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ABSTRACT. We study the oscillatory structures of so-
lutions of Volterra integral and integro-differential equations
(VIEs, VIDEs) with highly oscillatory kernels. Based on the
structured oscillatory spaces introduced in Wang and Xu
[28], we first analyze the degree of oscillation of the solution
of VIEs associated with the oscillatory kernels belonging to
a certain structured oscillatory space by using the resolvent
representation of the solution. According to a decomposition
of the oscillatory integrals in the complex plane, we prove
that the Volterra integral operator reduces the oscillatory
order of the functions in the structured oscillatory spaces
corresponding to the oscillatory structure of the kernel. The
analogous oscillatory structure of solutions of VIDEs is then
analyzed by representing the solution of the VIDEs by the
differential resolvent kernel and by exploiting the relationship
between the VIDEs and the equivalent VIE. We conclude
that the solutions of the VIEs and VIDEs preserve the oscil-
latory components of the kernel.

1. Introduction. We consider, in this paper, the qualitative theory
of linear Volterra integral and integro-differential equations (VIEs and
VIDEs) with highly oscillatory kernels whose oscillators are nonlinear
separable functions. The presence of oscillations in the kernels leads to
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an oscillatory behavior of the solutions of these equations. A thorough
understanding of this oscillatory behavior of the solution is crucial for
the analysis and the design of the numerical methods that preserve
these oscillatory properties.

VIEs and VIDEs arise in applications as mathematical models of
various physical processes and biological phenomena [1, 3, 16]. The
most comprehensive and advanced analyses of the VIEs and VIDEs
are contained in the monographs [2, 10, 20]. The theory of the VIEs
with highly oscillatory kernel was presented in [3], where the technique
based on integration by parts was used to derive the asymptotic
expansion of the solution in terms of inverse powers of the wavenumber.
The development of numerical approximations to solutions of highly
oscillatory VIEs can be found in [27, 30, 31]. These numerical
methods were constructed with the help of the techniques for computing
the oscillatory integrals. However, these methods do not consider the
influence of the highly oscillatory behavior of the solutions. Therefore,
the numerical approximation of the solution to the VIEs and VIDEs in
the appropriate oscillatory spaces remains a challenging problem.

We now review the recent developments of Fredholm integral equa-
tions (FIE) with oscillatory kernels. They are relevant for the study of
VIEs, since a Fredholm integral operator can be split into two Volterra
integral operators, and Volterra integral operators may be viewed as
Fredholm integral operators with special kernels. In [26], the asymp-
totic behavior of the solutions, as the wavenumber tends to infinity, was
analyzed, and it was shown that the maximum norm of the solution just
depends on the right-hand side of the equations. In [5], the spectral
problem of FIEs with oscillatory kernels is studied, and the computa-
tion of the spectral is considered in [4]. The recent paper [28] leads
to a new method for analyzing the oscillatory integral equations based
on oscillatory function spaces and iterated integral operators. It first
introduces the notion of the degree of oscillation of an oscillatory func-
tion and then explores the oscillatory properties of the solutions of the
equations in the oscillatory structured spaces of Wang-Xu constructed
by the oscillatory components of the kernel. The oscillation-preserving
Galerkin method was proposed in [28] for the numerical approximation
of the solution by incorporating the standard approximation subspaces
with a finite number of oscillatory functions.
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We remark that the methods for calculating oscillatory integrals
play an important role in analyzing the theory of oscillatory integral
operators such as Fredholm integral operators and Volterra integral
operators, and the numerical calculations for oscillatory integral equa-
tions. Highly oscillatory integrals are now well understood, and many
highly efficient methods have been devised so that the accuracy of the
computation increases as the wavenumber tends to infinity. There
are mainly four classes of methods: asymptotic [13, 25], Filon-type
[8, 9, 13, 14, 29], Levin-type [17, 18, 21, 22] and numerical steep-
est descent [11, 12]. A new method proposed in [19] is more effi-
cient than most of the existing methods, as it combines the moment
free Filon-type methods with meshes that are graded according to the
wavenumber. There are three techniques used to analyze and compute
the oscillatory integrals: integration by parts, changing the interval of
integration into the paths in the complex plane, and graded meshes
depending on the wavenumber. In [3, 28], the first technique is used
to derive the oscillatory components of integral operators.

The purpose of this paper is to explore the oscillatory structure of
the solutions of VIEs and VIDEs with highly oscillatory kernels. The
motivation for writing this paper is that, in contrast to Fredholm inte-
gral equations, the analysis of the oscillatory structure of solutions to
Volterra integral and integro-differential equations is based on different
techniques and has so far not been analyzed in detail. The results of
our analysis will also play an important role in the design of efficient
and highly accurate numerical schemes for such problems. Exploiting
the relationship between VIDEs and VIEs, we analyze the oscillatory
properties of the solutions of VIEs with kernels composed of two parts:
a non-oscillatory smooth function and a product of a non-oscillatory
smooth function and a typical known oscillatory function with non-
linear oscillator. The right-hand side and the coefficient function of
the equations may have the same oscillations as the structure of the
kernel. Based on the notions of oscillatory functions and appropriate
oscillatory spaces defined in [28], we establish the degree of oscillation
of the solutions to the VIEs and VIDEs by using the iterated kernels
of the equations (cf., [2]). We derive the oscillatory components of
the solutions by representing the solutions in terms of iterated inte-
gral operators as [28]. The decomposition of the oscillatory function is
constructed by changing the interval of integration into a path in the
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complex plane, which is different from [28]. The solution is proved to
be in the structured oscillatory spaces whose specific oscillatory struc-
ture is similar to that of the kernel.

The outline of this paper is as follows. We consider the VIEs in
Sections 2 and 3. In Section 2, we derive the oscillatory degree of the
resolvent kernel and the solution of the VIEs by utilizing the properties
of Picard iteration kernels. The oscillatory structure of the solution to
the VIEs is analyzed in Section 3. In Section 4, the analysis of Section 3
is extended to VIDEs. The final section of the paper describes our
future work.

2. The degree of oscillation of solutions to VIEs. We inves-
tigate in this section the degree of oscillation of the solution of VIEs.
This is done by a careful study of the resolvent kernel associated with
the given kernel of the Volterra integral operator.

We begin by studying the relationship between the bound of deriva-
tives of the solutions to the VIEs and the powers of the wavenumber.
Let

I := [0, 1] and D := {(t, s); 0 ≤ s ≤ t ≤ 1}.

For fixed κ > 1, we consider the second-kind VIE

(2.1) u(t) = f(t) + (Vκu)(t), t ∈ I,

with Volterra integral operator Vκ : C(I) → C(I) defined by

(2.2) (Vκϕ)(t) :=
∫ t

0

Kκ(t, s)ϕ(s) ds,

where f ∈ C(I) and the kernel Kκ ∈ C(D) is highly oscillatory (its
precise structure will be made precise in Assumption 3.6). Using the
notation introduced in [28], the analysis of the oscillatory properties of
the solution of (2.1) will be based on the resolvent kernel Rκ associated
with the given kernel Kκ and the corresponding representation of the
solution.

We first give a brief review of the relevant theory of VIEs. For
n ∈ N := {1, 2, . . .}, the iterated kernels of Kκ(t, s) are given by

(2.3) Hn+1(t, s;κ) :=

∫ t

s

H1(t, v;κ)Hn(v, s;κ) dv, for (t, s) ∈ D,
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where H1(t, s;κ) := Kκ(t, s), for (t, s) ∈ D. The resolvent kernel Rκ
associated with the given kernel Kκ is defined by the Neumann series

(2.4) Rκ(t, s) :=
∑
n∈N

Hn(t, s;κ), for (t, s) ∈ D,

which converges absolutely and uniformly on D. Hence, if Kκ ∈ C(D),
then for any f ∈ C(I) the VIE (2.1) has a unique solution u ∈ C(I) of
the form

(2.5) u(t) = f(t) +

∫ t

0

Rκ(t, s)f(s) ds, t ∈ I.

We next focus on analyzing the properties of the resolvent kernel Rκ
defined by (2.4). To this end, we first show the structure of the iterated
kernels for the simple case where

Kκ(t, s) := a+ b eiκ(t−s), (t, s) ∈ D,

with constants a, b ̸= 0. For n ∈ N0 := {0, 1, . . .}, let

On(t, s;κ) :=

∫ t

s

(v − s)neiκ(s−v) dv, (t, s) ∈ D.

Set Z+
n := {1, 2, . . . , n} and Zn := {0} ∪ Z+

n . We present an auxiliary
result in the following lemma.

Lemma 2.1. If κ ̸= 0, then, for n ∈ N0 and (t, s) ∈ D,

On(t, s;κ) =
n!

(iκ)n+1
−

∑
j∈Zn

n!

(n− j)!(iκ)j+1
(t− s)n−jeiκ(s−t).

Proof. We prove this result by induction. Clearly, we have that

O0(t, s;κ) = (1− eiκ(s−t))/(iκ), (t, s) ∈ D.

Hence, the result of this lemma holds for n = 0. We assume that this
result is true for n ∈ N0 and consider the case n + 1. Integration by
parts leads to

On+1(t, s;κ) = − 1

iκ
(t− s)n+1eiκ(s−t) +

n+ 1

iκ
On(t, s;κ)

=
(n+ 1)!

(iκ)n+2
−

∑
j∈Zn+1

(n+ 1)!(t− s)n+1−jeiκ(s−t)

(n+ 1− j)!(iκ)j+1
,
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for (t, s) ∈ D. We then obtain the conclusion of n+ 1. This completes
the proof. �

The next lemma shows the form of Hn for n ∈ N.

Lemma 2.2. For n ∈ N, there exist 2n constants an,j and bn,j for
j ∈ Z+

n independent of κ such that, for (t, s) ∈ D,

Hn(t, s;κ) =
∑
j∈Z+

n

an,j
(t− s)j−1

(iκ)n−j
+ eiκ(t−s)

∑
j∈Z+

n

bn,j
(t− s)j−1

(iκ)n−j
.

Proof. We again use induction to establish this result. For n = 1, it
follows directly from the definition of H1 with a1,1 := a and b1,1 := b.
Assume the result is true for n ∈ N, and consider the case n + 1.
According to definition (2.3), we have, for (t, s) ∈ D, that

Hn+1(t, s;κ)

=

∫ t

s

(
a1,1 + b1,1e

iκ(t−v)
)

×
( ∑
j∈Z+

n

an,j
(v − s)j−1

(iκ)n−j
+ eiκ(v−s)

∑
j∈Z+

n

bn,j
(v − s)j−1

(iκ)n−j

)
dv

=
∑
j∈Z+

n

a1,1an,j

∫ t

s

(v − s)j−1

(iκ)n−j
dv + eiκ(t−s)

∑
j∈Z+

n

b1,1bn,j

∫ t

s

(v − s)j−1

(iκ)n−j
dv

+
∑
j∈Z+

n

a1,1bn,j

∫ t

s

(v − s)j−1

(iκ)n−j
e−iκ(s−v) dv

+ eiκ(t−s)
∑
j∈Z+

n

b1,1an,j

∫ t

s

(v − s)j−1

(iκ)n−j
eiκ(s−v) dv.

This together with the definitions of On yields, for (t, s) ∈ D,

Hn+1(t, s;κ) =
∑
j∈Z+

n

a1,1an,j
(t− s)j

j(iκ)n−j

+ eiκ(t−s)
∑
j∈Z+

n

b1,1bn,j
(t− s)j

j(iκ)n−j
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+
∑
j∈Z+

n

a1,1bn,j
Oj−1(t, s;−κ)

(iκ)n−j

+ eiκ(t−s)
∑
j∈Z+

n

b1,1an,j
Oj−1(t, s;κ)

(iκ)n−j
.(2.6)

Applying Lemma 2.1, we find for j ∈ Z+
n and (t, s) ∈ D,

Oj−1(t, s;κ)

(iκ)n−j
=

(j − 1)!

(iκ)n
−

∑
i∈Zj−1

(j − 1)!(t− s)j−1−ieiκ(s−t)

(j − 1− i)!(iκ)n−(j−1−i)

and

Oj−1(t, s;−κ)
(iκ)n−j

=
(j − 1)!

(−iκ)n
−

∑
i∈Zj−1

(j − 1)!(t− s)j−1−ieiκ(t−s)

(j − 1− i)!(−iκ)n−(j−1−i) .

Substitution of the above two equations into (2.6) leads to the desired
result. �

Note that the resolvent kernel Rκ of (2.1) has the same structure as
the underlying kernel Kκ, according to definition (2.4) and Lemma 2.2.
The structure of the solution to (2.1) with this special kernel can be
found in [28]. The central goal of this paper is to analyze the structure
of the solution to the equations for the case that the oscillatory
component of the kernel is a nonlinear oscillator.

We next analyze the properties of the resolvent kernel associated
with Kκ, where Kκ belongs to the spaces introduced in [28]. We
first recall the notions originally introduced in [28]. By an oscillatory
function, we mean a function with numerous local maximum and
minimum over the range of integration [7].

Definition 2.3. An oscillatory function φ in a Banach space X with
norm ∥·∥X is called κ-oscillatory of order n if n is the smallest possible
integer for which there exists a positive constant c such that, for all
κ > 1 (especially for κ≫ 1),

(2.7) κ−n ∥φ∥X ≤ c.

If φ satisfies (2.7) with n = 0, we say that φ is non-κ-oscillatory.
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Definition 2.4. A subset

Xκ,n := {u ∈ X : u is κ-oscillatory of order n}

of a normed space X is called a κ-oscillatory space of order n. If n = 0,
Xκ,n is called a non-κ-oscillatory space.

We now describe the spaces to be used in the remaining parts of the
paper. For a non-negative integer m, let Cm(I) denote the space of
continuous functions with the norm

∥L∥m := max
p∈Zm

{∥∥∥L(p)
∥∥∥
∞

}
,

and let Cm(D) denote the space (containing the functions that have
continuous mixed partial derivatives of order m with respect to x and
y for (x, y) ∈ D) with norm

∥L∥m := max
{∥∥∥L(p,q)

∥∥∥
∞

: p, q ∈ Zm, p+ q ≤ m
}
,

where L(p,q)(x, y) := Dp
xDq

yL(x, y) for (x, y) ∈ D. Note that, although
the definition of ∥L∥m in Cm(I) is different from that in Cm(D), the
reader should be able to distinguish them from the context. We denote
by Cmκ,n(I) the κ-oscillatory space of order n ∈ Zm of the space Cm(I),
and by Cmκ,n(D) the κ-oscillatory space of order n ∈ Zm of the space
Cm(D). Let

Cmκ (I) :=
∩
n∈Zm

Cnκ,n(I), and Cmκ (D) :=
∩
n∈Zm

Cnκ,n(D).

We shall prove that, if Kκ ∈ Cmκ (D) and f ∈ Cmκ (I), then the solution
u of (2.1) belongs to the space Cmκ (I).

Next, we first analyze the iterated kernels Hn for n ∈ N defined in
(2.3). For this purpose, we recall Leibniz’s formula for differentiating
functions of the form

ϕ(x) :=

∫ b(x)

a(x)

φ(x, y) dy,

with respect to x, assuming that φ, a and b are smooth functions
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satisfying a(x) ≤ y ≤ b(x). The formula has the form

(2.8) ϕ′(x) =

∫ b(x)

a(x)

φx(x, y) dy + φ(x, b(x))b′(x)− φ(x, a(x))a′(x).

We also need the formula for a function L ∈ Cn(D) with n ∈ N0,

(2.9) (L(t, t))
(n)

=
∑
j∈Zn

CjnL
(j,n−j)(t, t), for t ∈ I,

where Cjn := n!/(j!(n − j)!) for n ∈ N0 and j ∈ Zn are the binomial
coefficients.

Lemma 2.5. If n ∈ N with n > 1 and Kκ ∈ Cn−2(D), then for
j ∈ Zn−2 and i ∈ Zj,

(2.10) H(i,j−i)
n (t, t) = 0, for t ∈ I.

Proof. We prove this result by induction on n. For n = 2, the result
follows directly from the definition (2.3) of H2. Assuming that this
result is true for n ∈ N with n > 1, consider the case n+ 1. According
to the formula (2.8), we have that, for j ∈ Zn−1, i ∈ Zj and (t, s) ∈ D,

H
(i,j−i)
n+1 (t, s;κ) =

∫ t

s

H
(i,0)
1 (t, v;κ)H(0,j−i)

n (v, s;κ) dv

+
∑
l∈Zi−1

[
H

(l,0)
1 (t, t;κ)Hn(t, s;κ)

](i−l−1,j−i)

−
∑

k∈Zj−i−1

[
H1(t, s;κ)H

(0,k)
n (s, s;κ)

](i,j−i−k−1)

.(2.11)

It follows from formula (2.9) that, for j ∈ Zn−1, i ∈ Zj , l ∈ Zi−1,
k ∈ Zj−i−1 and (t, s) ∈ D,[

H
(l,0)
1 (t, t;κ)Hn(t, s;κ)

](i−l−1,j−i)

=
∑

p∈Zi−l−1

∑
q∈Zp

Cpi−l−1C
q
pH

(l+q,p−q)
1 (t, t;κ)H(i−l−p−1,j−i)

n (t, s;κ)

and
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[
H1(t, s;κ)H

(0,k)
n (s, s;κ)

](i,j−i−k−1)

=
∑

p∈Zj−i−k−1

∑
q∈Zp

Cpj−i−k−1C
q
pH

(i,j−i−k−p−1)
1 (t, s;κ)H(q,p−q+k)

n (s, s;κ).

Applying equations (2.10) for n to the equations (2.11), and using the
two equations above, we obtain the conclusion for n+1. This completes
the proof. �

In the following lemmas, we derive a bound for the derivatives of
Hn, n ∈ N. In order to do so we note that, according to Definition
2.4, if Kκ ∈ Cmκ (D) for a fixed integer m ∈ N, there exists a positive
constant c such that, for all κ > 1 and n ∈ Zm,

(2.12) ∥Kκ∥n ≤ cκn.

For fixed m ∈ N, we divide Hn into two parts to estimate the bound.
The first part is composed of Hn for n ∈ Z2m+3. The number of
functions in this part is finite. We shall calculate the upper bound for
the derivatives of functions in the first part directly. Then the number
of functions in the other parts is infinite. To obtain an upper bound for
the derivatives of the functions in the second part we use the properties
of Hn shown in Lemma 2.5.

Lemma 2.6. If Kκ ∈ Cmκ (D) for a fixed integer m ∈ N, then there
exists a positive constant c such that, for all κ > 1, n ∈ Z+

2m+3 and
j ∈ Zm,

(2.13) ∥Hn∥j ≤ cκj .

Proof. We proceed by induction on n ∈ Z+
2m+3. The result for n = 1

follows directly from equation (2.12) of H1. Assume that this result is
true for n ∈ Z+

2m+2, and consider the case n+1. Note that there exists
a positive constant c such that, for all κ > 1, j ∈ Zm, i ∈ Zj , l ∈ Zi−1

and k ∈ Zj−i−1 ∑
l∈Zi−1

∑
p∈Zi−l−1

∑
q∈Zp

Cpi−l−1C
q
p ≤ c

and ∑
k∈Zj−i−1

∑
p∈Zj−i−k−1

∑
q∈Zp

Cpj−i−k−1C
q
p ≤ c.
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Applying equation (2.11) with the assumption for n, we obtain that
there exists a positive constant c independent of κ such that, for j ∈ Zm,
∥Hn+1∥j ≤ cκj . The conclusion for n+1 now follows, thus completing
the proof. �

Lemma 2.7. If Kκ ∈ Cmκ (D) for a fixed integer m ∈ N, then there
exists a positive constant c such that, for all κ > 1, n ∈ N with
n ≥ 2m+ 4, j ∈ Zm and i ∈ Zj,

max
(t,s)∈D

{ ∣∣∣H(i,j−i)
n (t, s;κ)

∣∣∣ } ≤ c⌊n/(m+2)⌋ (t− s)⌊n/(m+2)⌋−1

(⌊n/(m+ 2)⌋ − 1)!
κj ,

where ⌊a⌋ denotes the biggest integer not exceeding a.

Proof. We employ induction on l := ⌊n/(m + 2)⌋ for n ≥ 2m + 4
satisfying n = l(m+2)+k with k ∈ Zm+1. According to [2], we rewrite
the iterated kernels in the form

Hl(m+2)+k(t, s;κ) =

∫ t

s

Hm+2(t, v;κ)H(l−1)(m+2)+k(v, s;κ) dv.

Applying Lemma 2.5, we have, for n ≥ 2m+4, j ∈ Zm and i ∈ Zj that

(2.14) H
(i,j−i)
l(m+2)+k(t, s;κ) =

∫ t

s

H
(i,0)
m+2(t, v;κ)H

(0,j−i)
(l−1)(m+2)+k(v, s;κ) dv.

This, together with Lemma 2.6, yields the results for l = 2 and
k ∈ Zm+1. We assume that this result is true for n = l(m+2)+k with
l ≥ 2 and k ∈ Zm+1, and consider the case l + 1. Applying equation
(2.14) with the assumption for l, we may obtain the conclusion for l+1.
This finishes the proof. �

We now present the two main results of this section. The first
theorem describes the property of the resolvent kernel.

Theorem 2.8. If Kκ ∈ Cmκ (D) for a fixed integer m ∈ N, then
Rκ ∈ Cmκ (D), where Rκ is the resolvent kernel associated with the
given kernel Kκ of (2.1).

Proof. Recalling Lemmas 2.6, 2.7 and definition (2.4) of the resolvent
kernel Rκ yields the conclusion, since the infinite sum of the iterated
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kernels (i.e., the Neumann series) converges absolutely and uniformly
in D. �

The second theorem shows the degree of oscillation of the solution
to the VIE (2.1).

Theorem 2.9. If f ∈ Cmκ (I) and Kκ ∈ Cmκ (D) for a fixed integer
m ∈ N, then u ∈ Cmκ (I), where u is the solution of equation (2.1).

Proof. We prove this result by applying Theorem 2.8 with the rep-
resentation of u by means of the resolvent kernel Rκ and f . Differen-
tiating equation (2.5) directly yields, for j ∈ Zm and t ∈ I, that

u(j)(t) = f (j)(t)+

∫ t

0

R(j,0)
κ (t, s)f(s) ds+

∑
i∈Zj−1

(
R(i,0)
κ (t, t)f(t)

)(j−i−1)

.

Applying the formula (2.9), we have for j ∈ Zm, i ∈ Zj−1 and t ∈ I
that(

R(i,0)
κ (t, t)f(t)

)(j−i−1)

=
∑

p∈Zj−i−1

∑
q∈Zp

Cpj−i−1C
q
pR

(i+q,p−q)
κ (t, t)f (j−i−p−1)(t).

This, together with Theorem 2.8 and the assumption on f , leads to the
desired result. �

3. The oscillation structure of the solution to the oscillatory
VIEs. We study in this section the oscillation structure of the solution
of VIEs (2.1) for the given kernel Kκ with the oscillatory component
eiκg, where g is a nonlinear function in D. The idea of representing
the solution of the VIEs by successive substitutions of the equation
used in [28] is employed to analyze the properties of the solution, and
the technique of changing the interval of integration into paths in the
complex plane is used to decompose the oscillatory Volterra integral
operators.

We begin by recalling the oscillatory structured spaces introduced
originally in [28].
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Definition 3.1. Let X be a normed space, and assume that εN :=
{ej ∈ C(Ω) : j ∈ Z+

N} for N ∈ N is a set of oscillatory functions with

the wave number κ. Moreover, suppose that ej with j ∈ Z+
N and 1 are

linearly independent. A κ-oscillatory structured space of order n with
εN is defined by

X̃κ,n :=

{
u0 +

∑
j∈Z+

N

ujej : uj ∈ Xκ,n, j ∈ ZN
}
,

equipped with the norm

∥u∥X̃κ,n
:=

( ∑
j∈ZN

∥uj∥2X

)1/2

.

We first define the spaces to be used in this section. For a given
oscillator g ∈ C(D), we define

ẽ1(t, s) := eiκg(t,s), (t, s) ∈ D, and e1(t) := eiκg(t,0), t ∈ I.

Correspondingly, we construct the κ–oscillatory structured spaces C̃mκ,n
(D) of order n ∈ Zm with the structure {ẽ1} and the κ-oscillatory

structured spaces C̃mκ,n(I) of order n ∈ Zm with the structure {e1}.
We shall prove that the solution u of the VIEs (2.1) belongs to

the space C̃mκ,0(I), under the hypotheses that Kκ ∈ C̃mκ,0(D) and f ∈
C̃mκ,0(I), complemented by appropriate assumptions on the oscillators
g, Kκ and f . Recalling (2.1), the solution u satisfies the equation
u = f + Vκu. By successive substitutions, we find that

(3.1) u = Vnκu+
∑

j∈Zn−1

Vjκf.

The main work of this section is to prove that Vnκ f ∈ C̃mκ,0(I) for

n ∈ N, and there exists a number n ∈ N such that Vnκϕ ∈ C̃mκ,0(I)
for ϕ ∈ Cmκ (I). We then obtain the form of u from the equation (3.1)
with the help of Theorem 2.9.

We now focus on analyzing the properties of Vnκ for n ∈ N defined as
in (2.2). For this purpose, we review a decomposition of the oscillatory
integrals [11, 12]. We first present the hypotheses on the integrand.
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Assumption 3.2. ψ ∈ Cm+1(I) for somem ∈ N, which is independent
of κ, is analytic in a simply connected and infinite complex region
Ω containing the interval I, and the inverse of ψ exists on Ω with
ψ′(z) ̸= 0 for z ∈ Ω. Moreover, ψ−1(ψ(z) + iτ) ∈ Ω for z ∈ Ω and
τ ∈ (−∞,∞), and there exist constants γ1,j ≥ 0 and γ2,j ≥ 0 for
j ∈ Zm+1, such that, for z ∈ Ω,∣∣∣ψ(j)(z)

∣∣∣ = O(|z|γ1,j ) and
∣∣∣(ψ−1)(j)(z)

∣∣∣ = O(|z|γ2,j ) as |z| → ∞.

Assumption 3.3. ϕ ∈ Cm(I) for some m ∈ N, which is independent
of κ, is analytic in a simply connected and infinite complex region Ω
containing the interval I, and there exist constants γj ≥ 0 for j ∈ Zm,
such that, for z ∈ Ω,∣∣∣ϕ(j)(z)∣∣∣ = O(|z|γj ) as |z| → ∞.

If ψ and ϕ are analytic in a simply connected and infinite complex
region Ω containing the interval I, they satisfy Assumption 3.2 and
Assumption 3.3, respectively. For t ∈ I, we have∫ t

0

ϕ(τ)e−iκψ(τ) dτ = F−(t)− F−(0),(3.2) ∫ t

0

ϕ(τ)eiκψ(τ) dτ = F+(0)− F+(t),

where the paths for t ∈ I are defined by ht(τ) := ψ−1(ψ(t) + iτ) with
τ ∈ (−∞,∞), and

F−(t) :=

∫ 0

−∞
ϕ (ht(τ)) e

−iκψ(ht(τ))h′t(τ) dτ,

F+(t) :=

∫ ∞

0

ϕ (ht(τ)) e
iκψ(ht(τ))h′t(τ) dτ.

Since we utilize the above method to decompose the oscillatory inte-
grals, we shall add the analyticity to the kernelsKκ and f . We therefore
present these assumptions as follows.

Assumption 3.4. L ∈ Cm(D) for some m ∈ N, which is independent
of κ, is analytic in a simply connected and infinite complex region Ω2
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with Ω containing the interval I, and there exist constants γ1i,j ≥ 0 and

γ2i,j ≥ 0 for j ∈ Zm and i ∈ Zj, such that, for (z1, z2) ∈ Ω2,∣∣∣L(i,j−i)(z1, z2)
∣∣∣ = O(|z1|γ

1
i,j + |z2|γ

2
i,j ) as |z1| , |z2| → ∞.

Assumption 3.5. The function g has the form g(t, s) := g0(t)− g0(s)
for (t, s) ∈ D, where the function g0 ∈ Cm+1(I) for some m ∈ N is
strictly increasing and satisfies Assumption 3.2.

Assumption 3.6. The kernel Kκ ∈ C̃mκ,0(D) for some m ∈ N has the
form Kκ := L1ẽ1+L0, where L0, L1 ∈ Cmκ,0(D) satisfy Assumption 3.4.

Assumption 3.7. The function f ∈ C̃mκ,0(I) for some m ∈ N has the
form f := f1e1 + f0, where f0, f1 ∈ Cmκ,0(I) satisfy Assumption 3.3.

In passing, we comment on the hypothesis imposed on g and Ω. If
g(t, s) = t − s for (t, s) ∈ D, g satisfies Assumption 3.5 with g0(t) = t
for t ∈ I. Ω is the intersection of the analytic complex regions of f , g
and Kκ.

We next decompose a class of Volterra integral functions defined by

(3.3) L̃±(t;κ) :=

∫ t

0

L(t, s)e±iκg0(s) ds, for t ∈ I,

where g0 ∈ Cm+1(I) is strictly increasing and satisfies Assumption 3.2
for some m ∈ N, and L ∈ Cmκ,0(D) satisfies Assumption 3.4. According
to (3.2), we define two functions for (t, s) ∈ D by

F−(t, s) :=

∫ 0

−∞
L (t, h(s, τ))h(0,1)(s, τ)eκτ dτ,

F+(t, s) :=

∫ ∞

0

L (t, h(s, τ))h(0,1)(s, τ)e−κτ dτ,

where

(3.4) h(s, τ) := g−1
0 (g0(s) + iτ) , for s ∈ I and τ ∈ (−∞,∞).

The functions defined by (3.3) have the decomposition

(3.5) L̃±(t;κ) = ±F±(t, 0)e
±iκg0(0) ∓ F±(t, t)e

±iκg0(t), for t ∈ I.
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We analyze the properties of h defined by (3.4) in the following
lemma. This requires the use of the Faà di Bruno formula [15, 23, 24]
for derivatives of the composition of two functions. For a fixed n ∈ N,
if the derivatives of order n of two functions ϕ and ψ are defined, then

(3.6) (ϕ ◦ ψ)(n) =
∑
j∈Z+

n

ϕ(j)(ψ)Bn,j

(
ψ(1), ψ(2), . . . , ψ(n−j+1)

)
,

where, for j ∈ Z+
n ,

Bn,j(x1, x2, . . . , xn−j+1) =
∑ n!

m1!m2! · · ·mn−j+1!

∏
l∈Z+

n−j+1

(
xl
l!

)ml

,

where the sum is taken over all (n − j + 1)-tuples (m1, . . . ,mn−j+1)
satisfying the constraints∑

l∈Z+
n−j+1

ml = j and
∑

l∈Z+
n−j+1

lml = n.

Lemma 3.8. If g0 ∈ Cm+1(I) for some m ∈ N is strictly increasing
and satisfies Assumption 3.2, then, for fixed τ ∈ (−∞,∞), h(·, τ)
defined by (3.4) and h(0,1)(·, τ) satisfy Assumption 3.3.

Proof. We first verify the assertion for h. From definition (3.4),
we have that, for z ∈ Ω, h(z, τ) = g−1

0 (g0(z) + iτ). According to
the assumptions on g0, there exists a constant γ1,0 ≥ 0 such that

|h(z, τ)| =
∣∣g−1

0 (O(|z|γ1,0) + iτ)
∣∣ as |z| → ∞. We then obtain that there

exists a constant γ0 ≥ 0 such that |h(z, τ)| = O(|z|γ0) as |z| → ∞. For
n ∈ Z+

m, using formula (3.6) yields that, for z ∈ Ω,

h(n,0)(z, τ)

=
∑
j∈Z+

n

(g−1
0 )(j)(g0(z) + iτ)Bn,j

(
g
(1)
0 (z), g

(2)
0 (z), . . . , g

(n−j+1)
0 (z)

)
.

Applying Assumption 3.2 to g0 we obtain that there exists a constant
γn ≥ 0 such that

∣∣h(n,0)(z, τ)∣∣ = O(|z|γn) as |z| → ∞. We can obtain

the result for h(0,1) by the same method used above. The proof is
complete. �
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The next theorem states the properties of Vnκ f for n ∈ N and

f ∈ C̃mκ,0(I). For this purpose, we assume throughout the subsequent
parts of the paper that Ω has the following property: for any t ∈ I and
z ∈ Ω, the straight line connecting t and z lies wholly within Ω.

Theorem 3.9. If g ∈ Cm+1(D) for some m ∈ N satisfies Assump-

tion 3.5 and Kκ ∈ C̃mκ,0(D) satisfies Assumption 3.6, then f ∈ C̃mκ,0(I)

satisfies Assumption 3.7, Vnκ f ∈ C̃mκ,0(I) for n ∈ N.

Proof. We prove this result by induction on n. We first analyze Vκf .
Defining w1(t) := (Vκw0)(t) for t ∈ I with w0 := f , we see that, for
t ∈ I,

w1(t) = e1(t)α0(t) + β0(t)

+

∫ t

0

L1(t, s)f0(s)e
iκg(t,s) ds+

∫ t

0

L0(t, s)f1(s)e
iκg(s,0) ds,

where, for t ∈ I,

α0(t) :=

∫ t

0

L1(t, s)f1(s) ds

and

β0(t) :=

∫ t

0

L0(t, s)f0(s) ds.

By replacing L by L1f0 and L0f1 in (3.3), we obtain for t ∈ I that∫ t

0

L1(t, s)f0(s)e
iκg(t,s) ds = −e1(t)α1(t) + β1(t),∫ t

0

L0(t, s)f1(s)e
iκg(s,0) ds = −e1(t)α2(t) + β2(t),

where α1(t) := F−(t, 0), β1(t) := F−(t, t), α2(t) := F+(t, t) and
β2(t) := F+(t, 0) for t ∈ I. Note that the functions αj and βj for

j ∈ Z2 are independent of κ. We therefore obtain that w1 ∈ C̃mκ,0(I).

To prove the conclusion by induction we next need to verify that αj
and βj for j ∈ Z2 satisfy Assumption 3.3. We first consider α0. Using
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formula (2.8), we have that, for z ∈ Ω and j ∈ Zm,

α
(j)
0 (z) =

∫ z

0

L
(j,0)
1 (z, s)f1(s) ds+

∑
i∈Zj−1

[
L
(i,0)
1 (z, z)f1(z)

](j−i−1)

.

Let ι denote the straight line that connects 0 and z in Ω. We find that
the upper bound of the first term in the right hand side of the equation
above is

max
s∈ι

{∣∣∣L(j,0)
1 (z, s)f1(s)

∣∣∣ |z|} .
This, together with the assumptions on L1 and f1, yields that α0

satisfies Assumption 3.3. We then analyze α1 where, for z ∈ Ω and
j ∈ Zm,

α
(j)
1 (z) =

∫ 0

−∞
L
(j,0)
1 (z, h(0, τ)) f0(h(0, τ))h

(0,1)(0, τ)eκτdτ.

Applying the assumptions on L1 and f0 yields that α1 satisfies As-
sumption 3.3. We next consider α2. From the definition of F+, we
have that, for z ∈ Ω and j ∈ Zm,

α
(j)
2 (z) =

∫ ∞

0

Dj
z

[
L0 (z, h(z, τ)) f1(h(z, τ))h

(0,1)(z, τ)
]
e−κτdτ.

Applying the assumptions on g, L0 and f1 with Lemma 3.8, we obtain
that α2 satisfies Assumption 3.3. By using the same method we get that

βj for j ∈ Z2 satisfies Assumption 3.3. This yields that w1 ∈ C̃mκ,0(I)
satisfies Assumption 3.7.

We finally assume that this result is true for n ∈ N, i.e., wn :=

Vnκwn−1 ∈ C̃mκ,0(I) and consider the case n + 1. We can obtain the
result for n + 1 by the same method used above. This finishes the
proof. �

We now establish for Kκ ∈ C̃mκ,0(D) that the operator Vnκ reduces
the oscillatory order of functions in Cmκ (I) by n ∈ N. To see this, we
recall the definition of the less oscillatory kernel according to [28]. We
say that L ∈ Cmκ,0(D) is a less oscillatory kernel of order n for n ∈ Z+

m

if there exists a positive constant c such that, for all κ > 1, j ∈ Zn−1

and i ∈ Zj ,

(3.7) max
t∈I

{∣∣∣L(i,j−i)(t, t)
∣∣∣} ≤ cκ−(n−j−1).
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For L ∈ Cmκ,0(D), we define an operator on C(I) by

(Wκ[L]ϕ) (t) :=

∫ t

0

L(t, s)eiκg(t,s)ϕ(s) ds, for t ∈ I.

Note that W0[L] denotes a Volterra integral operator with non-
oscillatory kernel. According to [28], if L ∈ Cmκ,0(D) is a less oscillatory

kernel of order n for n ∈ Z+
m and g(t, s) = t− s for (t, s) ∈ D, the op-

erator Wκ[L] maps Cmκ (I) into C̃mκ,m−n(I). In the following lemma, we
extend this property of Wκ[L] to the nonlinear oscillator g satisfying
Assumption 3.5.

Lemma 3.10. If L ∈ Cmκ,0(D) for some m ∈ N is a less oscillatory ker-

nel of order n for n ∈ Z+
m and g ∈ Cm+1(D) satisfies Assumption 3.5,

then the operators Wκ[L] and W0[L] map Cmκ (I) into C̃mκ,m−n(I).

Proof. For ϕ ∈ Cmκ (I), we define (Wκ[L]ϕ)(t) = w0(t)e
iκg(t,0) and

w1(t) := (W0[L]ϕ)(t) for t ∈ I, where w0(t) :=
∫ t
0
L(t, s)eiκg(0,s)ϕ(s) ds.

It suffices to prove that w0, w1 ∈ Cmκ,m−n(I). We can use the method
described in [28] to prove these results but omit the proof. �

We first consider the case where Kκ ∈ C̃mκ,0(D) satisfies Assump-

tion 3.6 with the form Kκ(t, s) = L1(t, s)e
iκg(t,s) for (t, s) ∈ D. For

n ∈ N with n > 1, let

Ln(t, s) :=

∫ t

s

L1(t, v)Ln−1(v, s) dv for (t, s) ∈ D.

We obtain that Vnκ = Wκ[Ln], n ∈ N. We show the property of Ln in
the following lemma.

Lemma 3.11. If g ∈ Cm+1(D) satisfies Assumption 3.5 for some

m ∈ N and Kκ ∈ C̃mκ,0(D) satisfies Assumption 3.6 with L0 = 0, then

Ln ∈ Cmκ,0(D) for n ∈ Z+
m is a less oscillatory kernel of order n.

Proof. We prove this result by induction on n. According to the
assumption on Kκ, we obtain that L1 ∈ Cmκ,0(D) is a less oscillatory

kernel of order 1. Assuming that this result is true for n ∈ Z+
m−1, we

consider the case n+ 1. Using formula (2.8), we have that, for j ∈ Zn,
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i ∈ Zj and (t, s) ∈ D,

L
(i,j−i)
n+1 (t, s) =

∫ t

s

L
(i,0)
1 (t, v)L(0,j−i)

n (v, s) dv

+
∑
l∈Zi−1

[
L
(l,0)
1 (t, t)Ln(t, s)

](i−l−1,j−i)

−
∑

k∈Zj−i−1

[
L1(t, s)L

(0,k)
n (s, s)

](i,j−i−k−1)

.

This leads to the fact that there exists a positive constant c such that,
for all κ > 1, j ∈ Zn and i ∈ Zj ,

max
t∈I

{∣∣∣L(i,j−i)
n+1 (t, t)

∣∣∣} ≤ cκ−(n−j).

We then obtain the conclusion of n+ 1. This completes the proof. �

The structure of the solution for the case above is described in the
following theorem.

Theorem 3.12. If g ∈ Cm+1(D) satisfies Assumption 3.5 for some

m ∈ N, Kκ ∈ C̃mκ,0(D) satisfies Assumption 3.6 with L0 = 0, and

f ∈ C̃mκ,0(I) satisfies Assumption 3.7, then the solution u of the VIE

(2.1) belongs to the space C̃mκ,0(I).

Proof. We prove this result by applying equation (3.1) for n = m.
According to the assumptions onKκ and g, we have that Lm ∈ Cmκ,0(D)
is a less oscillatory kernel of order m. Note that Vmκ = Wκ[Lm].

We obtain that Vmκ maps Cmκ (I) into C̃mκ,0(I). This, together with
Theorems 2.9 and 3.9, yields the conclusion. �

We next assume that Kκ ∈ C̃mκ,0(D) satisfying Assumption 3.6 has
the form

Kκ(t, s) = L0,1(t, s)e
iκg(t,s) + L0,0(t, s) for (t, s) ∈ D,
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with L0,0 and L0,1 ∈ Cmκ,0(D). According to Assumption 3.6, we have
that L0,0 = L0 and L0,1 = L1. For n ∈ N and (t, s) ∈ D, we define

Gn,0(t, s) :=

∫ t

s

L0,0(t, v)Ln−1,0(v, s) dv,

Gn,1(t, s) :=

∫ t

s

L0,1(t, v)Ln−1,1(v, s) dv,

Gn,2(t, s) :=

∫ t

s

L0,0(t, v)Ln−1,1(v, s)e
iκg(v,s) dv,

Gn,3(t, s) :=

∫ t

s

L0,1(t, v)Ln−1,0(v, s)e
iκg(t,v) dv.

To separate the oscillation of Gn,2 and Gn,3 as the function (3.3), we
define, for (t, s) ∈ D,

Rn,0(t, s) := (F+[L0,0Ln−1,1]) (t, s, s),

Rn,1(t, s) := (F+[L0,0Ln−1,1]) (t, s, t),

Jn,0(t, s) := (F−[L0,1Ln−1,0]) (t, s, t),

Jn,1(t, s) := (F−[L0,1Ln−1,0]) (t, s, s),

where, for an integrable function L(t, s, v) with 0 ≤ s ≤ v ≤ t ≤ 1,

(F+[L]) (t, s, v) :=

∫ ∞

0

L (t, s, h(v, τ))h(0,1)(v, τ)e−κτdτ,(3.8)

(F−[L]) (t, s, v) :=

∫ 0

−∞
L (t, s, h(v, τ))h(0,1)(v, τ)eκτdτ.(3.9)

We obtain for (t, s) ∈ D that

Gn,2(t, s) = −Rn,1(t, s)eiκg(t,s) +Rn,0(t, s)

and

Gn,3(t, s) = −Jn,1(t, s)eiκg(t,s) + Jn,0(t, s).

For n ∈ N, we then define

(3.10) Ln,0(t, s) := Gn,0(t, s) +Rn,0(t, s) + Jn,0(t, s)

and

(3.11) Ln,1(t, s) := Gn,1(t, s)−Rn,1(t, s)− Jn,1(t, s) for (t, s) ∈ D.
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According to the definitions in (3.10) and (3.11), we obtain that the
decomposition for the iterated integral operators of high orders is
Vnκ = Wκ[Ln−1,1] + W0[Ln−1,0], n ∈ N. To analyze the properties
of Vnκ , we verify that the functions Gn−1,0, Gn−1,1, Rn−1,0, Rn−1,1,
Jn−1,0 and Jn−1,1 are less oscillatory kernels of order n for n ∈ Z+

m

with n > 1. According to the definitions (3.8) and (3.9), we introduce
the following assumption.

Assumption 3.13. L ∈ Cm(D) for some m ∈ N is independent of
κ, and L(·, t) for t ∈ I is analytic in a simply connected and infinite
complex region Ω containing the interval I. In addition, there exist
constants γi,j ≥ 0 for j ∈ Zm and i ∈ Zj such that, for z ∈ Ω and
t ∈ I, ∣∣∣L(i,j−i)(z, t)

∣∣∣ = O(|z|γi,j ) as |z| → ∞.

We first show the property of Gn,0 and Gn,1 in the following lemma.

Lemma 3.14. If g ∈ Cm+1(D) satisfies Assumption 3.5 for some

m ∈ N, Kκ ∈ C̃mκ,0(D) satisfies Assumption 3.6, and Ln−1,0, Ln−1,1 ∈
Cmκ,0(D) are less oscillatory kernels of order n for n ∈ Z+

m−1 which
satisfy Assumption 3.13, then Gn,0, Gn,1 ∈ Cmκ,0(D) are less oscillatory
kernels of order n+ 1 and satisfy Assumption 3.13.

Proof. The first result of this lemma can be proved as the one in
Lemma 3.11. We focus on verifying the second result. Using the
definition of Gn,0 we have that, for t ∈ I and z ∈ Ω,

Gn,0(z, t) =

∫ z

t

L0,0(z, v)Ln−1,0(v, t) dv.

Using formula (2.8), it follows for j ∈ Zm, i ∈ Zj , t ∈ I and z ∈ Ω that

G
(i,j−i)
n,0 (z, t) =

∫ z

t

L
(i,0)
0,0 (z, v)L

(0,j−i)
n−1,0 (v, t) dv

+
∑
l∈Zi−1

[
L
(l,0)
0,0 (z, z)Ln−1,0(z, t)

](i−l−1,j−i)

−
∑

k∈Zj−i−1

[
L0,0(z, t)L

(0,k)
n−1,0(t, t)

](i,j−i−k−1)

.
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According to the assumptions on Kκ, Ln−1,0 and Ln−1,1, we obtain
that Gn,0 satisfies Assumption 3.13. We can verify the assertion for
Gn,1 by the same method. This completes the proof. �

We next analyze the properties of functions Rn,0, Rn,1, Jn,0 and
Jn,1.

Lemma 3.15. If g ∈ C2m+1(D) satisfies Assumption 3.5 for some

m ∈ N, Kκ ∈ C̃2m
κ,0 (D) satisfies Assumption 3.6, and Ln−1,0, Ln−1,1 ∈

C2m
κ,0 (D) are less oscillatory kernels of order n for n ∈ Z+

m−1 which

satisfy Assumption 3.13, then Rn,0, Rn,1, Jn,0 and Jn,1 ∈ C2m
κ,0 (D) are

less oscillatory kernels of order n+ 1 and satisfy Assumption 3.13.

Proof. Using the definitions (3.8), (3.9) and the assumptions of this
lemma, we can verify that Rn,0, Rn,1, Jn,0 and Jn,1 ∈ C2m

κ,0 (D). Note
that Rn,0, Rn,1, Jn,0 and Jn,1 have a similar structure. We shall only
verify that Rn,0 is a less oscillatory kernel of order n + 1 and satisfies
Assumption 3.13. The analogous assertions for Rn,1, Jn,0 and Jn,1 can
be proved in the same way.

We first prove that Rn,0 satisfies (3.7) with n = n+1 for n ∈ Z+
m−1.

Note that Rn,0 admits the explicit expression for (t, s) ∈ D

Rn,0(t, s) =

∫ ∞

0

L0,0(t, h(s, τ))Ln−1,1(h(s, τ), s)h
(0,1)(s, τ)e−κτdτ.

For (t, s) ∈ D, we define

Θ(τ ; t, s) := L0,0(t, h(s, τ))Ln−1,1(h(s, τ), s)h
(0,1)(s, τ)

for τ ∈ [0,∞), which is a function with respect to τ . By integration by
parts and the assumptions on g, Ln−1,0 and Ln−1,1, we have that, for
(t, s) ∈ D,

(3.12) Rn,0(t, s) =
∑

p∈Zn−1

Θ(p)(0; t, s)

κp+1
+

1

κn

∫ ∞

0

Θ(n)(τ ; t, s)e−κτdτ.

We now focus on estimating the bound of (Θ(p)(0; t, s))(i,j−i) for j ∈ Zn
and i ∈ Zj . For this purpose, we first derive

ηp(τ, s) := Dp
τ (Ln−1,1(h(s, τ), s)) for p ∈ Zn−1.
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Applying formula (3.6), we see for p ∈ Z+
n−1 that

ηp(τ, s) =
∑
q∈Z+

p

L
(q,0)
n−1,1(h(s, τ), s)

×Bp,q

(
(h(s, τ))(0,1), (h(s, τ))(0,2), . . . , (h(s, τ))(0,p−q+1)

)
.

This leads to η0(0, s) = Ln−1,1(s, s) and

ηp(0, s) =
∑
q∈Z+

p

ap,q(s)L
(q,0)
n−1,1(s, s),

where ap,q(s) is defined by

Bp,q

(
(h(s, τ))(0,1), (h(s, τ))(0,2), . . . , (h(s, τ))(0,p−q+1)

)
with τ = 0. We obtain that there exists a positive constant c such that,
for all κ > 1, j ∈ Zn and p ∈ Zn−1,∣∣∣η(j)p (0, s)

∣∣∣
κp+1

≤ cκ−p−1κ−(n−j−p−1) ≤ cκ−(n−j) for j < n− p,∣∣∣η(j)p (0, s)
∣∣∣

κp+1
≤ cκ−p−1 ≤ cκ−(n−j) for j ≥ n− p,

since p+1 ≥ n− j+1 > n− j. This ensures that there exists a positive
constant c independent of κ such that, for all j ∈ Zn and i ∈ Zj ,∣∣∣∣(Θ(p)(0; s, s)

)(i,j−i)
∣∣∣∣ ≤ cκn−j , for s ∈ I.

Notice that the upper bound of the term with integral in the equa-
tion (3.12) is cκ−n for a positive constant c independent of κ, since
L0,0 ∈ C2m

κ,0 (D) satisfies Assumption 3.4 and Ln−1,1 ∈ C2m
κ,0 (D) sat-

isfies Assumption 3.13. We then obtain that Rn,0 satisfies (3.7) with
n = n+ 1 for n ∈ Z+

m−1 from (3.12).

We now prove the second result. For j ∈ Z2m, i ∈ Zj , t ∈ I and
z ∈ Ω, we have that

R
(i,j−i)
n,0 (z, t)

=

∫ ∞

0

Dj−i
t

(
L
(i,0)
0,0 (z, h(t, τ))Ln−1,1(h(t, τ), t)h

(0,1)(t, τ)
)
e−κτdτ.
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It follows from the assumptions on L0,0, Ln−1,1 and g that Rn,0 satisfies
Assumption 3.13. This finishes the proof. �

We are now ready to prove the properties of Ln,0 and Ln,1 for n ∈ N0.

Lemma 3.16. If g ∈ C2m+1(D) satisfies Assumption 3.5 for some

m ∈ N and Kκ ∈ C̃2m
κ,0 (D) satisfies Assumption 3.6, then Ln−1,0,

Ln−1,1 ∈ C2m
κ,0 (D) are less oscillatory kernels of order n for n ∈ Z+

m.

Proof. According to the assumption on Kκ, we have that L0,0 and
L0,1 ∈ C2m

κ,0 (D) are less oscillatory kernels of order 1. The results of this
lemma may be proved by induction n with the help of the definitions
of (3.10), (3.11), Lemma 3.14 and Lemma 3.15. �

We next present a property of the iterated integral operators Vnκ for
n ∈ Z+

m in the following theorem.

Theorem 3.17. If g ∈ C2m+1(D) satisfies Assumption 3.5 for some

m ∈ N and Kκ ∈ C̃2m
κ,0 (D) satisfies Assumption 3.6, then the operator

Vnκ maps Cmκ (I) into C̃mκ,m−n(I) for n ∈ Z+
m.

Proof. For n ∈ Z+
m, we prove this result by using the decomposition

for Vnκ , which is Vnκ = Wκ[Ln−1,0] + W0[Ln−1,1]. This, together with
Lemma 3.10 and Lemma 3.16 yields the conclusion. �

We now state the main result of this section: it describes the
structure of the solution of the VIEs.

Theorem 3.18. If g ∈ C2m+1(D) satisfies Assumption 3.5 for some

m ∈ N, Kκ ∈ C̃2m
κ,0 (D) satisfies Assumption 3.6, and f ∈ C̃mκ,0(I)

satisfies Assumption 3.7, then the solution u of the VIE (2.1) belongs

to the space C̃mκ,0(I).

Proof. We obtain the desired result by applying equation (3.1) for
n = m with the assumptions on Kκ, f and g. �

To close this section, we observe that a nonlinear oscillator satisfying
the assumptions introduced in this section is g0(x) := (x+1)2 (x ∈ I);
here we could choose Ω := C \ [−1,−∞). We shall analyze the
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oscillation structure of solutions to VIEs with such nonlinear oscillators
in a future paper.

4. The oscillation structure of the solution to the oscillatory
VIDEs. In this section, we study the oscillatory structure of Volterra
integro-differential equations with the form

(4.1) u′(t) = a(t)u(t) + f(t) +

∫ t

0

K(t, s)eiκg(t,s)u(s) ds, for t ∈ I,

and u(0) = u0, where g and K ∈ C(D) are assumed to be independent
of the wavenumber κ > 1. We assume that g(t, s) := g0(t) − g0(s) for
(t, s) ∈ D, where g0 ∈ C1(I) satisfying g′0(t) ̸= 0 does not depend on κ
for t ∈ I. We first derive the VIE. We now prove that the representation
of the solution to (4.1) by the differential resolvent kernel contains the
oscillatory component of the given kernel. The oscillatory structure
of the solution to (4.1) is then analyzed by rewriting the VIDE as a
second-kind VIE.

We first show that the differential resolvent kernel of (4.1) inherits
the highly oscillatory term eiκg.

Theorem 4.1. If a, f ∈ C(I) and K ∈ C(D), then, for any initial
value u0 ∈ R, the VIDE (4.1) has a unique solution u ∈ C1(I).
Moreover, there exists a unique function r ∈ C1(D) such that u can
be written in the form

(4.2) u(t) = rκ(t, 0)u0 +

∫ t

0

rκ(t, s)f(s) ds, for t ∈ I,

where rκ(t, s) := r(t, s)eiκg(t,s) for (t, s) ∈ D.

Proof. The proof is carried out along the lines of the method used
in [3]. We first multiply both sides of (4.1) by e−iκg0(t) for t ∈ I; this
yields

u′κ(t) = (a(t)− iκg′0(t))uκ(t) + fκ(t) +

∫ t

0

K(t, s)uκ(s) ds (t ∈ I),

(4.3)

uκ(0) = u0e
−iκg0(0),



VIES AND VIDES WITH OSCILLATORY KERNELS 481

where, for t ∈ I, uκ(t) = u(t)e−iκg0(t) and fκ(t) = f(t)e−iκg0(t). This is
a linear first-order VIDE for uκ. According to classical Volterra theory
[2], we obtain that the unique solution of (4.3) uκ ∈ C1(I) has the
form

(4.4) uκ(t) = r(t, 0)uκ(0) +

∫ t

0

r(t, s)fκ(s) ds, for t ∈ I,

where r ∈ C1(D) denotes the differential resolvent kernel of the VIDE
(4.3). Multiplying both sides of (4.4) by eiκg0(t) for t ∈ I yields the
conclusion. �

Note that Theorem 4.1 does not tell us whether or not r is highly
oscillatory. However, for the following special case, the differential
resolvent kernel r of the VIDE (4.3) is independent of κ.

Corollary 4.2. If a, f ∈ C(I), K ∈ C(D) and a = iκg′0, then the
differential resolvent kernel rκ of (4.1) has the form rκ = reiκg, where
r ∈ C1(D) is independent of κ.

Proof. We show that the differential resolvent kernel of the VIDE
(4.3) for uκ is independent of κ. It follows from [2] that the differential
resolvent kernel of (4.3) is defined by

(4.5) r(t, s) := 1 +

∫ t

s

Q(t, v) dv, (t, s) ∈ D,

where Q satisfies the resolvent equation

Q(t, s) = H(t, s) +

∫ t

s

Q(t, v)H(v, s) dv, (t, s) ∈ D,

with

H(t, s) = a(s)− iκg′0(s) +

∫ t

s

K(v, s) dv, (t, s) ∈ D.

By the assumption on the function a, we see that

H(t, s) =

∫ t

s

K(v, s) dv for (t, s) ∈ D

is independent on κ. This ensures that Q is independent of κ. The
assertion that r is independent of κ from (4.5) then follows. �
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We now study the oscillatory structure of the solution to the VIDE
(4.1) by rewriting the initial-value problem (4.1) as a second-kind VIE,
namely

(4.6) u(t) = f̃(t) +

∫ t

0

Kκ(t, s)u(s) ds, for t ∈ I,

where, for (t, s) ∈ D,

f̃(t) = u0 +

∫ t

0

f(s) ds,(4.7)

Kκ(t, s) = a(s) +

∫ t

s

K(v, s)eiκg(v,s) dv,

and then using the analogous results for VIEs presented in the previous
section. Let Rκ denote the resolvent kernel of the VIE (4.6). The
differential resolvent kernel for (4.1) is then given by

(4.8) rκ(t, s) := 1 +

∫ t

s

Rκ(t, v) dv, (t, s) ∈ D.

We shall derive the oscillatory structures of the resolvent kernel and
the solution to the highly oscillatory VIEs (4.6) under appropriate
assumptions on g, a, f and K. We then obtain the oscillatory structure
of the solution to the VIDEs (4.1).

Corollary 4.3. If K and g ∈ Cm(D) for a fixed integer m ∈ N are
independent of κ and a ∈ Cmκ (I), then rκ ∈ Cmκ (D), where rκ is the
differential resolvent kernel of (4.1).

Proof. We prove this result by first verifying that the kernel Kκ

defined by (4.7) belongs to the space Cmκ (D) and by then applying
Theorem 2.8 with the definition (4.8) of the differential resolvent
kernel of (4.1) to obtain the conclusion of this corollary. We only
estimate the bound of the derivatives of Kκ. It follows from (4.7)

that K
(1,0)
κ = Keiκg,

K(1+j,0)
κ =

(
Keiκg

)(j,0)
(j ∈ Zm−1),
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while, for j ∈ Zm, (t, s) ∈ D,

K(0,j)
κ (t, s) = a(j)(s) +

∫ t

s

(
K(v, s)eiκg(v,s)

)(0,j)

dv

−
∑

i∈Zj−1

[(
K(v, s)eiκg(v,s)

)(0,i)∣∣∣
v=s

](j−i−1)

.

Then, for j ∈ Z+
m and i ∈ Z+

j , we have that K
(i,j−i)
κ = (Keiκg)(i−1,j−i).

These equations, together with the assumptions stated in this corollary,
yield that Kκ ∈ Cmκ (D). This completes the proof. �

Note that the conclusion of Corollary 4.3 is valid for any nonlinear
oscillator g.

We next state the main result of this section.

Theorem 4.4. If g ∈ C2m+1(D) satisfies Assumption 3.5 for some

m ∈ N, a ∈ C2m
κ,0 (I) satisfies Assumption 3.3, and f ∈ C̃mκ,0(I) satisfies

Assumption 3.7, then the solution u of the VIDEs (4.1) belongs to the

space C̃mκ,0(I).

Proof. We prove this result by using the results for the VIE (4.6).

According to Theorem 3.18, it suffices to verify that f̃ ∈ C̃mκ,0(I)

satisfies Assumption 3.7, and Kκ ∈ C̃2m
κ,0 (D) satisfies Assumption 3.6,

where f̃ and Kκ are defined in (4.7). The assertion for f̃ can be proved
as that in Theorem 3.9, and we omit the proof. According to the
decomposition of the oscillatory functions of the form (3.3), we have
that, for (t, s) ∈ D,

Kκ(t, s) = −eiκg(t,s)
∫ ∞

0

K(h(t, τ), s)e−κτ dτ

+

∫ ∞

0

K(h(s, τ), s)e−κτdτ + a(s),

where h(t, τ) := g−1
0 (g0(t) + iτ) for t ∈ I and τ ∈ [0,∞). This,

together with the assumption of the theorem, yields the desired result
for Kκ. �
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To close this section, we use three examples to illustrate the form
of the differential resolvent kernel of the VIDEs (4.1) for some special
cases.

Example 4.5. We choose a(t) = iκ, g0(t) = t and K(t, s) = λ for
(t, s) ∈ D. Equation (4.3) reduces to

u′κ(t) = fκ(t) + λ

∫ t

0

uκ(s) ds, for t ∈ I, and uκ(0) = u0.

uκ satisfies the second-kind Volterra integral equation

uκ(t) = f̂(t) +

∫ t

0

Kκ(t, s)uκ(s) ds, t ∈ I,

where

f̂(t) = u0 +

∫ t

0

fκ(s) ds

and Kκ(t, s) = λ(t−s) is independent of κ. According to Corollary 4.2,
we obtain that the resolvent kernel has the form rκ = reiκg with r
independent of κ.

Example 4.6. We choose a(t) = λ/(iκ), g0(t) = t and K(t, s) = λ
for (t, s) ∈ D. We have that Kκ(t, s) = λ/(iκ)eiκ(t−s). The solution of
(4.6) has the form

u(t) = f̃(t) +
λ

iκ

∫ t

0

ei(λκ
−1+κ)(t−s)f̃(s) ds, for t ∈ I.

The differential resolvent kernel is, for (t, s) ∈ D,

rκ(t, s) = 1 + λ(1− ei(λκ
−1+κ)(t−s))/(λ+ κ2).

Example 4.7. We consider the kernel Kκ of (4.6) satisfying Kκ =
W eiκg, with W ∈ C(D) independent of κ. The resolvent kernel
associated with Kκ then has the form

Rκ(t, s) = R(t, s)eiκg(t,s) for (t, s) ∈ D,

where R is the resolvent kernel associated with W . We obtain that the
differential resolvent kernel of (4.1) has the form (4.5).
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5. Concluding remarks. We analyze in this paper the oscillatory
properties of solutions of VIEs and VIDEs with highly oscillatory ker-
nels, where the oscillatory component of the given kernel is a product of
a non-oscillatory smooth function and a typical known oscillatory func-
tion with a nonlinear separable oscillator. The oscillatory components
of the solution are derived by using the iterated integral operators to
represent the solution. We observe that the oscillatory structure of the
solutions is similar to that of the given kernel of the VIEs and VIDEs. In
future work, we will study the oscillatory properties of solution of VIEs
and VIDEs with highly oscillatory kernels for the case where the given
kernel has a weak singularity and a more general (nonlinear) oscilla-
tor. Our results will also form the basis for designing efficient numerical
schemes (e.g., collocation and Galerkin methods) for approximating the
solutions of VIEs and VIDEs with highly oscillatory kernels (in analogy
to [8, 9, 13, 14, 29]).
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