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ABSTRACT. This paper consists of two parts. The first
part deals with the existence of a mild solution of a class
of instantaneous impulsive second order partial neutral dif-
ferential equations with state dependent delay. The second
part studies the non-instantaneous impulsive conditions on
the same problem. The Kuratowski measure of noncompact-
ness and Mónch fixed point theorem are used to prove the
existence of the mild solution. We remove the restrictive
conditions on the priori estimation available in literature.
The compactness assumption on the associated cosine or sine
family of operators, nonlinear terms and associated impul-
sive term are also not required in this paper. The non-
compactness measure estimation, the Lipschitz conditions
and compactness on the nonlinear functions are replaced
by simple and natural assumptions. We introduce new non-
instantaneous impulses with fixed delays. In the last section,
we study examples to illustrate the result presented.

1. Introduction. Neutral differential equations are functional dif-
ferential equations in which the highest order derivative of the unknown
function appears both with and without deviations. Neutral differ-
ential equations with unbounded delay appear abundantly as math-
ematical models in mechanics, electrical engineering, medicine, biol-
ogy, ecology, etc. Hence, it is a widely studied topic in several papers
and monographs, for instance, the partial neutral differential equa-
tion with unbounded delay arises in the theory of heat conduction
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of materials with fading memory in [24]. In addition, one may see
[10, 12, 15, 21, 27, 28] and the references cited therein. Second order
neutral differential equations model variational problems in the calculus
of variation and in the study of vibrating masses attached to an electric
bar. For more details, we refer our readers to [13, 14, 18, 32, 34].

In recent times, much attention is paid to functional differential
equations with state dependent delay. We refer to [1, 2, 3, 9, 17,
20] for details. The literature related to the state dependent delay
mostly deals with functional differential equations in which the state
belongs to a finite dimensional space. As a consequence, the study of
partial functional differential equations with state dependent delay is
neglected. This is one of the motivations of our paper.

Impulsive differential equations are known for their utility in sim-
ulating processes and phenomena subject to short term perturbations
during their evolution. Discrete perturbations are negligible to the total
duration of the process. We refer to [8, 11, 16, 25, 33, 37] regarding
discrete impulses. However, in these papers, the compactness condition
on the impulsive terms, restrictive conditions on a priori estimation and
the restrictive condition on measure of noncompactness estimation are
used.

Here in this paper we study the second order partial neutral differ-
ential equation with state dependent delay modeled in the form

d2

dt2
x(t) = A(x(t)− g(t, xt)) +

∫ t

0

f(t, xρ(t,xt), x
′
t) dt,

t ∈ [0, b], t ̸= ti, i = 1, . . . , n,

x0 = ϕ ∈ B, x′(0) = ξ ∈ X,

∆x(ti) = I1i (xti , x
′
ti), i = 1, 2, . . . , n

∆x′(t) = I2i (xti , x
′
ti), i = 1, 2, . . . , n.(1.1)

Here 0 = t0 < t1 ≤ t2, . . . , < tn ≤ tn+1 = b are prefixed numbers.

We also study the second order partial neutral differential equation
with state dependent delay modeled in the form

d2

dt2
x(t) = A(x(t)− g(t, xt)) +

∫ t

0

f(t, xρ(t,xt), x
′(t)) dt,
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t ∈ (si, ti+1], i = 0, . . . , n,

x0 = ϕ ∈ B,

x′(0) = ξ ∈ X,

x(t) = J1
i (t, x(t− t1)), t ∈ (ti, si], i = 1, 2, . . . , n

x′(t) = J2
i (t, x(t− t1)), t ∈ (ti, si], i = 1, 2, . . . , n(1.2)

Here 0 = t0 = s0 < t1 ≤ s1 ≤ t2, . . . , < tn ≤ sn ≤ tn+1 = b are prefixed
numbers.

In (1.1) and (1.2), A is the infinitesimal generator of a strongly
continuous cosine family {C(t) : t ∈ R} of bounded linear operators
on a Banach space X and t ∈ [0, b] = J . The history-valued function
xt : (−∞, 0] → X, xt(θ) = x(t + θ) belongs to some abstract phase
space B defined axiomatically and g, f, I1i , I

2
i , J

1
i , J

2
i , i = 1, . . . , n, are

appropriate functions which are defined in Section 2 in the hypotheses
(Hf), (Hg), (HI) and (HJ), respectively.

The second order abstract partial neutral differential equation simi-
lar to (1.1) is extensively studied in [4, 5, 7, 35]. As a matter of fact,
in these papers, the authors assume severe conditions on the operator
family generated by A, which imply that the underlying space X has
finite dimension. Thus, the equations treated in these works are really
ordinary and not partial differential equations. Hence, motivated by
this fact and the results in [30] and their various applications we study
the existence of the mild solution of the partial neutral differential equa-
tion of second order with state delay and non-instantaneous impulses.
The contribution of this paper lies in the removal of the compactness
assumption on the associated cosine or sine family of operators and the
associated impulsive term. The noncompactness measure estimation
and the Lipschitz conditions on the nonlinear functions are replaced by
simple and natural assumptions.

2. Preliminaries. In this section, some definitions, notation and
lemmata that are used throughout this paper are stated. The family
{C(t) : t ∈ R} of operators in B(X) is a strongly continuous cosine
family if the following are satisfied:

(a) C(0) = I (I is the identity operator in X);
(b) C(t+ s) + C(t− s) = 2C(t)C(s) for all t, s ∈ R;
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(c) The map t→ C(t)x is strongly continuous for each x ∈ X.

The one parameter family of operators {S(t) : t ∈ R} is the sine family
associated to the strongly continuous cosine family {C(t) : t ∈ R}, and
it is defined as

S(t)x =

∫ t

0

C(s)x ds, x ∈ X, t ∈ R.

The operator A is the infinitesimal generator of a strongly continuous
cosine family of bounded linear operators (C(t))t∈R, and S(t) is the

associated sine function. Let N, Ñ, Ñ1, Ñ2 be certain constants such

that ∥C(t)∥ ≤ N , ∥S(t)∥ ≤ Ñ , ∥AS∥ ≤ Ñ1 ∥AC∥ ≤ Ñ2 for every
t ∈ J = [0, b]. For more details, see the books by Goldstein [22] and
Fattorini [19]. In this work, we use the axiomatic definition of phase
space B, introduced by Hale and Kato [26].

PC([0, b], X) is the space formed by normalized piecewise continuous
function from [0, b] into X. In particular, it is the space PC formed
by all functions u : [0, b] → X such that u is continuous at t ̸= ti,
u(t−i ) = u(ti) and u(t

+
i ) exists for all i = 1, 2, . . . , n. It is clear that PC

endowed with the norm ∥x∥PC = supt∈J ∥x(t)∥ is a Banach space. For
any x ∈ PC,

(2.1) x̃i(t) =

{
x(t), t ∈ (ti, ti+1];
x(t+i ), t = ti, i = 1, 2, ..., n.

So, x̃ ∈ C([ti, ti+1], X).

PC1([0, b], X) = {u ∈ PC([0, b], X) : u′ ∈ PC([0, b], X)} is a Banach
space with respect to the norm ∥u∥1 = ∥u∥∞ + ∥u′∥∞.

Definition 2.1 ([26]). The phase spaceB is a linear space of functions
mapping (−∞, 0] into X endowed with seminorm ∥.∥B and satisfies the
following conditions:

(A) If x : (−∞, σ + b] → X, b > 0, such that xt ∈ B and
x|[σ,σ+b] ∈ C([σ, σ + b] : X), then, for every t ∈ [σ, σ + b)
the following conditions hold:
(i) xt is in B,
(ii) ∥x(t)∥ ≤ H∥xt∥B,
(iii) ∥xt∥B ≤ K(t − σ) sup{∥x(s)∥ : σ ≤ s ≤ t} + M(t −

σ)∥xσ∥B,
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where H > 0 is a constant K,M : [0,∞) → [1,∞). K is a
continuous function, M is locally bounded and the functions
H,K,M are independent of x(.).

(B) The space B is complete.

Definition 2.2 ([6]). For a bounded set B in any Banach space Y the
Kuratowski measure of noncompactness αY is defined by

αY (B) = inf{r > 0, B can be covered by

a finite number of balls with diameter r}.

Lemma 2.3 ([6]). Let Y be a Banach space and B,C ⊂ Y be bounded.
Then the following properties hold :

(i) B is pre-compact if and only if αY (B) = 0;
(ii) αY (B) = αY (B) = αY (convB), where B and convB are the

closure and convex hull of B, respectively ;
(iii) αY (B) ≤ αY (C) when B ⊂ C;
(iv) αY (B+C) ≤ αY (B)+αY (C) where B+C = {x+y;x ∈ B, y ∈ C};
(v) αY (B ∪ C) = max{αY (B), αY (C)}.
(vi) αY (λB) = |λ|αY (B) for any λ ∈ R;
(vii) If the map Q : D(Q) ⊂ Y → Z is Lipschitz continuous with

constant k, then αZ(Q(B)) ≤ kαY (B) for any bounded subset
B ⊂ D(Q), where Z is a Banach space.

(viii) If {Wn}+∞
n=1 is a decreasing sequence of a bounded, closed, nonempty

subset of Y and limn→∞αY (Wn) = 0, then ∩+∞
n=1Wn is nonempty

and compact in Y .

Lemma 2.4 ([6]).

(i) If W ⊂ PC([0, b];X) is bounded, then α(W (t)) ≤ αPC(W ) for
any t ∈ [0, b] where W (t) = {u(t) : u ∈W} ⊂ X.

(ii) If W is piecewise equicontinuous on [0, b], then α(W (t)) is piece-
wise continuous for t ∈ [0, b], and

αPC(W ) = sup{χ(W (t)), t ∈ [0, b]}.

(iii) If W ⊂ PC([0, b];X) is bounded and piecewise equicontinuous,
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then α(W (t)) is piecewise continuous for t ∈ [0, b] and

α

(∫ t

a

W (s) ds

)
≤ 2

∫ t

a

α(W (s)) ds t ∈ [0, b].

(iv) If W ⊂ PC1([0, b], X) is bounded and the elements of W ′ are
equicontinuous on each Ji = (ti, ti+1], (i = 0, 1, . . . , n), then

αPC1(W ) = max{sup
t∈J

αW (t), sup
t∈J

α(W ′(t))},

where αPC1 denotes the Kuratowski measure of noncompactness
in the space PC1(J,X).

Lemma 2.5 ([6]). If the semigroup S(t) is equicontinuous and η ∈
L([0, b];R+), then the set{∫ t

0

S(t− s)u(s) ds : ∥u(s)∥ ≤ η(s), for almost every s ∈ [0, b]

}
is equicontinuous for t ∈ [0, b].

Lemma 2.6 ([6]). Let h : [0, b] → E be an integrable function such

that h ∈ PC. Then the function v(t) =
∫ t

0
C(t − s)h(s) ds belongs to

PC1, the function s→ AS(t−s)h(s) is integrable on [0, t] for t ∈ [0, b],
and

v′(t) = h(t) +A

∫ t

0

S(t− s)h(s) ds

= h(t) +

∫ t

0

AS(t− s)h(s) ds, t ∈ [0, b].

Lemma 2.7 ([6]). Let H = hn ⊂ L1([0, b], X). If there exists
ϱ ∈ L1([0, b], [0,+∞)) such that ∥hn(t)∥ ≤ ϱ(t) for hn ∈ H and almost
every t ∈ [0, b], then α(H(t)) ∈ L1([0, b], [0,+∞)) and

α

({∫ t

0

hn(s) ds : n ∈ N
})

≤ 2

∫ t

0

α(H(s)) ds, t ∈ [0, b].

Lemma 2.8 (Mónch [6]). Let X be a Banach space, Ω a bounded open
subset in X and 0 ∈ Ω. Assume that the operator F : Ω → X is
continuous and satisfies the following conditions:
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(i) x ̸= λFx, for all λ ∈ (0, 1), x ∈ ∂Ω.
(ii) D is relatively compact if D ⊂ co(0∪F (D)) for any countable set

D ⊂ Ω. Then F has a fixed point in Ω.

3. Main result. We define the mild solution of problem (1.1) as
follows.

Definition 3.1. A function x : (−∞, a] → X is a mild solution of
problem (1.1) if x0 = ϕ, x′(0) = ξ, x(.)|[0,b] ∈ PC1(X), and

x(t) = C(t)ϕ(0) + S(t)ξ + g(t, xt)−
∫ t

0

AS(t− s)g(s, xs) ds

+

∫ t

0

S(t− s)

∫ s

0

f(r, xρ(r,xr), x
′
r) dr ds

+
∑

0<ti<t

C(t− ti)I
1
i (xti , x

′
ti) +

∑
0<ti<t

S(t− ti)I
2
i (xti , x

′
ti).(3.1)

To prove our result, we always assume ρ : J × B → (−∞, a]
is a continuous function. Let y : (−∞, a] → X be the function
defined by y0 = ϕ and y(t) = C(t)(ϕ(0)) + S(t)(ξ) on [0, t1]. Clearly,
∥yt∥B ≤M1 := Ka∥y∥a+Ma∥ϕ∥B, where ∥y∥b = sup0≤t≤b ∥y(t)∥. Let
x = x+ y

∥xρ(s,xs)∥B ≤M∗
2 := (Ma + J̃ϕ)∥ϕ∥B +Ka∥y∥a +Ka∥x∥a.

Taking the supremum of M1,M2 as M and the supremum of y′ as M ′

we define the space S(b) as

S(b) = {x : (−∞, b] → X : x0 = 0, x′(0) = 0, x|J ∈ PC1}

endowed with norm ∥u∥1 = ∥u∥∞ + ∥u′∥∞.

The following hypotheses are required to prove our result.

(Hϕ) The function t → ϕt is continuous from R(ρ−) = {ρ(s, ψ) :
ρ(s, ψ) ≤ 0} into B, and there exists a continuous bounded
function Jϕ : R(ρ−) → (0,∞) such that ∥ϕt∥B ≤ Jϕ(t)∥ϕ∥B
for every t ∈ R(ρ−).

(Hf) The function f : J ×B×B → X satisfies the following:
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(1) For every x : (−∞, a] → X,x0 = 0, x′(0) = 0 , x|J ∈ PC1

the function f(., xt, x
′
t) : J → X is strongly measurable

and f(t, ., .) is continuous for almost every t ∈ J .
(2) There exists an integrable function p : J → [0,+∞) such

that ∥f(t, u, v)∥ ≤ p(t)(∥u∥B + ∥v∥B) for all t ∈ J and
u, v ∈ B.

(3) There exists an integrable function µ : J → [0,∞) such
that α(f(t,Dt, D

′
t)) ≤ µ(t)(α(Dt) + α(D′

t)) for almost
every t ∈ J , where Dt = {vt : v ∈ D}. D′

t = {v′t :
v′ ∈ D′} ⊂ B(t ∈ J), V ′ ⊂ PC1.

(Hg) The function g : J ×B satisfies the following.
(1) g(t, .) is continuous for all t ∈ J .

(2) For every bounded V ⊂ S(b) the set {(̃vx)i(t) : x ∈ V } is
uniformly equicontinuous on [ti, ti+1] for all i = 0, . . . , n,
where vx(t) = g(t, xt).

(3) For any bounded set Q ⊂ PC1, α(g(t,Qt)) < cα(Qt),
t ∈ J , where c is a positive constant.

(HI) For the maps I1i : B × B → E, I2i : B × B → X, there

exist positive constants c1i , c
2
i , d

1
i , d

2
i such that ∥Iji (t, v)∥ ≤

cji∥v∥B + dji , for all j = 1, 2.
(H1) There exists a Banach space (Y, ∥.∥Y ) continuously included

in X such that AS(t) ∈ L(Y,X), for all t ∈ J and AS(.)x ∈
C(J ;X) for every x ∈ Y . There exist constants NY , Ñ1 such

that ∥y∥ ≤ NY ∥y∥Y , for all y ∈ Y and ∥AS(t)∥L(Y,X) ≤ Ñ1,
for all t ∈ J .

(H2) R(C(t) − I) is closed and dim Ker (C(t) − I) < ∞, for all
0 < t ≤ b.

(HJ) (1) For the maps J1
i (t, ϕ) : J × B → X, there exist positive

constants c1i , c
2
i , d

1
i , d

2
i such that

∥Jj
i (t, v)∥ ≤ cji∥v∥B + dji , for all j = 1, 2.

(2) The maps J1
i (., ψ), J

2
i (., ψ) are continuous for all (., ψ) ∈

(ti, si]×B, i = 1, . . . , n.

Lemma 3.2 ([36]). If y : (−∞, b] → X is a function such that y0 = ϕ
and y|J ∈ PC(X), then
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∥yρ(s,ys)∥B ≤ (Mb + J̃ϕ)∥ϕ∥B +Kb sup{∥y(θ)∥; θ ∈ [0,max{0, s}]},
s ∈ R(ρ−) ∪ [0, b],

where
J̃ϕ = sup

t∈R(ρ−)

Jϕ(t), Mb = sup
t∈J

M(t)

and
Kb = max

t∈J
K(t).

Lemma 3.3 ([29]). Let condition (H2) be satisfied and B ⊂ Y . If B
is bounded in X and the set {AS(t)y : t ∈ [0, b], y ∈ B} is relatively
compact in X, then B is relatively compact in X.

Proof. Since, for y ∈ B,

C(t)y − y = A

∫ t

0

S(s) y dy =

∫ t

0

AS(s)y dy,

it follows from the mean value theorem for the Bochner integral that

C(t)y − y ∈ t× co (AS (s)y : 0 ≤ s ≤ t, y ∈ B),

where co is the convex hull. Then, by hypothesis (H2), the result
follows. �

Lemma 3.4 ([29]). A set B ⊂ PC1 is relatively compact in PC1

if and only if each set B̃i, i = 1, . . . , n, is relatively compact in
C1([ti, ti+1], X).

Theorem 3.5. If the hypotheses (Hϕ), (Hf), (Hg), (HI), (H1) and
(H2) hold and the cosine family is equicontinuous, then there exists a
mild solution of the problem (1.1).

Proof. Let us define the function z : (−∞, 0] → X as z0 = x′0,
z(t) = x′(t), t ∈ J , S(b) = {x : (−∞, b] → X : x0 = 0, x′(0) = 0,
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x(.)|J ∈ PC1}. Let Γ = (Γ1,Γ2) : S(b)× S(b) → S(b) be defined as:
(3.2)

Γ1(x, z)(t) =


0, t ≤ 0;

+
∫ t

0
AS(t− s)g(s, xs + ys) ds

+
∫ t

0
S(t− s)

∫ s

0
f(r, xrho(r,xr), x

′
r + y′r) dr

+
∑

0<ti<t C(t− ti)I
1
i (xti + yti , zti + y′ti)

+
∑

0<ti<t S(t− ti)I
2
i (xti + yti , zti + y′ti), t ∈ J,

and Γ2(x, z)(t) = Γ1(x, z)
′(t). Therefore,

(3.3)

Γ2(x, z)(t) =


0, t ≤ 0;

+
∫ t

0
AC(t− s)g(s, xs + ys) ds

+
∫ t

0
C(t− s)

∫ s

0
f(r, xρ(r,xr) + yr, x

′
r + y′r) dr

+
∑

0<ti<tAS(t− ti)I
1
i (xti + yti , zti + y′ti)

+
∑

0<ti<t C(t− ti)I
2
i (xti + yti , zti + y′ti), t ∈ J.

Γ is seen to be continuous by the Lebesgue dominated convergence
theorem, axioms of phase space and the hypotheses (Hϕ), (Hf), (Hg)
and (HI).

Step 1. It is shown that

Ω0 = {(x, z) ∈ S(b)× S(b) : (x, z) = λΓ(x, z) for some λ ∈ (0, 1)}

is bounded. If t ∈ J0 = [0, t1], then

∥x(t)∥ = ∥Γ1(x, z)(t)∥

≤ Ñ1

∫ t

0

∥[c(∥x∥B +M) + d] ds

+ Ñ

∫ t

0

∫ s

0

p(r)(∥xr∥B + ∥zr∥B +M ′ +M) dr ds

≤M

∫ t

0

(
Ñ1c+ Ñ

∫ s

0

p(r) dr

)
ds+ Ñ1bd

+Kb

∫ t

0

(
Ñ1c+ Ñ

∫ s

0

p(r) dr

)
(∥x∥s + ∥z∥s) ds

+M ′Ñ

∫ t

0

∫ s

0

p(r) dr ds,(3.4)
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∥z(t)∥ ≤ ∥Γ2(x, z)(t)∥ ≤ Ñ2

∫ t

0

[c(∥x∥B +M) + d] ds

+N

∫ t

0

∫ s

0

p(r)(∥xr∥B + ∥zr∥B +M ′ +M) dr ds

≤M

∫ t

0

(
Ñ2c+N

∫ s

0

p(r) dr

)
ds+ Ñ2bd

+Kb

∫ t

0

(
Ñ2c+N

∫ s

0

p(r) dr

)
(∥x∥s + ∥z∥s) ds

+M ′Ñ

∫ t

0

∫ s

0

p(r) dr ds.(3.5)

Therefore,

∥x∥t + ∥z∥t ≤ (Ñ1 + Ñ2) bd

+M

[ ∫ t

0

[
c(Ñ1 + Ñ2) + (N + Ñ)

∫ s

0

p(r) dr

]
ds

+M ′(Ñ +N)

∫ t

0

(∫ s

0

p(r) dr

)
ds

+

∫ t

0

[
(Ñ1c+ Ñ2c)Kb

+ (N + Ñ)Kb

∫ s

0

p(r)d r

]
(∥x∥s + ∥z∥s)

]
ds.(3.6)

Since ∥x∥t+∥z∥t ∈ C(J0, X), by Gronwall’s lemma, there is a constant
G0 > 0 such that ∥x∥t + ∥z∥t ≤ G0, t ∈ J , and ∥xt∥B ≤ KbG0 and
∥zt∥B ≤ KbG0, t ∈ J0. By condition (HI), it is observed that

∥Ij1(xt1 + yt1 , zt1 + y′t1)∥E ≤ cj1(2KbG0 +M +M ′) + dj1 := ηj

∥x(t+1 )∥ = ∥x(t1) + I11 (xt1 + yt1 , zt1 + y′t1)∥
≤ G0 + η1

∥z(t+1 )∥ = ∥z(t1) + I21 (xt1 + yt1 , zt1 + y′t1)∥
≤ G0 + η2.(3.7)

When t ∈ J1 = (t1, t2], let

u(t) =

{
x(t), t ∈ (t1, t2];
x(t+1 ), t = t1.
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v(t) =

{
z(t), t ∈ (t1, t2];
z(t+1 ), t = t1.

Then u, v ∈ C([t1, t2], X).

∥u(t)∥ ≤
∫ t

0

(
Ñ1cKb + ÑKb

∫ s

0

p(r) dr
)
(∥x∥s + ∥z∥s) ds

+

∫ t

0

[
Ñ1cM + Ñ

∫ s

0

p(r) dr(M +M ′)
]
ds+ Ñ1bd

+N∥I11 (xt1 + yt1 , zt1 + y′t1)∥

+ Ñ∥I21 (xt1 + yt1 , zt1 + y′t1)∥E ds

≤
∫ t1

0

(
2Ñ1cKbG0 + Ñ

∫ s

0

2KbG0p(r) dr

)
ds

+

∫ t

0

[
N1cM + Ñ

∫ s

0

p(r) dr(M +M ′)ds

]
+

∫ t

t1

(
Ñ1cKb + ÑKb

∫ s

0

p(r) dr

)

· ( sup
t1≤τ≤s

∥u(τ)∥+ sup
t1≤τ≤s

∥v(τ)∥) ds
(3.8)

∥v(t)∥ ≤
∫ t1

0

(
2Ñ2cKbG0 +N

∫ s

0

2KbG0p(r) dr
)
(M +M ′) ds+ Ñ2bd

+

∫ t

0

[
Ñ2cM +N

∫ s

0

p(r) dr(M +M ′) ds

]
+

∫ t2

t1

(
Ñ2cKb +NKb

∫ s

0

p(r) dr

)

· ( sup
t1≤t≤s

∥u(τ)∥+ sup
t1≤t≤s

∥v(τ)∥) ds.
(3.9)

Therefore, from equation (3.8) and (3.9)

sup
t1≤s≤t

∥u(s)∥+ sup
t1≤s≤t

∥v(s)∥ ≤ e1 + e2

+

∫ t

t1

[
Ñ1c+ Ñ2c+ (N + Ñ)

∫ s

0

p(r) dr
]
Kb
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× ( sup
t1≤τ≤s

∥u(τ)∥+ sup
t1≤τ≤s

∥v(τ)∥) ds,(3.10)

where e1, e2 are appropriate constants. Using Gronwall’s lemma, there
exist constants G1 > 0 such that ∥u(t)∥ + ∥v(t)∥ ≤ G1 for t ∈
[t1, t2]. So ∥x(t)∥ + ∥z(t)∥ ≤ G1, for t ∈ J1. Similarly, let G =
max{G0, G1, . . . , Gn}. Then ∥(x, z)∥b ≤ G and Ω0 is bounded.

Let R > G and ΩR = {(x, z) ∈ S(b) × S(b) : ∥(x, z)∥b < R}. Since
R > G, so

(3.11) (x, z) ̸= λΓ(x, z), for all (x, z) ∈ ∂ΩR.

Step 2. Suppose V ⊂ ΩR is a countable set and V ⊂ co({0, 0} ⊂
Γ(V )). Let

V1 = {x ∈ S(b) : there exists z ∈ S(b), (x, z) ∈ V },
V2 = {z ∈ S(b) : there exists x ∈ S(b), (x, z) ∈ V }.

(3.12) V ⊂ V1 × V2 ⊂ co ({0} ∪ Γ1(V1 × V2))co ({0} ∪ Γ2(V1 × V2)).

From equations (3.2), (3.3) and (Hg) (ii), we get that Γj((Ṽ1)i× (Ṽ2)i),
(j = 1, 2) are equicontinuous on Ji(i = 0, 1, . . . , n). From (3.12), it is

implied that (Ṽk)i (k = 1, 2) are equicontinuous.

Step 3. Now we prove that V1 and V2 are relatively compact. We

identify Vk|Ji (k = 1, 2) with Ṽi, where Vk|Ji is the restriction of Vk
on Ji = (ti, ti+1]. When t ∈ J0 = [0, t1], from hypotheses (Hf) (iii),
(Hg) (v) and Lemma (2.5), we get that:

α(V1(t)) ≤ α(Γ1(V1 × V2)(t))

≤ 2Ñ1

∫ t

0

α(g(s, V1s + ys)) ds

+ 2Ñ

∫ t

0

α

∫ s

0

f(r, V1ρ(r,xr) + yρ(r,xr), V2r + y′r) dr ds

≤ 2

∫ t

0

Ñ1cα(V1s + ys) ds

+ 2

∫ t

0

2Ñ

∫ s

0

µ(r) dr(α(V1s + ys) + α(V2s + y′s)) ds
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≤ 2

∫ t

0

(Ñ1c+ 2Ñ

∫ s

0

µ(r) dr)(α(V1s + ys) + α(V2s + y′s))

≤ 2

∫ t

0

[
Ñ1cKb + 2KbÑ

∫ s

0

µ(r) dr( sup
0≤τ≤s

α(V1(τ))

+ sup
0≤τ≤s

α(V1(τ)))

]
ds(3.13)

α(V2(t)) ≤ α(Γ2(V1 × V2)(t))

≤ 2Ñ2

∫ t

0

α(g(s, V1s + ys)) ds

+ 2N

∫ t

0

α

∫ s

0

f(r, V1ρ(r,xr) + yρ(r,xr), V2r + y′r) dr ds

≤ 2

∫ t

0

Ñ2cα(V1s + ys)

+ 2

∫ t

0

2N

∫ s

0

µ(r)dr(α(V1s + ys) + α(V2s + y′s)) ds

≤ 2

∫ t

0

(
Ñ2c+ 2N

∫ s

0

µ(r) dr

)
· (α(V1s + ys) + α(V2s + y′s)) ds

≤ 2

∫ t

0

[(
Ñ1cKb + 2KbÑ

∫ s

0

µ(r) dr

)
( sup
0≤τ≤s

α(V1(τ))

+ sup
0≤τ≤s

α(V1(τ)))

]
ds.(3.14)

Since mj(t) := sup0≤s≤t α(Vj(s)) (j = 1, 2) are continuous and non-
decreasing functions on J0. From equations (3.13) and (3.14), we get
that

(3.15) m1(t) +m2(t) ≤
∫ t

0

K

(
c+

∫ s

0

µ(r) dr

)
(m1(s) +m2(s)) ds,

where K is an appropriate constant. So, by Gronwall’s lemma and
(3.15), we see that α(Vk(t)) = 0, (k = 1, 2), t ∈ J0. By Lemma
(2.1) (i), we prove that Vk (k = 1, 2) is relatively compact in C(J0, X).
Since

α(Vjt1 + yt1) ≤ α(Vjt1) ≤ Kb sup
0≤s≤t1

α(Vj(s)) = 0,
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also Ij1(., .) (j = 1, 2) is continuous, we can show that

α(I11 (V1t1 + yt1 , V2t1 + y′t1)) = α(I21 (V1t1 + yt1 , V2t1 + y′t1)) = 0.

Similarly, when t ∈ J1 = [t1, t1],

α(V1(t)) ≤ α(Γ1(V1 × V2)(t))

≤ 2

∫ t

t1

[
Ñ1cKb + 2KbÑ

∫ s

0

µ(r) dr( sup
0≤τ≤s

α(V1(τ))

+ sup
0≤τ≤s

α(V1(τ)))

]
ds(3.16)

α(V2(t)) ≤ 2

∫ t

t1

[(
Ñ1cKb + 2KbÑ

∫ s

0

µ(r) dr

)
( sup
t1≤τ≤s

α(V1(τ))

+ sup
t1≤τ≤s

α(V1(τ)))

]
ds.(3.17)

From equations (3.16) and (3.17) we get that

(3.18) sup
t1≤s≤t

α(V1(s)) + sup
t1≤s≤t

α(V2(s))

≤
∫ t

t1

K

({
c+

∫ s

0

µ(r) dr

})
( sup
t1≤s≤t

V1(s) + sup
t1≤s≤t

V2(s)) ds,

where K is the appropriate constant. So, by Gronwall’s lemma and
(3.18), we see that α(Vk(t)) = 0, (k = 1, 2), t ∈ J1. By Lemma
(2.1) (i), we prove that Vk, (k = 1, 2) is relatively compact in C(J1, X).
Since

α(Vjt1 + yt1) ≤ α(Vjt1) ≤ Kb sup
0≤s≤t1

α(Vj(s)) = 0,

also Ij2(., .) (j = 1, 2) is continuous, we can show that

α(I12 (V1t1 + yt1 , V2t1 + y′t1)) = α(I22 (V1t1 + yt1 , V2t1 + y′t1)) = 0.

Similarly, Vk (k = 1, 2) are relatively compact in C(Ji, X), (i =
2, 3, . . . , n). Thus, Vk (k = 1, 2) are relatively compact in S(b). Now,
by Lemma (2.6), we can prove that Γ has a fixed point in ΩR. If (x, z)
is a fixed point of Γ on S(b), then (x+ y) is a mild solution of problem
(1.1). �
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3.1. Non-instantaneous impulsive second order neutral differ-
ential equation. In this section, we will find the conditions for the
existence of mild solution of problem (1.2). Let us define the mild
solution as follows.

Definition 3.6. A function x : (−∞, a] → X is a mild solution of
problem (1.2) if x0 = ϕ, x′(0) = ξ, x(.)|[0,a] ∈ PC1(X), x(t) =

J1
i (t, x(t − t1)), for all t ∈ (ti, si], i = 1, . . . , n, x′(t) = J2

i (t, x(t − t1)),
t ∈ (ti, si], i = 1, 2, . . . , n, and

x(t) = C(t)ϕ(0) + S(t)ξ −
∫ t

0

AS(t− s)g(s, xs) ds

+

∫ t

0

S(t− s)

∫ s

0

f(r, xρ(s,xr), x
′(r)) dr ds, t ∈ [0, t1]

x(t) = C(t− si)J
1
i (si, x(t− t1))

+ S(t− si)J
2
i (si, x(t− t1))−

∫ t

si

AS(t− s)g(s, xs) ds

+

∫ t

si

S(t− s)

∫ s

0

f(s, xρ(r,xr), x
′(r)) dr ds,

for t ∈ [si, ti+1], i = 1, . . . , n.(3.19)

Let y : (−∞, a] → X be the function defined by y0 = ϕ and

y(t) = C(t)(ϕ(0)) + S(t)(ξ) on [0, t1].

Clearly,
∥yt∥B ≤ Ka∥y∥a +Ma∥ϕ∥B

where
∥y∥b = sup

0≤t≤b
∥y(t)∥,

since

S(b) = {x : (−∞, b] −→ X : x0 = 0, x′(0) = 0, x(.)|J ∈ PC1}.

Therefore, x = x+ y is a mild solution of (1.2).
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Theorem 3.7. If the hypotheses (Hϕ), (Hf), (Hg), (HJ), (H1) and
(H2) hold and the cosine family is equicontinuous, then there exists a
mild solution of problem (1.1).

Proof. Let us define the function z : (−∞, 0] → X as

z0 = x′0, z(t) = x′(t), t ∈ J.

Let
Γ = (Γ1,Γ2) : S(b)× S(b) −→ S(b)

be defined as:

Γ1(x, z)(t) =


0, t ≤ 0;

−
∫ t

0

AS(t− s)g(s, xs + ys) ds

+

∫ t

0

S(t− s)

∫ s

0

f(r, xρ(r,xr), x
′
r + y′r) dr, t∈J1=[0, t1].

(3.20)

and Γ2(x, z)(t) = Γ1(x, z)
′(t). Therefore,

Γ2(x, z)(t) =



0 t ≤ 0

−
∫ t

0

AC(t− s)g(s, xs + ys) ds

+

∫ t

0

C(t− s)

∫ s

0

f(r, xρ(r,xr), x
′
r + y′r) dr ds,

t ∈ J1 = [0, t1].

(3.21)

Γ1(x, z)(t) =



J1
i (t, x(t− t1) t ∈ (ti, si],
C(t− si)J

1
i (si, x(t− t1))

−S(t− si)J
2
i (si, x(t− t1))

−
∫ t

si

AS(t− s)g(s, xs + ys) ds

+

∫ t

si

S(t− s)

∫ s

0

f(r, xρ(r,xr), x
′
r + y′r) dr ds,

t ∈ Ji = (si, ti+1].

(3.22)
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and Γ2(x, z)(t) = Γ1(x, z)
′(t). Therefore,

Γ2(x, z)(t) =



J2
i (t, x(t− t1) t ∈ (ti, si]
AS(t− si)J

1
i (si, x(t− t1))

−C(t− si)J
2
i (si, x(t− t1))

−
∫ t

si

AC(t− s)g(s, xs + ys) ds

+

∫ t

si

C(t− s)

∫ s

0

f(r, xρ(r,xr), x
′
r + y′r) dr ds,

t ∈ Ji = (si, ti+1].

(3.23)

It can be easily proved that Γ is continuous by the Lebesgue dominated
convergence theorem, axioms of phase space and the hypotheses (Hϕ),
(Hf), (Hg) and (HJ).

Step 1. We show that

Ω0 = {(x, z) ∈ S(b)× S(b) : (x, z) = λΓ(x, z) for some λ ∈ (0, 1)}

is bounded. When t ∈ J0 = [0, t1],

∥x(t)∥ ≤ ∥Γ1(x, z)(t)∥

≤ Ñ1

∫ t

0

∥[c(∥x∥B +M) + d] ds

+ Ñ

∫ t

0

∫ s

0

p(r)(∥xr∥B + ∥zr∥B +M ′ +M) dr ds

≤M

∫ t

0

(
Ñ1c+ Ñ

∫ s

0

p(r) dr

)
ds+ Ñ1bd

+Kb

∫ t

0

(
Ñ1c+ Ñ

∫ s

0

p(r) dr

)
(∥x∥s + ∥z∥s) ds

+M ′Ñ

∫ t

0

∫ s

0

p(r) dr ds,(3.24)

∥z(t)∥ ≤ ∥Γ2(x, z)(t)∥

≤ Ñ2

∫ t

0

∥[c(∥x∥B +M) + d] ds

+N

∫ t

0

∫ s

0

p(r)(∥xr∥B + ∥zr∥B +M ′ +M) dr ds
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≤M

∫ t

0

(
Ñ2c+N

∫ s

0

p(r) dr

)
ds+ Ñ2bd

+Kb

∫ t

0

(
Ñ2c+N

∫ s

0

p(r) dr

)
(∥x∥s + ∥z∥s) ds

+M ′Ñ

∫ t

0

∫ s

0

p(r) dr ds.(3.25)

Therefore,

∥x∥t + ∥z∥t ≤ [(Ñ1 + Ñ2)bd

+M

∫ t

0

[
c(Ñ1 + Ñ2) + (N + Ñ)

∫ s

0

p(r) dr

]
ds

+M ′(Ñ +N)

∫ t

0

(∫ s

0

p(r) dr

)
ds

+

∫ t

0

[
(Ñ1c+ Ñ2c)Kb

+ (N + Ñ)Kb

∫ s

0

p(r) dr
]
(∥x∥s + ∥z∥s)] ds.(3.26)

Since ∥x∥t+∥z∥t ∈ C(J0, X), by Gronwall’s lemma, there is a constant
G0 > 0 such that

∥x∥t + ∥z∥t ≤ G0, t ∈ J

and
∥xt∥B ≤ KbG0 and ∥zt∥B ≤ KbG0, t ∈ J0.

By condition (HJ), it is observed that, for t ∈ [t1, s1),

(3.27) ∥Jj
1 (t, x(t− t1))∥E ≤ cj1(2KbG0 +M) + dj1 := ηj1.

When t ∈ J2 = [s1, t2],

∥x(t)∥ ≤ ∥Γ1(x, z)(t)∥

≤ N [c1i (∥xsi∥B) + d1i ] + Ñ [c2i ∥xsi∥B + d2i ]

+ Ñ1

∫ t

si

[c(∥x(s)∥B +M) + d] ds

+ Ñ

∫ t

si

∫ s

0

p(r)(∥xr∥B + ∥zr∥B +M ′ +M) dr ds
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≤M

∫ t

si

(
Ñ1c+ Ñ

∫ s

0

p(r) dr
)
ds

+M ′Ñ

∫ t

si

∫ s

0

p(r) dr ds

+Kb

∫ t

si

(
Ñ1c+ Ñ

∫ s

0

p(r) dr
)
(∥x∥s + ∥z∥s) ds

+ [N(c1iKb) + Ñ(c2iKb)](∥x∥+ ∥z∥)

+ Ñ1bd+N(d1i ) + Ñ(d2i ).(3.28)

∥z(t)∥ ≤ ∥Γ2(x, z)(t)∥

≤ Ñ1∥[c1i ∥xsi∥B + d1i ∥
+N [c2i ∥xsi∥B + d2i

+ Ñ2

∫ t

si

∥[c(∥x(s)∥B +M) + d] ds

+N

∫ t

si

∫ s

0

p(r)(∥xr∥B + ∥zr∥B +M ′ +M) dr ds

≤M

∫ t

0

(
Ñ2c+N

∫ s

0

p(r) dr
)
ds

+M ′Ñ

∫ t

0

∫ s

0

p(r) dr ds

+Kb

∫ t

0

(
Ñ2c+N

∫ s

0

p(r) dr
)
(∥x∥s + ∥z∥s) ds

+ [Ñ2(c
1
iKb) +N(c2iKb)](∥x∥+ ∥z∥)

+ Ñ2bd+N(d1i ) +N(d2i ) + Ñ2bd.(3.29)

Therefore,

∥x∥t + ∥z∥t ≤
{
K +M

∫ t

0

[
c(Ñ1 + Ñ2) + (N + Ñ)

∫ s

0

p(r) dr
]
ds

+M ′(Ñ +N)

∫ t

0

(∫ s

0

p(r) dr

)
ds+

∫ t

0

[
(Ñ1c+ Ñ2c)Kb

+ (N + Ñ)Kb

∫ s

0

p(r) dr
]
(∥x∥s + ∥z∥s)

]
ds
}
,(3.30)



IMPULSIVE INTEGRO-DIFFERENTIAL EQUATIONS 509

where K is an appropriate constant. Since ∥x∥t + ∥z∥t ∈ C(J1, X), by
Gronwall’s lemma, there is a constant G1 > 0 such that

∥x∥t + ∥z∥t ≤ G1, t ∈ J,

∥xt∥B ≤ KbG0

and
∥zt∥B ≤ KbG1, t ∈ J0.

By condition (HJ), it is observed that, for t ∈ [t2, s2),

(3.31) ∥Jj
2 (t, x(t− t1)∥E ≤ cj2(2KbG1 +M) + dj2 := ηj2, j = 1, 2.

Similarly, let

G = max{G0, η1, G1, η2 · · ·Gn}.

Then ∥(x, z)∥b ≤ G and Ω0 is bounded.

Let R > G and

ΩR = {(x, z) ∈ S(b)× S(b) : ∥(x, z)∥b < R}.

Since R > G,

(3.32) (x, z) ̸= λΓ(x, z) for all (x, z) ∈ ∂ΩR.

Step 2. Suppose V ⊂ ΩR be a countable set and V ⊂ co ({0, 0} ⊂
Γ(V )). Let

V1 = {x ∈ S(b) : there exists z ∈ S(b), (x, z) ∈ V },
V2 = {z ∈ S(b) : there exists x ∈ S(b), (x, z) ∈ V }.

V ⊂ V1 × V2 ⊂ co ({0} ∪ Γ1(V1 × V2))

× co({0} ∪ Γ2(V1 × V2)).(3.33)

From equations (3.22), (3.23) and (Hg) (2), we get that Γj((Ṽ1)i ×
(Ṽ2)i), (j = 1, 2) are equicontinuous on Ji(i = 0, 1, . . . , n). From (3.33),

it is seen that (Ṽk)i(k = 1, 2) are equicontinuous.

Next, we prove that V1 and V2 are relatively compact. We identify

Vk|Ji (k = 1, 2) with Ṽi where Vk|Ji is the restriction of Vk on
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Ji = (si, ti+1]. When t ∈ J0 = [0, t1], from hypotheses (Hf)(3),
(Hg)(5)and Lemma (2.5), we get that:

α(V1(t)) ≤ α(Γ1(V1 × V2)(t))

≤ 2Ñ1

∫ t

0

α(g(s, V1s + ys)) ds

+ 2Ñ

∫ t

0

α

∫ s

0

f(r, V1ρ(r,xr) + yρ(r,xr), V2r + y′r) dr ds

≤ 2

∫ t

0

Ñ1cα(V1s + ys) ds

+ 2

∫ t

0

2Ñ

∫ s

0

µ(r) dr(α(V1s + ys) + α(V2s + y′s)) ds

≤ 2

∫ t

0

(
Ñ1c+ 2Ñ

∫ s

0

µ(r) dr
)
(α(V1s + ys) + α(V2s + y′s))

≤ 2

∫ t

0

[
Ñ1cKb + 2KbÑ

∫ s

0

µ(r) dr( sup
0≤τ≤s

α(V1(τ))

+ sup
0≤τ≤s

α(V1(τ)))
]
ds(3.34)

and

α(V2(t)) ≤ α(Γ2(V1 × V2)(t))

≤ 2Ñ2

∫ t

0

α(g(s, V1s + ys)) ds

+ 2N

∫ t

0

α

∫ s

0

f(r, V1ρ(r,xr) + yρ(r,xr), V2r + y′r) dr ds

≤ 2

∫ t

0

Ñ2cα(V1s + ys)

+ 2

∫ t

0

2N

∫ s

0

µ(r) dr(α(V1s + ys) + α(V2s + y′s)) ds

≤ 2

∫ t

0

(
Ñ2c+ 2N

∫ s

0

µ(r) dr
)
(α(V1s + ys) + α(V2s + y′s)) ds

≤ 2

∫ t

0

[(
Ñ1cKb + 2KbÑ

∫ s

0

µ(r) dr
)
( sup
0≤τ≤s

α(V1(τ))
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+ sup
0≤τ≤s

α(V1(τ)))
]
ds,(3.35)

since mj(t) := sup0≤s≤t α(Vj(s)) (j = 1, 2) are continuous and non-
decreasing functions on J0. From equations (3.34) and (3.35) we get
that

(3.36) m1(t) +m2(t) ≤
∫ t

0

K(c+

∫ s

0

µ(r)dr)(m1(s) +m2(s)0) ds,

where K is an appropriate constant. So, by Gronwall’s lemma and
(3.36), we see that α(Vk(t)) = 0 (k = 1, 2), t ∈ J0. By Lemma (2.1) (i),
we prove that Vk, (k = 1, 2) is relatively compact in C(J0, X). Since

α(Vjt1 + yt1) ≤ α(Vjt1) ≤ Kb sup
0≤s≤t1

α(Vj(s)) = 0,

also Jj
1 (., .) (j = 1, 2) is continuous, we can show that

α(J1
1 (V1t1 + yt1)) = α(J2

1 (V1t1 + yt1)) = 0.

Similarly, when t ∈ J1 = [t1, s1],

α(V1(t)) ≤ α(Γ1(V1 × V2)(t))

≤ 2

∫ t

t1

[
Ñ1cKb + 2KbÑ

∫ s

0

µ(r) dr( sup
0≤τ≤s

α(V1(τ))

+ sup
0≤τ≤s

α(V1(τ)))
]
ds

+

∫ t

0

cKb sup
t1≤s≤t

α(V1(s)) ds,(3.37)

α(V2(t)) ≤ 2

∫ t

t1

[(
Ñ1cKb + 2KbÑ

∫ s

0

µ(r) dr
)
( sup
t1≤τ≤s

α(V1(τ))

+ sup
t1≤τ≤s

α(V1(τ)))
]
ds+ cKb sup

t1≤s≤t
α(V2(s)) ds.(3.38)

From equations (3.37) and (3.38) we get that

sup
t1≤s≤t

α(V1(s)) + sup
t1≤s≤t

α(V2(s))
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≤
∫ t

t1

(
K

{
c+

∫ s

0

µ(r) dr

}
+ cKb

)
( sup
t1≤s≤t

V1(s) + sup
t1≤s≤t

V2(s)) ds,

(3.39)

where K is the appropriate constant. So, by Gronwall’s lemma and
(3.39) we see that α(Vk(t)) = 0, (k = 1, 2), t ∈ J1. By Lemma (2.1) (i),
we prove that Vk (k = 1, 2) is relatively compact in C(J1, X). Since

α(Vjt1 + yt1) ≤ α(Vjt1) ≤ Kb sup
0≤s≤t1

α(Vj(s)) = 0,

also Jj
2 (., .) (j = 1, 2) is continuous and we can show that

α(J1
2 (V1t1 + yt1)) = α(J2

2 (V1t1 + yt1)) = 0.

Similarly Vk (k = 1, 2) are relatively compact in C(Ji, X) (i =
2, 3, . . . , n). Thus, Vk (k = 1, 2) are relatively compact in S(b). Now
by Lemma (2.6), we can prove that Γ has fixed point in ΩR. If (x, z)
is a fixed point of Γ on S(b) then (x+ y) is a mild solution of problem
(1.2). �

Remark 3.8. We can also apply the above methodology to the follow-
ing:

d2

dt2
x(t) = A

(
x(t)−

∫ t

0

g(τ, xτ ) dτ

)
+

∫ t

0

f(t, xρ(t,xt)) dt, t ∈ [0, b], t ̸= ti,

i = 1, . . . , n

x0 = ϕ ∈ B,

x′(0) = ξ ∈ X,

∆x(ti) = I1i (xti), i = 1, 2, . . . , n

∆x′(t) = I2i (xti), i = 1, 2, . . . , n.(3.40)

Here 0 = t0 < t1 ≤ t2 · · · < tn ≤ tn+1 = b are prefixed numbers.

d2

dt2
x(t) = A

(
x(t)−

∫ t

0

g(τ, xτ ) dτ
)
+

∫ t

0

f(t, xρ(t,xt)) dt,

t ∈ (si, ti+1], i = 0, . . . , n
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x0 = ϕ ∈ B,

x′(0) = ξ ∈ X,

x(t) = J1
i (t, x(t− t1)), t ∈ (ti, si], i = 1, 2, . . . , n

x′(t) = J2
i (t, x(t− t1)), t ∈ (ti, si], i = 1, 2, . . . , n.(3.41)

Here 0 = t0 = s0 < t1 ≤ s1 ≤ t2 · · · < tn ≤ sn ≤ tn+1 = b are prefixed
numbers. The mild solution of (3.40) is defined as

Definition 3.9. A function x : (−∞, a] → X is a mild solution of the
problem (3.40) if x0 = ϕ, x′(0) = ξ, x(.)|[0,b] ∈ PC1(X), and

x(t) = C(t)ϕ(0) + S(t)ξ

+

∫ t

0

g(s, xs) ds−
∫ t

0

C(t− s)g(s, xs) ds

+

∫ t

0

S(t− s)

∫ s

0

f(r, xρ(r,xr)) dr ds

+
∑

0<ti<t

C(t− ti)I
1
i (xti) +

∑
0<ti<t

S(t− ti)I
2
i (xti).(3.42)

We define S(b) = {x : (−∞, b] → X : x0 = 0, x′(0) = 0, x(.)|J ∈
PC1}. We define

Γ =: S(b)× S(b) → S(b)

as

Γ(x)(t) =



0, t ≤ 0;

+

∫ t

0

C(t− s)g(s, xs + ys) ds

+

∫ t

0

g(s, xs + ys) ds

+

∫ t

0

S(t− s)

∫ s

0

f(r, xrho(r,xr)) dr

+
∑

0<ti<t

C(t− ti)I
1
i (xti + yti)

+
∑

0<ti<t

S(t− ti)I
2
i (xti + yti), t ∈ J,

(3.43)

and proceed as in the first case of Theorem 3.5.
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Definition 3.10. A function x : (−∞, a] → X is a mild solution
of problem (3.41) if x0 = ϕ, x′(0) = ξ, x(.)|[0,a] ∈ PC1(X), x(t) =

J1
i (t, x(t − t1)) for all t ∈ (ti, si], i = 1, . . . , n, x′(t) = J2

i (t, x(t − t1)),
t ∈ (ti, si], i = 1, 2, . . . , n, and

x(t) = C(t)ϕ(0) + S(t)ξ −
∫ t

0

C(t− s)g(s, xs) ds+

∫ t

0

g(s, xs) ds

(3.44)

+

∫ t

0

S(t− s)

∫ s

0

f(r, xρ(s,xr)) dr ds, t ∈ [0, t1],

x(t) = C(t− si)J
1
i (si, x(t− t1)) + S(t− si)J

2
i (si, x(t− t1))

−
∫ t

si

C(t− s)g(s, xs) ds+

∫ t

0

g(s, xs) ds

+

∫ t

si

S(t− s)

∫ s

0

f(s, xρ(r,xr)) dr ds,

for t ∈ [si, ti+1], i = 1, . . . , n.(3.45)

We define Γ : S(b)× S(b) → S(b) as
(3.46)

Γ(x)(t) =


0 t ≤ 0;

−
∫ t

0

C(t− s)g(s, xs + ys) ds+

∫ t

0

g(s, xs) ds

+

∫ t

0

S(t− s)

∫ s

0

f(r, xρ(r,xr)) dr t ∈ J1 = [0, t1].

(3.47) Γ(x)(t) =



J1
i (t, x(t− t1) t ∈ (ti, si],
C(t− si)J

1
i (si, x(t− t1))

−S(t− si)J
2
i (si, x(t− t1))

−
∫ ti

si

C(t− s)g(s, xs + ys) ds

+

∫ ti

si

g(s, xs) ds

+

∫ t

0

C(t− s)

∫ s

0

f(r, xρ(r,xr), x
′
r + y′r) dr ds,

t ∈ J1 = [0, t1],

and proceed as in Theorem (3.5).



IMPULSIVE INTEGRO-DIFFERENTIAL EQUATIONS 515

4. Examples. In this section, we discuss a partial differential equa-
tion applying the abstract results of this paper. We discuss the partial
differential equation in two examples. In Example 4.1, the instanta-
neous impulsive differential system is studied, while in Example 4.2,
the non-instantaneous impulsive differential system is studied. As a re-
sult, the dynamics and solutions of these two examples will be different
as we can perceive from equations (3.9) and (3.19). In this application,
B is the phase space C0 × L2(h,X), see [31].

Example 4.1. Consider the second order neutral differential equation
with instantaneous impulses

∂2

∂t2
x(t, σ) = (i△− iV (σ))

(
x(t, σ)−

∫ t

−∞

∫ π

0

x(s, σ − υ) ds
)

+

∫ t

−∞

(
a(x) +B(x(s, σ − h(x(s, σ))))

· sin
(
t

ϵ

))
ds, t ∈ [0, a], σ ∈ [0, π],

x(t, 0) = x(t, π) = 0, t ∈ [0, a],

x(s, σ) = ϕ(s, σ), −∞ ≤ s ≤ 0, 0 ≤ σ ≤ π,

∂

∂t
x(0, σ) = ξ(σ), 0 ≤ σ ≤ π,

∆x(ti)(σ) =

∫ ti

∞
n1i (ti − s)x(s, σ) ds, i = 1, . . . , n

∆x′(ti)(σ) =

∫ ti

∞
n1i (ti − s)x(s, σ) ds, i = 1, . . . , n,(4.1)

where ϕ ∈ H1([0, π]), ξ ∈ X and 0 = t0 = s0 < t1 ≤ s1 ≤ t2, . . . , tn ≤
sn ≤ tn+1 = a. Here,

X = L2([0, π]),

B = PC0 × L2(ρ,X),

A ⊂ D(A) ⊂ X −→ X

is the map defined by A = (i△− iV )) with domain D(A) = H2 ∩H1
0 .

It is well known that A is the infinitesimal generator of a strongly
continuous cosine function (C(t))t∈R on X. Also, A has a discrete
spectrum, and the following properties hold:
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(C1) Aϕ = −
∑∞

n=1 λ
2
n⟨ϕ, zn⟩zn, where ϕ ∈ D(A), λn, zn and n ∈ N

are eigenvalues and eigenvectors of A.
(C2) C(t)ϕ =

∑∞
n=1 cos(λnt)⟨ϕ, zn⟩zn and

S(t)ϕ =
∞∑

n=1

sin(λnt)

n
< ϕ, zn > zn,

for ϕ ∈ X.

By defining the maps ρ, g, f : [0, a]×B×X → X by

ρ(t, σ) := σ − h(x(s, σ))

g(ψ)(σ) :=

∫ t

−∞

∫ π

0

x(s, σ − υ) ds),

f(ψ)(σ) :=

∫ t

−∞

(
a(x) +B(x(s, σ − h(x(s, σ)))) sin

(
t

ϵ

))
,

the system (4.2) can be transformed into system (1.1). Assume that
the functions

ρi : R −→ [0,∞), m : R −→ R

are piecewise continuous. g(t, .), Ii (i = 1, . . . , n) f are bounded linear
operators. Also, we can prove that g is D(A)-valued. Thus, we take
Y = D(A). Therefore, if ι : Y → X is the inclusion, then t→ AS(t) is
uniformly continuous into L(Y,X) and

∥AS(t)∥L(Y,X) ≤ 1 for t ∈ [0, a].

Hence, by assumptions (Hϕ), (Hf), (Hg), (HI), (H1), (H2) and Theo-
rem (3.4), it is ensured that a mild solution to problem (4.2) exists.

Example 4.2. Consider the second order neutral differential equation
with non-instantaneous impulses

∂2

∂t2

(
x(t, σ)−

∫ t

−∞

∫ π

0

x(s, σ − υ) ds
)

= (i△− iV (σ))x(t, σ)

+

∫ t

−∞

(
a(x) +B(x(s, σ − h(x(s, σ)))) sin

(
t

ϵ

))
ds,

t ∈ [0, a], σ ∈ [0, π],
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x(t, 0) = x(t, π) = 0, t ∈ [0, a],

x(s, σ) = ϕ(s, σ), −∞ ≤ s ≤ 0, 0 ≤ σ ≤ π,

∂

∂t
x(0, σ) = ξ(σ), 0 ≤ σ ≤ π,

x(t)(σ) =

∫ si

ti

n1i (t− t1)x(s, σ) ds, t ∈ [si, ti], i = 1, . . . , n

x′(t)(σ) =

∫ si

ti

n1i (t− t1)x(s, σ) ds, t ∈ [si, ti], i = 1, . . . , n,(4.2)

where ϕ ∈ H1([0, π]), ξ ∈ X,

0 = t0 = s0 < t1 ≤ s1 ≤ t2, . . . , tn ≤ sn ≤ tn+1 = a.

Here, X = L2([0, π]), B = PC0×L2(ρ,X), A ⊂ D(A) ⊂ X → X is the
map defined by A = (i△− iV )) with domain D(A) = H2 ∩H1

0 . It is
well known that A is the infinitesimal generator of a strongly continuous
cosine function (C(t))t∈R on X. Also, A has a discrete spectrum, and
the following properties hold:

(C1)

Aϕ = −
∞∑

n=1

λ2n⟨ϕ, zn⟩zn,

where ϕ ∈ D(A), λn, zn, n ∈ N are eigenvalues and eigenvec-
tors of A.

(C2)

C(t)ϕ =
∞∑

n=1

cos(λnt)⟨ϕ, zn⟩zn

and

S(t)ϕ =

∞∑
n=1

sin(λnt)

n
< ϕ, zn > zn, for ϕ ∈ X.

By defining maps ρ, g, f : [0, a] × B × X → X as in Example 4.1,
system (4.2) can be transformed into system (1.2). Assume that the
functions

ρi : R −→ [0,∞), m : R −→ R
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are piecewise continuous. Hence, by assumptions (Hϕ), (Hf), (Hg),
(HJ), (H1), (H2) and Theorem (3.5), it is ensured that mild solution
to problem (4.2) exists.

5. Conclusion. In this paper, we establish the existence of the mild
solution of the non-instantaneous impulsive partial neutral second order
functional differential equation (1.1) using the Kuratowski measure of
noncompactness and the Mónch fixed point theorem. The compactness
Lipschitz condition and other restrictive conditions have been removed.

Acknowledgments. The authors would like to express sincere grat-
itude to the reviewer for his valuable suggestions.
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