) × Cα

0 → H is continuous, and
there exists a non-decreasing function Lf : [0,∞) → [0,∞),
dependent on R > 0, such that

∥f(t, u, v)∥ ≤ Lf (t)

and

∥f(t, u1, v1)− f(t, u2, v2)∥ ≤ Lf (t)
[
∥u1 − u2∥α + ∥v1 − v2∥0,α

]
,

for all t ∈ [0, T ], u1, u2 ∈ BR(D(Aα), h(0)) and v1, v2 ∈
BR(C

α
0 , h). Here,

BR(Z, z0) = {z ∈ Z : ∥z − z0∥Z ≤ R}

for any Banach space (Z, ∥ · ∥Z) and z0 ∈ Z.
(H5) The map g : [0, T ] ×D(Aα) × Cα

0 → LQ(K,H) is continuous,

and there exists a non-decreasing function Lg ∈ L2q
loc(0,∞),

dependent on R > 0, where 1 < q < ∞ and 1/p + 1/q = 1,
such that

∥g(t, u, v)∥Q ≤ Lg(t)
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and

∥g(t, u1, v1)− g(t, u2, v2)∥Q ≤ Lg(t)
[
∥u1 − u2∥α + ∥v1 − v2∥0,α

]
,

for all t ∈ [0, T ], u1, u2 ∈ BR(D(Aα), h(0)) and v1, v2 ∈
BR(C

α
0 , h).

Definition 2.1. [5] A stochastic process {u(t)}[−τ,T0], 0 < T0 ≤ T , is
called a mild solution of (1.1)–(1.2) if

(i) u(t) is measurable and µt-adapted.
(ii) u(t) is continuous on [0, T0] almost surely and satisfies the follow-

ing stochastic integral equation

u(t) = e−tAh(0) +

∫ t

0

e−(t−s)Af
(
s, u(s), us

)
ds(2.1)

+

∫ t

0

e−(t−s)A

(∫ s

0

a(s− τ)g
(
τ, u(τ), uτ

)
dω(τ)

)
ds,

for t ∈ [0, T0], with u(t) = h(t) for t ∈ [−τ, 0].

The existence of solutions of (1.1) is associated with integral equa-
tion (2.1), see Da Prato [13, Theorem 5.4].

3. Existence of approximate solutions. In this section, we con-
sider approximate integral equations to equation (2.1) and establish
the existence and uniqueness of their solutions. A solution u of equa-
tion (2.1) on [−τ, T0] is a function u in the Banach space Cα(T0) =
C([−τ, T0], L2(Ω, D(Aα))) of all continuous functions from [−τ, T0]
into L2(Ω, D(Aα)) endowed with the supremum norm

∥u∥Cα(T0) = sup
t∈[−τ,T0]

∥Aαu(t)∥.

Lemma 3.1. Suppose 0 < α ≤ 1, let −A be the infinitesimal generator
of an analytic semigroup {e−tA : t ≥ 0} such that ∥e−tA∥ ≤ C for
t ≥ 0, and assume 0 ∈ ρ(−A). Then,

(i) D(Aα) is a Hilbert space.
(ii) For every t > 0, the operator Aαe−tA is bounded and satisfies

∥Ae−tA∥ ≤ Ct−1 and ∥Aαe−tA∥ ≤ Cαt
−α.
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Proof. See Pazy [28]. �

We define

h(t) =

{
h(t), t ∈ [−τ, 0],
h(0), t ∈ [0, T0],

and let Hn denote the finite-dimensional subspace of H spanned by
the first n + 1 orthonormal eigenfunctions ψ0, ψ1, . . . , ψn of A. The
corresponding orthoprojector is denoted by by Pn : H → Hn for n =
0, 1, 2, . . . .

We choose T0 ∈ (0, T ] and R > 0 in such a way that

(3.1) sup
0≤t≤T0

E∥Aα(e−tA − I)h(0)∥2 ≤ R

6
.

Moreover, for 0 < α < 1/2,

(3.2) T0 <

(
R(1− 2α)

6C(R)C2
α

)1/(1−2α)

,

where

(3.3) C(R) = (1 +R)
(
TL2

f (T0) + Tr(Q)∥a2∥Lp(0,T0)∥L
2
g∥Lq(0,T0)

)
.

We define
fn : [0, T ]×D(Aα)× Cα

0 −→ H

and
gn : [0, T ]×D(Aα)× Cα

0 −→ LQ(K,H),

respectively, by

fn(t, u, v) = f(t, Pnu, Pnv)

and

gn(t, u, v) = g(t, Pnu, Pnv),

for all t ∈ [0, T0], where (Pnv)(s) = Pn(v(s)) for all s ∈ [−τ, 0]. Now,
define a map Sn on BR(Cα(T0), h) by

(Snu)(t) = e−tAh(0) +

∫ t

0

e−(t−s)Afn
(
s, u(s), us

)
ds

(3.4)
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+

∫ t

0

e−(t−s)A

(∫ s

0

a(s− τ)gn
(
τ, u(τ), uτ

)
dω(τ)

)
ds,

for t ∈ [0, T0], with (Snu)(t) = h(t) for t ∈ [−τ, 0].

Theorem 3.2. Let α ∈ (0, 1/2) and the hypotheses (H1)–(H5) hold. If
h(t) ∈ L0

2(Ω, D(Aα)) for all t ∈ [−τ, 0], then there exists a unique un ∈
BR such that Snun = un for all n = 0, 1, 2, . . ..

Proof. First, we show that Sn : BR(Cα(T0), h) → BR(Cα(T0), h).
For this, we need to show that the map t → (Snu)(t) is continuous
from [−τ, T0] into L2(Ω, D(Aα)) with respect to the ∥ · ∥-norm. Thus,
for any u ∈ BR(Cα(T0), h) and t1, t2 ∈ [−τ, 0], we have

(3.5) (Snu)(t2)− (Snu)(t1) = h(t2)− h(t1).

Since the function h satisfies hypothesis (H2), we get the required
result. Now, for t1, t2 ∈ (0, T0] with t1 < t2,

(Snu)(t2)− (Snu)(t1) = I+ II+ III+ IV+V,

where the five terms on the right are

I = (e−t2A − e−t1A)h(0),

II =

∫ t2

t1

e−(t2−s)Afn
(
s, u(s), us

)
ds,

III =

∫ t1

0

(
e−(t2−s)A − e−(t1−s)A

)
fn

(
s, u(s), us

)
ds

IV =

∫ t1

0

(
e−(t2−s)A − e−(t1−s)A

)
×
∫ s

0

a(s− τ)gn
(
τ, u(τ), uτ

)
dω(τ) ds,

and

V =

∫ t2

t1

e−(t2−s)A

∫ s

0

a(s− τ)gn
(
τ, u(τ), uτ

)
dω(τ) ds.

Thus,

E∥(Snu)(t2)− (Snu)(t1)∥2α
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≤ 5
(
∥ I ∥2α + E∥ II ∥2α + E∥ III ∥2α + E∥ IV ∥2α + E∥V ∥2α

)
.

Now, Pazy [28, Theorem 6.13 (d)] states that, if 0 < β ≤ 1 and
u ∈ D(Aβ), then

(3.6) ∥(e−tA − I)u∥ ≤ Cβt
β∥Aβu∥.

Thus, if β ∈ (0, 1) is such that 0 < α+ β < 1, then for s, t ∈ (0, T0], we
have

∥(e−tA − I)Aαe−sAu∥ ≤ Cβt
β∥Aα+βe−sAu∥(3.7)

≤ CβCα+βt
βs−(α+β)∥u∥,

so

∥ I ∥α = ∥(I − e−(t2−t1)A)Aαe−t1Ah(0)∥ ≤ Cα(t2 − t1)
α∥h(0)∥α

and

E∥ II ∥2α ≤
(∫ t2

t1

∥Aαe−(t2−s)A∥E
∥∥fn(s, u(s), us)∥∥ ds)2

≤ (t2 − t1)

∫ t2

t1

C2
α(t2 − s)−2αLf (s)

2 ds

≤ C2
αLf (t2 − t1)

2 (t2 − t1)
2(1−α)

1− 2α
.

Next, provided α+ β < 1/2,

E∥ III ∥2α ≤ t1

∫ t1

0

∥∥(I − e−(t2−t1)A
)
Aαe−(t1−s)A

∥∥2Lf (s)
2 ds

≤ C2
βC

2
α+β(t2 − t1)

2βLf (t1)
2

∫ t1

0

(t1 − s)−2(α+β) ds

= C2
βC

2
α+βLf (t1)

2(t2 − t1)
2β t

1−2(α+β)
1

1− 2(α+ β)
,

with

E∥ IV ∥2α ≤
∫ t1

0

∥∥Aα
(
e−(t2−s)A − e−(t1−s)A

)∥∥2
Tr(Q)

∫ s

0

a(s− τ)2E
∥∥gn(τ, u(τ), uτ)∥∥2 dτ ds

≤ Tr(Q)∥a2∥Lp(0,T0)∥L
2
g∥Lq(0,T0)
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∫ t1

0

∥∥(e−(t2−t1)A − I
)
Aαe−(t1−s)A

∥∥2 ds
≤ Tr(Q)∥a2∥Lp(0,T0)∥L

2
g∥Lq(0,T0)

C2
βC

2
α+β(t2 − t1)

2β t
1−2(α+β)
1

1− 2(α+ β)
,

and

E∥V ∥2α ≤
∫ t2

t1

∥Aαe−(t2−s)A∥2

Tr(Q)

∫ s

0

a(s− τ)2E
∥∥gn(τ, u(τ), uτ)∥∥2 dτ ds

≤ Tr(Q)∥a2∥Lp(0,T0)∥L
2
g∥Lq(0,T0)C

2
α

(t2 − t1)
1−2α

1− 2α
.

The preceding estimates imply that

E∥(Snu)(t2)− (Snu)(t1)∥2α = O
(
(t2 − t1)

γ
)

for γ = min(2α, 2(1−α), 2β) > 0, so the map t 7→ (Snu)(t) is continuous
from [−τ, T0] into L2(Ω, D(Aα)) with respect to the ∥ · ∥ norm.

Now, for t ∈ [−τ, 0], we have

E∥(Snu)(t)− h(t)∥2α = 0,

and for t ∈ (0, T0], we have

(3.8) E∥(Snu)(t)− h(t)∥2α ≤ 3∥Aα(e−tA − I)h(0)∥2

+ 3

∫ t

0

∥Aαe−(t−s)A∥2
(
TE

∥∥fn(s, u(s), us)∥∥2
+Tr(Q)

∫ s

0

|a(s− τ)|2E
∥∥gn(τ, u(τ), uτ)∥2 dτ ) ds.

Using Lemma 3.1 and equations (3.1)–(3.3), we get

E∥(Snu)(t)− h(t)∥2α ≤ 3

(
R

6
+ C(R)C2

α

T 1−2α
0

1− 2α

)
≤ R,

showing that Sn : BR(Cα(T0), h) → BR(Cα(T0), h).
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Let u, v ∈ BR(Cα(T0), h). If t ∈ [−τ, 0], then

E∥Snu(t)− Snv(t)∥2 = 0,

whereas, if t ∈ (0, T0], then

E∥(Snu)(t)− (Snv)(t)∥2α ≤ 2

∫ t

0

∥Aαe−(t−s)A∥2(
E
∥∥fn(s, u(s), us)− fn

(
s, v(s), vs

)∥∥2
+Tr(Q)

∫ s

0

a(s− τ)2E
∥∥gn(τ, u(τ), uτ)− gn

(
τ, v(τ), vτ

)∥∥2 dτ) ds
≤ 2

(
TL2

f (T0) + Tr(Q)∥a2∥Lp(0,T0)∥L
2
g∥Lq(0,T0)

)
(
E∥u− v∥2α + E∥uτ − vτ∥20,α

)
C2

α

T 1−2α
0

1− 2α

≤ 2

R
C(R)C2

α

T 1−2α
0

1− 2α

(
E∥u− v∥2α + E∥uτ − vτ∥20,α

)
≤ 1

3
E∥u− v∥2Cα(T ).

Thus, taking the supremum over t ∈ [−τ, T0], we get

∥Snu− Snv∥2Cα(T ) ≤
1

3
∥u− v∥2Cα(T ).

Hence, Sn is a strict contraction on BR(Cα(T0), h), and, by the Banach
fixed point theorem, there exists a unique un ∈ BR(Cα(T0), h) such that
Snun = un or, in other words, un satisfies the approximate integral
equation,
(3.9)

un(t)=


h(t), t∈[−τ, 0];
e−tAh(0)+

∫ t

0
e−(t−s)Afn(s, un(s), (un)s) ds

+
∫ t

0
e−(t−s)A

∫ s

0
a(s−τ)gn(τ, un(τ), (un)τ ) dω(τ) ds, t∈ [0, T0].

This completes the proof. �

Lemma 3.3. Let h(t) ∈ L2(Ω, D(A)) for all t ∈ [−τ, 0]. Then
un(t) ∈ L2(Ω, D(Aβ)) for all t ∈ [−τ, T0] and 0 ≤ β < 1/2.
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Proof. For t ∈ [−τ, 0], it is obvious. Therefore, let t ∈ (0, T ]. From
Theorem 3.2, we have the existence of a unique un ∈ BR(Cα(T0), h)
satisfying (3.9), and a result of Pazy [28, Theorem 2.6.13 (a)] implies
that e−tA : H → L2(Ω, D(Aβ)) for t > 0 and 0 ≤ β < 1/2, and that
D(Aβ) ⊆ D(Aα) for 0 ≤ α ≤ β < 1. By another result of Pazy [28,
Theorem 1.2.4], we have e−tAu ∈ L2(Ω, D(A)) if u ∈ L2(Ω, D(A)). The
required result follows from these facts and the fact that L2(Ω, D(A)) ⊆
L2(Ω, D(Aβ)) for 0 ≤ β < 1/2. �

Lemma 3.4. Let h(t) ∈ L0
2(Ω, D(Aα)) for all t ∈ [−τ, 0]. Then, for

any t ∈ [−τ, T0], there exists a constant Ct0 , independent of n, such
that

E∥un(t)∥2β ≤ Ct0 for 0 ≤ α < β <
1

2
and 0 ≤ t0 ≤ T0.

Proof. Applying Aβ to both sides of approximate integral equa-
tion (3.9), it follows [28, Theorem 6.13 (c)] that, for any t ∈ [−τ, 0],

E∥un(t)∥2β ≤ E∥h(t)∥2β ≤ ∥h∥0,β ,

and, again for t ∈ (0, T0],

E∥un(t)∥2β ≤ 3

(
∥Aβe−tAh(0)∥2 + E

∥∥∥∥∫ t

0

Aβe−(t−s)Afn
(
s, u(s), us

)
ds

∥∥∥∥2
+E

∥∥∥∥∫ t

0

Aβe−(t−s)A

∫ s

0

a(s− τ)gn
(
τ, u(τ), uτ

)
dω(τ) ds

∥∥∥∥2
Q

)
≤ 3∥Aβe−tAh(0)∥2

+ 3T

∫ t

0

∥Aβe−(t−s)A∥2E
∥∥fn(s, u(s), us)∥∥2ds

+ 3Tr(Q)

∫ t

0

∥Aβe−(t−s)A∥2(∫ s

0

a(s− τ)2E
∥∥gn(τ, u(τ), uτ)∥∥2 dτ) ds

≤ 3

(
C2

βt
−2β
0 E∥h(0)∥2 + C2

βC(R)
T 1−2β
0

1− 2β

)
≤ Ct0 . �
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Theorem 3.5. If the hypotheses (H1)–(H5) hold, and if h(t) ∈
L2(Ω, D(A)), then {un} ⊂ Cα(T0) is a Cauchy sequence and therefore
converges to a function u ∈ Cα(T0) satisfying equation (2.1).

Proof. We divide the proof into two steps.

Step 1. Let m,n, n0 ∈ N be such that n ≥ m ≥ n0 and n0 is sufficiently
large. For t ∈ [−τ, 0], we have

E∥un(t)− um(t)∥2α = E∥h(t)− h(t)∥2α = 0,

and, for t ∈ (0, T0],

E∥un(t)− um(t)∥2α ≤ 2E

∥∥∥∥ ∫ t

0

Aαe−(t−s)A
[
fn

(
s, un(s), (un)s

)
− fm

(
s, um(s), (um)s

)]
ds

∥∥∥∥2
+ 2E

∥∥∥∥ ∫ t

0

Aαe−(t−s)A

(∫ s

0

a(s− τ)

[
gn

(
τ, un(τ), (un)τ

)
−gm

(
τ, um(τ), (um)τ

)]
dω(τ)

)
ds

∥∥∥∥2
Q

.

Now, for 0 < t′0 < t, we have

(3.10)

E∥un(t)− um(t)∥2α ≤ 2

(∫ t′0

0

+

∫ t

t′0

)
∥Aαe−(t−s)A∥2(

TE
∥∥fn(s, un(s), (un)s)− fm

(
s, um(s), (um)s

)
∥2

+Tr(Q)

∫ s

0

a(s− τ)2

E
∥∥gn(τ, un(τ), (un)τ)− gm

(
τ, um(τ), (um)τ

)∥∥2 dτ) ds.
The first integral of equation (3.10) is bounded by∫ t′0

0

∥Aαe−(t−s)A∥2
(
TE

∥∥fn(s, un(s), (un)s)
− fm

(
s, um(s), (um)s

)∥∥2 +Tr(Q)

∫ s

0

a(s− τ)2
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E
∥∥gn(τ, un(τ), (un)τ)− gm

(
τ, um(τ), (um)τ

)∥∥2dτ) ds
(3.11)

≤ 2C(R)C2
α(t0 − t′0)

−2αt′0.

Now,

E
∥∥fn(s, un(s), (un)s)− fm

(
s, um(s), (um)s

)∥∥2
≤ E

∥∥fn(s, un(s), (un)s)− fn
(
s, um(s), (um)s

)
∥2

+ E
∥∥fn(s, um(s), (um)s

)
− fm

(
s, um(s), (um)s

)∥∥2
≤ 2L2

f (T0)
(
E∥un − um∥2s,α + E∥(Pn − Pm)um(t)∥2α

)
,

and, for 0 < α < β < 1/2, we have

E∥Aα(Pn − Pm)um(t)∥2 ≤ E∥Aα−β(Pn − Pm)Aβum(t)∥2

≤ λ−2(β−α)
m E∥Aβum(t)∥2.

Therefore,

E∥fn(s, un(s), (un)s)− fm(s, um(s), (um)s)∥2

≤ 2L2
f (T0)

(
E∥un − um∥2s,α + Ct0λ

−2(β−α)
m

)
.

Similarly,

E∥gn(s, un(s), (un)s)− gm(s, um(s), (um)s)∥2

≤ 2L2
g(T0)

(
E∥un − um∥2s,α + Ct0λ

−2(β−α)
m

)
.

The second integral of (3.10) is bounded by

∫ t

t′0

∥Aαe−(t−s)A∥2
(
TE

∥∥fn(s, un(s), (un)s)− fm
(
s, um(s), (um)s

)∥∥2(3.12)

+ Tr(Q)

∫ s

0

a(s− τ)2

E
∥∥gn(τ, un(τ), (un)τ)− gm

(
τ, um(τ), (um)τ

)
∥2 dτ

)
ds

≤ 2

∫ t

t′0

C2
α(t− s)−2α

(
TL2

f (T0)E∥un − um∥2s,α
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+ L2
f (T0)Ct0λ

−2(β−α)
m +Tr(Q)

∫ s

0

a(s− τ)2

(
L2
g(T0)E∥un − um∥2s,α + L2

g(T0)Ct0λ
−2(β−α)
m

))
ds

≤ 2C(R)C2
α

(
Ct0

λ
2(β−α)
m

T 1−2α
0

(1− 2α)
+

∫ t

t′0

(t− s)−2αE∥un−um∥2α ds
)
.

Using (3.11) and (3.12) in (3.10), we get

(3.13) E∥un(t)− um(t)∥2α

≤M1t
′
0 +M2λ

−2(β−α)
m +M3

∫ t

t′0

(t− s)−2αE∥un − um∥2α ds,

where

M1 =
4C(R)C2

α

(t0 − t′0)
2α
,

M2 = 4C(R)C2
αCt0

T 1−2α
0

1− 2α
,

M3 = 4C(R)C2
α.

Now replace t by t+ θ in inequality (3.13), where θ ∈ [t′0 − t, 0], to get

(3.14) E∥un(t+ θ)− um(t+ θ)∥2α ≤M1t
′
0 +M2λ

−2(β−α)
m

+M3

∫ t+θ

t′0

E∥un − um∥2s,C
h̃

(t+ θ − s)2α
ds,

and then put s− θ = ν in (3.14) to obtain

E∥un(t+ θ)− um(t+ θ)∥2α

≤M1t
′
0 +M2λ

−2(β−α)
m +M3

∫ t

t′0

E∥un − um∥2ν,C
h̃

(t− ν)2α
ds.

Since

sup
t′0−t≤θ≤0

E∥un(t+ θ)− um(t+ θ)∥2α

≤M1t
′
0 +M2λ

−2(β−α)
m +M3

∫ t

t′0

E∥un − um∥2ν,α
(t− ν)2α

ds,
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we have

sup
−τ−t≤θ≤0

E∥un(t+ θ)− um(t+ θ)∥2α

≤ sup
0≤θ+t≤t′0

E∥un(t+ θ)− um(t+ θ)∥2α

+ sup
t′0−t≤θ≤0

E∥un(t+ θ)− um(t+ θ)∥2α.

Using the inequalities above, it follows that

sup
−τ≤t+θ≤t

E∥un(t+ θ)− um(t+ θ)∥2α

≤ (M1 +M4)t
′
0 + (M2 +M5)λ

−2(β−α)
m

+M3

∫ t

t′0

E∥un − um∥2ν,α
(t− ν)2α

ds,

where M4 and M5 are some constants. Now, applying a generalized
Gronwall inequality [17] to the above inequality, and as t′0 is arbitrarily
small, we conclude that un is a Cauchy sequence.

Step 2. The sequence un converges to u in Cα(T0).

We have h(t) ∈ D(A) for all t ∈ [−τ, 0]. Using Step 1,

lim
m→∞

sup
n≥m

0≤t≤T0

E∥un(t)− um(t)∥2α = 0,

i.e., there exists u ∈ Cα(T0) such that un converges to u in the mean
square sense. For un ∈ BR(Cα(T0), h),

E∥un(t)− u(t)∥2α ≤ 2

∫ t

0

∥Aαe−(t−s)A∥2(
TE

∥∥fn(s, un(s), (un)s)− f
(
s, u(s), us

)∥∥2
+Tr(Q)

∫ s

0

|a(s− τ)|2

E
∥∥gn(τ, un(τ), (un)τ)− g

(
τ, u(τ), uτ

)∥∥2 dτ) ds
≤ 2C2

α

(
TE

∥∥f(t, Pnun(t), P
n(un)t

)
− f

(
t, u(t), ut

)
∥2
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+Tr(Q)

∫ t

0

|a(t− τ)|2

E
∥∥g(τ, Pnun(τ), P

n(un)τ
)
− g

(
τ, u(τ), uτ )∥2 dτ

)
T 1−2α
0

1− 2α

≤ 2C2
αT

1−2α
0

1− 2α

(
TE

∥∥f(t, Pnun(t), P
n(un)t

)
− f

(
t, Pnu(t), Pnut

)∥∥2
α

+ TE
∥∥f(t, Pnu(t), Pnut

)
− f

(
t, u(t), ut

)
∥2α

+Tr(Q)

∫ t

0

|a(t− τ)|2[
E
∥∥g(τ, Pnun(τ), P

n(un)τ
)
− g

(
τ, Pnu(τ), Pnuτ

)
∥2α

+ E
∥∥g(τ, Pnu(τ), Pnuτ

)
− g

(
τ, u(τ), uτ

)
∥2α

]
dτ

)
≤ 2C2

αT
1−2α
0

1− 2α
C(R)

(
E∥un(t)− ut∥2α + E∥(Pn − I)u(t)∥2α

)
.

Taking the supremum over t ∈ [0, T0], we get

lim
n→0

sup
0≤t≤T0

E∥un(t)− u(t)∥2α = 0

in the mean square sense. Let h(t) ∈ L2(Ω, D(Aα)) for t ∈ [−τ, 0].
Since, for 0 < t ≤ T0, the sequence Aαun(t) converges to Aαu(t)
as n → ∞, and since un(t) = u(t) = h(t) for all n when t ∈ [−τ, 0],
if −τ = t = T , then Aαun(t) converges to Aαu(t) in the mean

square sense in L2(Ω,H). Since un ∈ BR(Cα(T0), h̃), it follows that

u ∈ BR(Cα(T0), ϕ̃) and, for any 0 < t0 ≤ T ,

lim
n→∞

sup
t0≤t≤T0

E∥un(t)− u(t)∥2α = 0

in the mean square sense. Also, we have

sup
t0≤t≤T0

∥∥fn(t, (un)(t), (un)t)− f
(
t, u(t), ut

)∥∥2
≤ L2

f (T0)
(
E∥un − u∥2T0,α + E∥(Pn − I)u∥2T0,α

)
−→ 0,

as n→ ∞, and

sup
t0≤t≤T0

∥∥gn(t, (un)(t), (un)t)− g
(
t, u(t), ut

)∥∥2
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≤ L2
g(T0)

(
E∥un − u∥2T0,α + E∥(Pn − I)u∥2T0,α

)
−→ 0.

Now we will show that u satisfies the integral equation (2.1). For 0
< t0 < t, (3.9) can be written as

un(t) = e−tAh(0) +

(∫ t0

0

+

∫ t

t0

)
e−(t−s)A

(
fn

(
s, un(s), (un)s

)
+

∫ s

0

a(s− τ)gn
(
τ, un(τ), (un)τ

)
dω(τ)

)
ds.

Thus,

E

∥∥∥∥un(t)− e−tAh(0)−
∫ t

t0

e−(t−s)A

(
fn

(
s, un(s), (un)s

)
+

∫ s

0

a(s− τ)gn
(
τ, un(τ), (un)τ

)
dω(τ)

)
ds

∥∥∥∥2
= E

∥∥∥∥ ∫ t0

0

e−(t−s)A

(
fn

(
s, un(s), (un)s

)
+

∫ s

0

a(s− τ)gn
(
τ, un(τ), (un)τ

)
dω(τ)

)
ds

∥∥∥∥2
≤

∫ t0

0

∥∥e−(t−s)A
∥∥2(TE∥∥fn(s, un(s), (un)s)∥∥2

+Tr(Q)

∫ s

0

|a(s− τ)|2E
∥∥gn(τ, un(τ), (un)τ)∥∥2 dτ) ds

≤ C2C(R)t0.

Sending n→ ∞ in this estimate, we get

E

∥∥∥∥u(t)− e−tAh(0)−
∫ t

t0

e−(t−s)A

(
f
(
s, u(s), us

)
+

∫ s

0

a(s− τ)g
(
τ, u(τ), uτ

)
dω(τ)

)
ds

∥∥∥∥2 ≤ C2C(R)t0.

Since t0 is arbitrary, it follows that u satisfies the integral equa-
tion (2.1).

Now we will show the uniqueness of u. Let u1 and u2 be two functions
satisfying (2.1), and put u = u1 − u2. Then u = 0 on [−τ, 0], and,
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for t ∈ [0, t0], we have

E∥u(t)∥2α ≤ 2C(R)C2
α

∫ t

0

(t− s)−2α sup
−τ≤θ≤0

E∥u(s+ θ)∥2α ds,

where R := max{E∥u1−h∥2Cα(T ), E∥u2−h∥2Cα(T )}. Let θ ∈ [−t, 0] and
t ∈ [0, t0], and assume that t0 ≤ τ ; hence, 0 ≤ t ≤ τ . For t ≤ −θ, we
have u(t+ θ) = 0, and, for t ≥ −θ, we have

E∥u(t+ θ)∥2α ≤ 2C(R)C2
α

∫ t+θ

0

(t+ θ − s)−2α

· sup
−τ≤θ≤0

E∥u(s+ θ)∥2α ds.

We put θ − s = −γ in the above inequality to obtain

E∥u(t+ θ)∥2α ≤ 2C(R)C2
α

∫ t

−θ

(t− γ)−2α

· sup
−τ≤θ≤0

E∥u(γ + θ + θ)∥2α dγ,

and then θ = η − θ to obtain

E∥u(t+ θ)∥2α ≤ 2C(R)C2
α

∫ t

−θ

(t− γ)−2α

· sup
−τ+θ≤η≤0

E∥u(γ + η)∥2α dγ.

Since u(γ+η) = 0 on [−τ + θ,−τ ], the above inequality can be written
as

E∥ut(θ)∥2α ≤ 2C(R)C2
α

∫ t

−θ

(t− γ)−2α sup
−τ≤η≤0

E∥uγ(η)∥2α dγ

≤ 2C(R)C2
α

∫ t

0

(t− γ)−2α sup
−τ≤η≤0

E∥uγ(η)∥2α dγ.

Taking the supremum over θ ∈ [−τ, 0], we get

E∥ut∥20,α ≤ 2C(R)C2
α

∫ t

0

(t− γ)−2αE∥uγ∥20,α dγ,

and the required result follows by applying the generalized Gronwall’s
inequality [17]. �
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4. Faedo-Galerkin approximations. From the previous sections
we know that, for any 0 ≤ T0 ≤ T , we have a unique u ∈ Cα(T0)
satisfying the integral equation

(4.1)

u(t) = e−tAh(0) +

∫ t

0

e−(t−s)Af
(
s, u(s), us

)
ds

+

∫ t

0

e−(t−s)A

(∫ s

0

a(s− τ)g
(
τ, u(τ), uτ

)
dω(τ)

)
ds,

for t ∈ [0, T0], with u(t) = h(t) for t ∈ [−τ, 0]. Also, there is a unique
solution un ∈ Cα(T0) of the approximate integral equation

(4.2) un(t) = e−tAh(0) +

∫ t

0

e−(t−s)Af
(
s, Pnun(s), P

n(un)s
)
ds

+

∫ t

0

e−(t−s)A

(∫ s

0

a(s− τ)g
(
τ, Pnun(τ), P

n(un)τ
)
dω(τ)

)
ds

for t ∈ [0, T0], with un(t) = h(t) for t ∈ [−τ, 0]. Now, if we project
(4.2) onto Hn, we get the Faedo-Galerkin approximations ûn = Pnun
satisfying

ûn(t) = e−tAPnh(0) +

∫ t

0

e−(t−s)Af
(
s, Pnûn(s), P

n(ûn)s
)
ds(4.3)

+

∫ t

0

e−(t−s)A

(∫ s

0

a(s− τ)g
(
τ, Pnûn(τ),

Pn(ûn)τ
)
dω(τ)

)
ds

for t ∈ [0, T0], with ûn(t) = Pnh(t) for t ∈ [−τ, 0]. The solutions u(t)
to (4.1) and ûn(t) to (4.3) have the representations

(4.4)

u(t) =

∞∑
i=0

αi(t)ui, αi(t) =
(
u(t), ui

)
,

ûn(t) =

n∑
i=0

αn
i (t)ui, αn

i (t) =
(
ûn(t), ui

)
.

As a consequence of Theorems 3.2 and 3.5, we have the following result.

Theorem 4.1. Let the hypotheses (H1)–(H5) hold and assume that
h(t) ∈ L2(Ω, D(A)) for all t ∈ [−τ, 0]. Then there exists a unique func-



502 R. CHAUDHARY AND D.N. PANDEY

tion ûn ∈ C([−τ, T0];Hn) and a unique u ∈ C([−τ, T0];H) satisfying
(4.3) and (4.1), respectively, such that ûn → u as n→ ∞.

Theorem 4.2. Let the hypotheses (H1)–(H5) hold. Then we have the
following :

(i) If h(t) ∈ L0
2(Ω, D(Aα)), then, for any 0 < t0 ≤ T0,

lim
n→∞

sup
t0≤t≤T0

n∑
i=0

λ2αi E∥αi(t)− αn
i (t)∥2 = 0.

(ii) If h(t) ∈ L0
2(Ω, D(A)), then

lim
n→∞

sup
0≤t≤T0

n∑
i=0

λ2αi E∥αi(t)− αn
i (t)∥2 = 0.

Proof. Since

E∥Aα(u(t)− ûn(t))∥2 =
∞∑
i=0

E∥Aα(αi(t)− αn
i (t))ui∥2

=

∞∑
i=0

λ2αi E∥(αi(t)− αn
i (t))ui∥2,

it follows that

E∥Aα(u(t)− ûn(t))∥2 ≥
n∑

i=0

λ2αi E∥(αi(t)− αn
i (t))ui∥2.

Hence, as a consequence of Theorem 4.1, we get the required result. �

5. An example. LetH = L2(0, 1), 0 < T <∞ and τ > 0. Consider
the partial differential equation

(5.1)

∂u

∂t
(x, t) =

∂2

∂x2
u(t, x) + F (t, x, u)

+

∫ t

0

a(t− s)G(s, x, u) dω(s),∫ 0

−τ

r3(−θ)h5
(
u(θ, x), ∂xu(θ, x)

)
dθ = ϕ(x),
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u(t, 0) = u(t, 1) = 0, where 0 < x < 1 and 0 < t < T , with

F (t, x, u) = f1(t, x) +

∫ 1

0

h1
(
u(t, y), ∂yu(t, y)

)
dy∫ 0

−τ

r1(−θ)h2
(
u(t+ θ, x

)
, ∂xu(t+ θ, x)

)
dθ,

and

G(t, x, u) = f2(t, x) +

∫ 1

0

h3(u(t, y), ∂yu(t, y)) dy∫ 0

−τ

r2(−θ)h4
(
u(t+ θ, x), ∂xu(t+ θ, x)

)
dθ.

Here, h1, h2, h3, h4, h5, f1 and f2 are smooth, real-valued functions.
Furthermore, r1, r2, r3 ∈ L2(0, 1), a ∈ L2q

loc(0,∞), and ω is a standard
L2(0, 1)-valued Wiener process.

We define the operator A as

(5.2) Au = −∂
2u

∂x2
,

with domain D(A) = H2(0, 1) ∩ H1
0 (0, 1). Clearly, A is self-adjoint

with compact resolvent and is the infinitesimal generator of an ana-
lytic semigroup e−tA. Moreover, A has a discrete spectrum with the
eigenvalues k2π2 for k ∈ N, whose corresponding (normalized) eigen-

functions are ek(x) =
√
2 sin kπx. Therefore, for u ∈ D(A),

u(x) =
∑
k∈N

(u, ek)ek(x).

Now, for α = 1/4, D(A1/4) (denoted by H1/4) is a Banach space
endowed with the norm

∥u∥1/4 = ∥A1/4u∥ for u ∈ D(A1/4).

Also, we define the space

C
1/4
t = C

(
[−τ, t], D(A1/4)

)
, t ∈ [0, T ]

endowed with the supremum norm

∥φ∥t,1/4 = sup
−τ≤ν≤t

∥φ(ν)∥α, φ ∈ C
1/4
t ;
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then,

A1/4u(x) =
∑
k∈N

(k2π2)1/4⟨u(x), ek(x)⟩ek(x)

with u ∈ D(A1/4). Differential equation (5.1) can be reformulated as

du(t)

dt
+Au(t) = F

(
t, u(t), ut

)
+

∫ 1

0

a(t− s)G
(
s, u(s), us

)
dω(s),

κ(u0) = ϕ on [−τ, 0],

where u(t)(x) = u(t, x) and ut(θ)(x) = u(t + θ, x) for t ∈ [0, T ],
θ ∈ [−τ, 0] and x ∈ (0, 1), and where the operator A is defined as in
equation (5.2). The functions F and G are defined on [0, T ]×D(Aα)×
C

1/2
0 by

F (t, φ, ξ)(x) = f1(t, x) +

∫ 1

0

h1
(
φ(x), φ′(x)

)
dx

×
∫ 0

−τ

r1(−θ)h2
(
ξ(θ)(x), ∂xξ(θ)(x)

)
dθ

and

G(t, φ, ξ)(x) = f2(t, x) +

∫ 1

0

h3
(
φ(x), φ′(x)

)
dx∫ 0

−τ

r2(−θ)h4
(
ξ(θ)(x), ∂xξ(θ)(x)

)
dθ,

where h1, h2, h3 and h4 are non-decreasing, Lipschitz continuous
functions such that

∥hi(xi, yi)− hi(xi+1, yi+1)∥ ≤ Li

(
∥xi − yi∥+ ∥xi+1 − yi+1∥

)
for i = 1, 3, and

∥hi(xi, yi)− hi(xi+1, yi+1)∥ ≤ Li

(
∥xi − yi∥[0,α] + ∥xi+1 − yi+1∥[0,α]

)
for i = 2, 4. The mapping κ : C0 → C0 is defined by

κ(φ)(x) =

∫ 0

−τ

r3(−θ)h5
(
φ(θ, x), ∂xφ(θ, x)

)
dθ,
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where the functions f1, f2 : [0, T ]× (0, 1) → R satisfy f1(0, ·), f2(0, ·) ∈
L2(0, 1), and there exists ℓi ∈ L2(0, 1) such that

∥fi(t, x)− fi(s, x)∥ ≤ ℓi(x)∥t− s∥θ for i = 1, 2.

Therefore, the functions F and G satisfy

∥F (t, u1, v1)− F (t, u2, v2)∥ ≤ Lf

(
∥u1 − u2∥α + ∥v1 − v2∥0,α

)
,

∥G(t, u1, v1)−G(t, u2, v2)∥ ≤ Lg

(
∥u1 − u2∥α + ∥v1 − v2∥0,α

)
.

Thus assumptions (H1)–(H5) are satisfied and therefore, by the results
established in the earlier sections, one can obtain approximate solutions
and their convergence.
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