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ABSTRACT. A numerical technique for solving scattering
problems is presented. It is based on a boundary integral
equation idea, so the unknowns are localized on the contour
(in 2D case) or the surface (in 3D case) of the scattering
object. Two major difficulties of traditional boundary in-
tegral methods (the appearance of spurious resonances and
the necessity to perform numerical integration of singular
functions) are overcome by studying the problem in an ap-
proximate discrete formulation from the very beginning. The
space is filled by cubic blocks, and the shape of the scat-
terer is formed by a set of blocks removed from the space.
Thus, the formulation of the problem is discrete, and the
continuous Green’s function is substituted by a discrete mesh
Green’s function. An analogue of combined field boundary
integral equation (CFIE) is developed for this formulation.

1. Introduction. Scattering of waves by obstacles is a physical phe-
nomenon emerging in several fields such as acoustics, electromagnet-
ics, optics, seismology or marine engineering. In many cases, when
time-harmonic dependence is assumed, the problem is governed by the
Helmholtz equation which has to be solved in an infinite domain Ω′:

△ u(xxx) +K2u(xxx) = f(xxx) in Ω′,(1.1)

∂u(xxx)

∂n
= 0 on ∂Ω′,(1.2)
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Here, ∂Ω′ is the boundary of the scatterer and K is the wavenumber.
The sources f(xxx) are non-zero in a finite domain in the space.

An important part of problem formulation is the radiation condition
preventing waves coming from infinity. Here, we prefer to formulate this
condition in the form of the limiting absorption principle. Namely, in
the case Im [K] > 0, we look for the solution decaying exponentially as
|xxx| → ∞. In the case Im [K] = 0, the solution is looked for in the sense
of the limit Im [K] → 0.

A considerable variety of numerical techniques have been developed
to model wave problems and deal with infinite domains in different
physical formulations [52]. Domain discretization techniques, such as
the finite element method (FEM) or finite differences (FD), require a
domain truncation and some non-reflecting boundary condition to be
imposed. See, for example, the technique of perfectly matching layers
(PML) [54] or the use of infinite elements [17], among others. On
the contrary, in the boundary integral formulations, only the boundary
of the scatterer is discretized and the unknowns belong only to this
boundary. In these methods, radiation condition is satisfied in a natural
way.

However, boundary formulations also have some drawbacks. First
of all, the related linear systems of equations depend on the frequency
through the Green’s function of the problem. This implies that matrices
must be calculated for each frequency (typically, engineering applica-
tions require a lot of frequencies). Formally, matrices for the boundary
element method (BEM) have smaller dimension than that of the FEM,
but the matrices for the BEM are densely populated (as opposed to the
FEM, where the matrices are sparse). This aspect can balance the cost
of the solution of linear systems written for the BEM and the FEM
[21].

In order to calculate the matrices for one of the BEM, singular in-
tegrals have to be precisely evaluated by means of specific numerical
techniques. The degree of singularity can vary depending on several
aspects, such as the relative position between the source and the field
points (or the element calculated) and the type of kernel functions.
Some techniques have been developed in order to perform proper in-
tegrations: element subdivision, adaptive Gauss-Legendre integration,
variable transforms or semi-analytical integration based on series ex-
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pansions, among others [39, 36, 49, 23, 19].

Boundaries with corners or angular shapes, which are frequent in
engineering, can also cause problems for the BEM. Several mathemat-
ical studies [41, 35] show that the theoretical basis of the BEM can
fail in the presence of irregular boundaries, since the linear systems of
equations become ill-conditioned or nearly singular. From the practi-
cal point of view, some of the problems are caused by the non-unique
normal derivative at the corner. A possibility of handling this duplic-
ity of values is to double nodes in the corners [20]. Then, additional
equations that avoid repeated information are obtained by using alter-
native collocation points. A review of other techniques or improved
integral equations can be found in [42, 13, 2]. Moreover, the presence
of scatterers with corners or sharp edges often leads to a solution with
singularities. In these cases, standard interpolations cannot accurately
reproduce the solution; numerical errors are larger than expected and
convergence rates are reduced [22].

Equations corresponding to the simplest BEM formulations are
known to be ill-posed for the frequencies close to the eigenfrequencies of
the scatterer. There exist a duality between an exterior problem and
the equivalent interior problem which is responsible for the spurious
frequencies [25]. This is only a numerical or theoretical pathology with
no physical correspondence. It means that, in real life or in cases where
an analytical solution of the problem is available, no evidence of this
phenomenon is observed. In order to overcome this difficulty several
options have been proposed. On the one hand, the combined field
integral equations[37, 8] (CFIE) where, instead of solving the simple
boundary integral equation, a combination of this equation plus some
variation (e.g., normal derivative) of the original one multiplied by a
complex constant is solved. The main drawback of these techniques
is that hypersingular integrals (singularities of o(1/r2) type for two-
dimensional or o(1/r3) type for three-dimensional problems) can appear
due to the secondary derivation of the Green’s functions with respect
to the surface normal. Efficient methods to compute these integrals
have been proposed [14]. Improvements and modifications of the idea
exist, see for example, [16] where some interior points (not only nodes
on the boundary) are considered. However, the boundary integrals
with strong singularities remain a common aspect of all CFIE-based
approaches.
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The combined Helmholtz integral equation formulation (CHIEF)
method [46] uses a standard boundary integral equation plus some
additional equations generated by placing collocation points in the
interior of the scatterer. These additional equations specify that the
variable inside the scatterer must be null. These new equations are
redundant for frequencies that do not coincide with the scatterer
eigenfrequencies, but they are necessary at the spurious resonance
frequencies. The main drawback of the method is that it can fail
if the interior points coincide with the nodes (zones of null value)
of the scatterer eigenfunction. These nodes are not known a priori ;
thus, the probability of failure of the method is quite heuristic. A
comparison between CHIEF and CFIE methods can be found in [1],
and a comparison with other techniques can be found in [4, 12].

The goal of our work is to present a numerical method that possesses
the advantages of a boundary integral formulation but that avoids the
difficulties caused by singular integrals. The method is also free of
spurious resonance frequencies due to using a discrete version of the
CFIE formulation. In fact, the main contribution of the technique is
to avoid the hypersingular integrals of CFIE formulation by means of a
discrete formulation of the problem that uses the corresponding discrete
Green’s function.

The formulation is particularized for the Helmholtz equation. An op-
erator on a square grid is considered (e.g., based on finite differences).
Thus, geometries must be approximated by the closest brick-shaped
equivalent description. The method is conceived for engineering appli-
cations where it is more important to obtain a fast and correct descrip-
tion of the solution rather than to obtain a very precise approximation.
The effort is focused here in the generalization of the method to sev-
eral operators. Two aspects must be handled: the truncation of the
operator and the definition of specific discrete Green’s functions. The
efficiency and robustness of the discrete CFIE formulation is studied
by means of several numerical examples.

Discrete Green’s functions were also considered to study diffraction
problems in exterior domains [3, 6]. This idea of first doing the
discretization and afterwards reducing the problem to the boundary
has been used in order to deal with arbitrary shaped interior domains
and lattices with periodic irregularities [30, 18]. The analysis is mainly
focused in the study of spectral properties of Laplace operator.
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Another important method that can be used to reduce the problem
to the boundary is the method of difference potentials [44, 45, 53]. It
is based on a different boundary integral equation that deals with single
and double layer potentials and allows for a discontinuity of the variable
in the boundary of the studied domain. This approach is not prone to
any adverse effects related to the resonances of the complementary
domains. Moreover, it is quite general to allow for several discrete
versions (i.e., based on finite differences [53]). An adequate choice
of the potentials makes the method more flexible in the sense that
Green’s functions are not strictly required. Several descriptions of
the boundary geometry can also be considered. However, they can
increase the complexity of the implementation (modify the coordinate
system or perform a numerical description of the boundary and normal
derivatives). This method has been applied in practice to the active
control of noise by acting only on the boundary of the domain [28] and
also to develop high-order methods and make an accurate treatment of
the problem geometry[32].

The Helmholtz equation in exterior domains has already been solved
by means of algebraic equations reduced to the boundary in [51]. The
main goal of this work is to show how this technique avoids the singular
integrals that are often involved in the BEM.

An outline of the paper is as follows. The theoretical basis and
main ideas of the method are presented in Sections 2 and 3. Section 4
deals with implementation details, including the evaluation of discrete
Green’s functions, the description of the scatterer and the consideration
of different incident fields. Some details related to Green’s functions are
repeated for convenience. Also, the first part before CFIE formulation
could be obtained with the procedures proposed in [30, 18]. However,
the equations are detailed from the beginning for coherence with CFIE
formulation exposed latter. In the numerical examples of Section 5,
a very simple one-dimensional case with almost analytical formulation
is studied. The properties of the technique are shown by means of
two-dimensional examples. The numerical results are compared with
analytical results (where available) and results obtained by means
of other numerical techniques. Future development is proposed in
Section 6.
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Figure 1. Domains involved in the formulation: (a) unbounded without
scatterer Ω; (b) unbounded but truncated with boundary ∂Ω′ around the
scatterer; (c) Ω′′ finite truncation of Ω′.

2. Problem formulation. Consider a cubic (three-dimensional) or
rectangular (two-dimensional) grid of the problem domain Ω′. Ω′ is a
part of the whole two- or three-dimensional space Ω. The nodes are
denoted by the index j. We also define a mesh Ω′′ which is a finite
truncation of Ω′. As a truncation, we take for clarity a large square or
cube of side 2R with the origin of the coordinate system in the center.
We assume that the diameter of the scatterer is much smaller than R
and that the origin belongs to the scatterer, i.e., to Ω \ Ω′.

We call two nodes the neighbors if the nodes belong to the same
finite element (elementary square or cube) of the full mesh Ω.

Define the boundary of the scatterer ∂Ω′ as the set of all neighbors
of the nodes belonging to Ω \Ω′ in Ω′. Nodes of Ω′ \ ∂Ω′ will be called
the internal nodes of Ω′. Define also the exterior boundary of ∂Ω′′ as
the set of neighbors of Ω′ \ Ω′′.

Define linear operators L, L′ and L′′ on the meshes Ω, Ω′ and Ω′′,
respectively. The definition is as follows:

L[u]j ≡
∑
q∈Ω

βj,quq, j ∈ Ω,(2.1)

L′[u]j ≡
∑
q∈Ω′

β′
j,quq, j ∈ Ω′,(2.2)

L′′[u]j ≡
∑
q∈Ω′′

β′′
j,quq, j ∈ Ω′′,(2.3)
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Matrices of the coefficients βj,q, β
′
j,q, β

′′
j,q have the following proper-

ties:

(i) the elements βj,q, β
′
j,q, β

′′
j,q are equal to zero if q and j are not

neighbors;
(ii) matrices are symmetrical, i.e.,

(2.4) βj,q = βq,j , β′
j,q = β′

q,j , β′′
j,q = β′′

q,j

for all admissible j and q;
(iii) operator L′ is a truncation of L, and operator L′′ is a truncation

of L′ in the following specific sense:

(2.5) β′
j,q = βj,q if j, q ∈ Ω′, j or q /∈ ∂Ω′.

The condition means that j or q is one of the internal nodes of
Ω′. Similarly,

(2.6) β′′
j,q = β′

j,q if j, q ∈ Ω′′, j or q /∈ ∂Ω′′.

According to the first property, all sums in (2.1), (2.2) and (2.3) are
finite for each j.

We assume that all operators introduced above approximate the
Helmholtz equation in corresponding areas. Let L′ approximate Neu-
mann boundary conditions on the boundary ∂Ω′. We do not specify
the details of operator L′′ on the boundary ∂Ω′′. The inhomogeneous
equation

(2.7) L′ [u]j = fj for all j ∈ Ω′,

approximates equation 1.1 with Neumann condition on the boundary
of the scatterer. When solving equation2.7, we assume that Im [K] > 0,
that the sources fj are localized in a finite area, and we look for the
solution decaying exponentially at infinity.

We assume also that matrix β is homogeneous with respect to
translations along the coordinate lines. This property will enable us
to use Fourier transform to compute Green’s function of L.

Examples of operator L are provided in subsection 4.1. The nodes
are called edge-adjacent if they are adjacent along one of the coordinate
lines, h is the size of the grid.
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3. Discrete approximations of integral equations. Let Gm
j be

the discrete Green’s function of the mesh Ω, i.e., a solution of equation

(3.1) L [Gm]j = δj,m,

where δj,m is the Kronecker delta (unit force is placed at node m).
According to the limiting absorption principle for each complex value of
K we choose the Green’s function that decays exponentially at infinity.

Consider operator L′′ defined on a finite mesh. The following relation
follows from (2.4). For any functions uj and wj defined on Ω′,

(3.2)
∑
j∈Ω′′

L′′[u]jwj =
∑
j∈Ω′′

L′′[w]juj .

Let L′[u]j and L′[w]j be non-zero in a finite area of the mesh, and
let both functions obey the radiation condition formulated above. The
operator L′′ differs from L′ on Ω′′ only on the boundary ∂Ω′′. According
to the limiting absorption principle, this difference decays exponentially
as R → ∞. Thus, we can take this limit and replace Ω′′ by Ω′:

(3.3)
∑
j∈Ω′

L′[u]jwj =
∑
j∈Ω′

L′[w]juj .

Taking in (3.3) Ω′ as Ω, Gm
j as uj , and Gn

j as wj one can prove that

(3.4) Gn
m = Gm

n .

Restrict function Gm
j to the mesh Ω′. Formally, the restriction is a

different function, but we denote it below with the same symbol Gm
j .

Apply operator L′ to the restriction Gm
j . Obviously, equation (3.1) will

not be valid for operator L′, since the operators L′ and L are different
on ∂Ω′. Instead, for m ∈ Ω′, define the values bmj by the following
relation:

(3.5) L′ [Gm]j = δj,m + bmj .

These values play the role of boundary residue of operator L′. The
values bmj are not equal to 0 only if j ∈ ∂Ω′.
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Taking wj = Gm
j in equation (3.3), we derive the following “boundary-

difference representation” for the field:

um =
∑
j∈Ω′

(
fjG

m
j − ujb

m
j

)
(3.6)

=
∑
j∈Ω′

fjG
m
j −

∑
j∈∂Ω′

ujb
m
j for all m ∈ Ω′.

We are particularly interested in the case m ∈ ∂Ω′ because then a kind
of “boundary integral equation” (BIE) is obtained. The values of uj ,
j ∈ ∂Ω′ are the unknowns of this system.

Equation (3.6) plays the role of boundary integral equation in
direct Kirchhoff formulation. Theoretically, it can be used to find the
boundary values of u, but in practice it is prone to spurious resonances.
Our next step is to correct (3.6) by adding some other equation.
Ideologically, this step mimics the CFIE approach to boundary integral
equations.

Apply operator L′ to both sides of (3.6), and take into account that
fm = L′[u]m:

(3.7) fm =
∑

j,n∈Ω′

fjG
n
j β

′
m,n −

∑
j∈∂Ω′

uj

∑
n∈Ω′

bnj β
′
m,n.

This equation is valid for any m ∈ Ω′, but we will be interested only
in the case m ∈ ∂Ω′. According to the general scheme of the CFIE
method (see [8]), make a linear combination of (3.6) and (3.7).

um + νfm =
∑

j,n∈Ω′

fj(δm,n + νβ′
m,n)G

n
j(3.8)

−
∑

j∈∂Ω′

uj

∑
n∈Ω′

(δm,n + νβ′
m,n)b

n
j .

ν is the combination parameter that must be complex. Taken for
m ∈ ∂Ω′, (3.8) is a linear system for finding the boundary values of um.
Note that, although summation over n in the second term is formally
held over the whole mesh Ω′, in practice it is held over the finite set of
neighbors of ∂Ω′.

Equation (3.8) corresponds to the radiation problem (2.7). Usually,
a diffraction problem should be solved, i.e., the incident field uin is
given, such that it obeys equation L[uin]j = 0 on Ω. It is necessary to
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find the scattered field uj such that the total field utot = uin + u obeys
the homogeneous equation L′[utot]j = 0 everywhere on Ω′. In this case,
we can again use equation (3.8) taking

(3.9) fj = −L′[uin] = −
∑
q∈Ω′

β′
j,qu

in
q .

Note that (3.9) cannot be substituted directly into (3.8) since, generally,
uin does not obey the radiation condition (i.e., it is not exponentially
decaying for Im [K] > 0) and thus it cannot be used in (3.3) as one
of the functions. To compute the force term using equation (3.9) is
completely equivalent to imposing the null normal derivative of the
total field utot around the scatterer.

Equation (3.8) can be rewritten in a form more suitable for compu-
tations, namely, as

(3.10)
∑

j∈∂Ω′

Mm,juj =
∑
j∈Ω′

Fm,jfj , m ∈ ∂Ω′,

where

(3.11) Mj,q = ν
∑

n,q∈Ω′

β′
m,nG

n
q β

′
q,j+

∑
q∈Ω′

Gm
q β′

q,j−νβ′
m,j , j, q ∈ ∂Ω′,

(3.12) Fm,j = ν
∑
q∈Ω′

β′
m,qG

q
j +Gm

j − νδm,j , m ∈ ∂Ω′, j ∈ Ω′.

Equation (3.10) will be solved below with respect to uj . In terms of
the acoustical problem, this means finding the surface pressures on the
surface of the scatterer. Then representation (3.6) can be used for
finding the pressures everywhere in Ω′.

Values of ν with non-null imaginary part ensure the uniqueness of
equation (3.8) for all wavenumbers. The proof exposed in [8] is adapted
in [38] for the discrete problem.

4. Implementation details.

4.1. Discrete operator and the description of the scatterer.
The more general framework of Section 3 is particularized now for
several operators. Each option leads to a different set of coefficients
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β′. The two-dimensional field operator can be expressed as

(4.1) L[u]j = A0uj1,j2 +Asuj1,j2 +Acûj1,j2

with

(4.2) uj1,j2 = uj1+1,j2 + uj1−1,j2 + uj1,j2+1 + uj1,j2−1

and

(4.3) ûj1,j2 = uj1+1,j2+1 + uj1−1,j2+1 + uj1−1,j2−1 + uj1+1,j2−1.

The values of coefficients A0, As, Ac depend on the discretization
technique. Some examples can be found in Table 1.

Table 1. Coefficients of the two-dimensional operator based on: Finite dif-
ferences point-wise representation (FD), linear finite element method (FEM),
linear finite element method with lumped mass matrix (FEM-LUMP).

Method h2A0 h2As h2Ac

FD −4 + (Kh)2 1 0

FEM −8
3 + 4(Kh)2

9
1
3 + (Kh)2

9
1
3 + (Kh)2

36
FEM-LUMP −8

3 + (Kh)2 1
3

1
3

An important aspect of the method is the definition of the truncated
operator L′. In this step, the geometry of the scatterer is described and
the discrete normal derivative implicitly defined.

In all two-dimensional cases analyzed here (finite differences, finite
element) the operator L′ can be expressed in a unified framework
similar to a standard finite element formulation

L′[u]j =
∑
i∈Ω′

β′
j,iui =

1

h2

∑
i∈Ω′

(
−Kj,i + (Kh)2

Mj,i

4

)
uj

=

{
f(j1, j2, j3) for FD

1
h2

(∫
Ω′ NifjdΩ−

∫
∂Ω′ Ni

∂u
∂ndΓ

)
for FEM.

(4.4)

‘FD’ specifies that the boundary algebraic formulation is based on the
finite difference equation. Then, operator L is obtained by means of
finite differences. In the ‘FEM’ case, the field operator L is obtained
by means of the weak form of the problem (as finite elements do). In
that second case the force term includes a part related to the sources
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inside Ω′ and another related to imposed normal derivatives on ∂Ω′.
Ni is the FEM shape function in the reference element. This is an
important advantage with respect to the formulation based on finite
difference equation where the imposed velocities on ∂Ω′ are not so
directly included.

The values of Kj,i and Mj,i depend on the discretization type. In
the ‘FEM’ case they are the coefficients of the elemental stiffness and
mass matrices in the reference element (see Figure 2 (b))

(4.5) Kji =

∫∫ 1

−1

∇Ni · ∇Nj dξ dη Mji =

∫∫ 1

−1

NiNj dξ dη.

In the ‘FD’ case, Kji andMji values are chosen in order to reproduce
the operator L of equation (4.1) after assembling all the elements
surrounding a node.

These elemental matrices have the standard structure

(4.6)


a0 as ac as
as a0 as ac
ac as a0 as
as ac as a0


with the coefficients defined in Table 2.

Table 2. Coefficients of the two-dimensional local matrices K and M.

K M
FD FEM FEM lumped FD FEM FEM lumped

a0 1 2/3 2/3 1/4 1/9 1/4
as -1/2 -1/6 -1/6 0 1/18 0
ac 0 -1/3 -1/3 0 1/36 0

Operator L′ can be obtained for arbitrary geometries in a procedure
which is similar to the standard way of assembling elements in a finite
element code. For each node in ∂Ω′ the existing square elements that
contain this node must be assembled. According to the local numbering
of nodes in Figure 2 (b) and the notation for the square elements
surrounding a node in Figure 2 (a), it can be seen that a given node
j is in the local position i of the square element qi. Consequently, the
row i of the local matrix in equation (4.6) must be assembled.
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Consider as an example the node A in Figure 2 (c). In that node,
square elements q1 and q2 exist, and the operator L′ is constructed by
assembling rows 1 and 2 of the elemental matrices K and M according
to equation (4.4).

q
 2

q
 1

q
 4

q
 3

j
1

j
2

(a)

1 2

34

ξ

η

(b)

q
 1

q
 2

q
 4

q
 1

q
 2

A B

C

Scatterer

(c)

Figure 2. Two-dimensional description of the scatterer and creation of
the operator L′ on its boundary by means of an element-based concept:
(a) Notation of the quadrants surrounding a node; (b) Local notation of
nodes in the linear quadrilateral (square) finite element; (c) Examples of
several situations of a node on the scatterer boundary: A and C are side
nodes while B is a corner node.

With the coefficients in Table 2, coefficients of L′ can be constructed
a priori, and this procedure is done only once.

An example of application of this technique is given for the 2D case
based on the finite difference operator. In Figure 3, a sample scatterer
is demonstrated. One can see that the boundary nodes can be divided
into 12 types. Elements of L′ in the vicinity of each type of node are
given in Table 3.

Alternative, high-order operators could be considered. The formula-
tion in Sections 2 and 3 remains valid in these cases by only considering
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Figure 3. Sketch of the two-dimensional scatterer. The 12 node types in
the boundary are identified.

Table 3. Weights of the finite difference operator in two-dimensional
problems according to (2.7).

node h2 × β′

type (j1 − 1, j2) (j1 + 1, j2) (j1, j2 − 1) (j1, j2 + 1) (j1, j2)

0 1 1 1 1 -4 + (Kh)2

1 1/2 1/2 1 — −2 + (Kh)2/2
2 — 1 1/2 1/2 −2 + (Kh)2/2
3 1/2 1/2 — 1 −2 + (Kh)2/2
4 1 — 1/2 1/2 −2 + (Kh)2/2
5 1 1/2 1 1/2 −3 + 3(Kh)2/4
6 1/2 1 1 1/2 −3 + 3(Kh)2/4
7 1/2 1 1/2 1 −3 + 3(Kh)2/4
8 1 1/2 1/2 1 −3 + 3(Kh)2/4
9 1/2 — 1/2 — −1 + (Kh)2/4
10 — 1/2 1/2 — −1 + (Kh)2/4
11 — 1/2 — 1/2 −1 + (Kh)2/4
12 1/2 — — 1/2 −1 + (Kh)2/4

a more general definition of β coefficients because standard high-order
finite difference schemes or finite elements often relate non-adjacent
nodes. Also, discrete Green’s functions can be evaluated numerically
even if the formulas are a bit more complex. However, some difficul-
ties arise from the implementation point of view. On the one hand,
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the unknowns are not only the nodes on the boundary of the scatterer
but also some layer around it. For example, in the case of the cross-
shaped fourth order finite difference stencil that includes nine points,
the method requires an additional layer of nodes around the boundary
(coefficients bmj become non-null there). On the other hand, and more
importantly, it is much more difficult to impose boundary conditions
and define a proper truncation of the operator L when coefficients β of
non-adjacent nodes can be non-null.

A good alternative could be the compact high-order finite difference
schemes proposed in [48, 34] and used in [31] with the difference
potential method.

The use of a high-order operator in the proposed approach should
be restricted to staircased geometries. Otherwise, the increase in
accuracy caused by the better interpolation could be masked by a poor
approximation of the problem geometry. Few studies have incorporated
the geometry error in the error indicator [27]. However, in most of them
(see, for example, for the FEM [40] or for the BEM [26]) the geometry
error is estimated by means of the distance d between the real boundary
and its discrete approximation (i.e., in two-dimensional problems: a
triangulation of the domain in the FEM, an approximation by means
of straight segments in the linear BEM or a staircased geometry in the
approach presented here).

Assuming that the exact geometry is a surface of constant curvature
(radius of curvature R) in the BEM discretization of the boundary
(straight elements of length h) shown in Figure 4 (a), this distance d is

(4.7) d = R

(
1− cos

(
arcsin

(
h

2R

)))
,

and using Taylor series around h = 0 we have

(4.8) d ≃ 1

8R
h2 + o(h4),

h

R
≪ 1.

For the case of the staircased geometry with grid size h as shown in
Figure 4 (b), the distance between a node and the exact boundary can
be expressed as

(4.9) d = R

(
1− cos

(
arcsin

(√
2h

2R

)))
+

√
2h

2
,
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Figure 4. Distance d between exact (red) and approximated (blue) geome-
tries: (a) straight segments (BEM); (b) Staircased.

and again using the Taylor series it becomes

(4.10) d ≃ h√
2
+

h2

4R
+ o(h4),

√
2h

R
≪ 1.

Comparing equation 4.8 and 4.10 it can be seen that the asymptotic
dependence of d on h is of different order (order one in staircased
geometry, which is worse). This has a direct consequence in the
estimation of the geometric error which is based on a relationship of the
type d = Chn. The geometry approximation error of finite elements
is proportional to h3/2 (h is the element size) [40]. In the derivation
to this error bound it is used that the distance between an smooth
curved boundary and its triangulation is proportional to h2, and the
final result is not dependent on the order of polynomial interpolation
used for the problem variable. For this reason, a high order method
used in a curved geometry problem does not converge with proper
rate corresponding to the high-order polynomial interpolation unless
the geometry is described with the same accuracy. For example,
finite elements using interpolation functions of order p ≥ 2 and linear
interpolation of the curved problem geometry do not converge according
to the high-order p of the polynomial but as linear elements.
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4.2. Boundary conditions. One of the main advantages of using an
element approach is that boundary conditions are imposed naturally
by means of the proper definition of operator L′ of subsection 4.1. In
fact, L′[u]m is equivalent to the external normal derivative.

Consider as an example the ‘FD’ based option. In node C (with
coordinates j1 and j2) of Figure 2 (c), the second order expression of
the derivative is:

(4.11)
du

dx
=

uj1+1,j2 − uj1−1,j2

2h
+ o(h2) = −n · ∇u = −∂u

∂n
,

the value of uj1−1,j2 in the fictitious node from equation (4.11) can
be isolated and replaced in equation (4.1) in order to obtain L′[u]C .
This is a common procedure used in finite differences in order to
impose Neumann boundary conditions. It is fully equivalent to the
assembly procedure proposed here where the operator L′ is obtained
after assembling the elements q1 and q4 with node C in local positions
1 and 4, respectively,

L′[u]C =
1

h2

(
uj1+1,j2 +

1

2
(uj1,j2+1 + uj1,j2−1) +

(
(Kh)2

2
− 2

)
uj1,j2

)
(4.12)

= − 1

h

∂u

∂n
.

The right hand side of equation (4.12) represents the imposed normal
derivative. In each node m ∈ ∂Ω′, the normal vector n = (nj1 , nj2)
can be obtained by assembly of the values in Table 4. These values are
the same for FD and FEM. In the case of node C, elements q1 and q4
should be considered, obtaining nj1 = −1/h and nj2 = 0.

Table 4. Two-dimensional discrete approximation of normal vector in
brick-shaped boundaries (pointing outward to the fluid domain).

Existing square nj1 nj2

q1 −1/2h −1/2h

q2 1/2h −1/2h

q3 1/2h 1/2h

q4 −1/2h 1/2h
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It is now possible to consider some boundary conditions. In the
Neumann case, the value of ∂u

∂n = n · ∇u is directly considered in
equation (4.12) (null value for a rigid scatterer). This modifies the
force vector for Robin boundaries ∂u

∂n = −ARu, where AR is a constant.
This affects the coefficient of uj1,j2 in the diagonal of the system matrix.
Dirichlet boundary conditions can be considered [18].

In the case of an FEM-based operator, Neumann and Robin bound-
ary conditions are imposed by means of the boundary integral in equa-
tion (4.4).

4.3. Discrete Green’s functions. The first step of the method is
finding the Green’s function Gm

j of L.

4.3.1. One-dimensional discrete Green’s functions. As the sim-
plest example we consider below a 1D problem, i.e., scattering by an
obstacle on a line. Of course, this example is of no practical inter-
est; however, this example can be used to demonstrate how the CFIE
approach removes the spurious resonances.

The mesh Ω is the whole line, and matrix β is given by the relation:

(4.13) βj,q =

 h−2, q = j ± 1,
−2h−2 +K2, q = j,
0, otherwise

The analytical expression for the Green’s function is obvious:

(4.14) Gm
j = A exp iκ|j −m|,

where κ is the discrete wavenumber, A is a constant parameter and
i =

√
−1. Wavenumber κ is as follows:

(4.15) κ = 2arcsin (Kh/2) .

Finally, using that for j = m, L[Gm]j = 1 the expression of A is found
as

(4.16) A =
1

2 (exp{iκ} − 1)h−2 +K2
.
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4.3.2. Two-dimensional discrete Green’s functions. Assume that
βj,q is given by subsection 4.1. Construct Gm

j using the Fourier trans-
form. Let the source node m coincide with the origin m = 0 (all other
cases can be obtained by translating the Green’s function along the
coordinate lines). Introduce the values j1 and j2 as integer coordinates
of node j. Represent the Green’s function in the form:

(4.17) G0
j =

1

(2π)2

∫∫ π

−π

A(ξ1, ξ2) exp{−i(ξ1j1 + ξ2j2)} dξ1 dξ2.

The inverse transform is as follows:

(4.18) A(ξ1, ξ2) =

∞∑
j1=−∞

∞∑
j2=−∞

G0
j exp{i(ξ1j1 + ξ2j2)}.

Apply operator L to (4.17):

δj1,0δj2,0 =
1

h2(2π)2

∫∫ π

−π

σ (ξ1, ξ2, k)A(ξ1, ξ2)(4.19)

× exp{−i(ξ1j1 + ξ2j2)} dξ1 dξ2.

Applying the inversion formula to (4.19), it is concluded that the
two-dimensional Green’s function can be expressed as:

(4.20) G0
j =

h2

(2π)2

π∫∫
−π

exp{−i(ξ1j1 + ξ2j2)}
σ (ξ1, ξ2)

dξ1 dξ2.

Analytical integration on the variable ξ2 of equation (4.20) is done.
The procedure is similar to the one proposed in [15] and references
therein. This leads to one variable integral for the two-dimensional
Green’s function that is done numerically in the complex plane. A
proper integration path that turns around the singular points or poles
is chosen. This path is as close as needed to the singular points.
This is based on the limit absorption principle (making the limit for
the imaginary part of K tend to 0). Consequently, Green’s functions
calculated by means of this procedure satisfy the Sommerfeld radiation
condition.

For the operators defined here in subsection 4.1, σ can be expressed
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as σ(ξ1, ξ2) = A+B cos(Ξ) and equation (4.20) leads to:

(4.21) G0
j =

h2

2π

π∫
−π

exp{−i(ξ1j1 + Ξj2)}
iB sin (Ξ)

dξ1.

For the ‘FD’case, we have

(4.22) Ξ(ξ1) = arccos (2− cos ξ1 − h2K2/2) and B = 2.

Its analogue for the ‘FEM’ operator is

(4.23) B = 2

[
2

(
(Kh)2

36
+

1

3

)
cos (ξ1) +

(
(Kh)2

9
+

1

3

)]
and

(4.24) Ξ(ξ1) = π − arccos

(
(2(Kh)2 + 6) cos (ξ1) + 4(Kh)2 − 24

((Kh)2 + 12) cos (ξ1) + 2(Kh)2 + 6

)
.

Equations 4.23 and 4.24 can be simplified if the mass is lumped leading
to

B =
4 cos (ξ1) + 2

3
(4.25)

Ξ(ξ1) = π − arccos

(
2 cos (ξ1) + 3(Kh)2 − 8

4 cos (ξ1) + 2

)
.(4.26)

An alternative formulation for the ‘FD’ case [29] where no analytical
integration is done on ξ2 leads to:

(4.27) G0
j =

h2

π2

∫ π

0

∫ π

0

cos (j1ξ1) cos (j2ξ2)

(Kh)2 − 4 + 2 cos(ξ1) + 2 cos(ξ2)
dξ1 dξ2.

Equation (4.27) is more complicated than equation (4.21). However,
an analytical solution based on hypergeometric functions exists [24].
An alternative is proposed [33] where the integral is calculated by
means of recurrence formulas. Unfortunately, numerical errors due to
the recurrence are large for the usual values of j1 and j2 required by
realistic examples and the general purposes of the method presented
[5].

A very important contribution of [29] are the simplified formulas
that successfully approximate equation (4.27) for large values of j1
and j2. There is an equivalent three-dimensional version [9]. Without
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them, the implementation of the method proposed here would be more
difficult and probably computational costs would be higher.

The option chosen for the examples shown here is to perform a
numerical integration of equation (4.21) for the lower values of j1 and
j2 and use asymptotic formulas [29] when possible.

Figure 5 illustrates the dependence between the discrete Green’s
function precision and how many intervals are used with piecewise
constant integration along the integration path. The source is centered
at the origin, and the results are for nodes along the j1 axis. The error
for other nodes like the ones in the diagonal j1 = j2 is smaller. The
plots are very similar for the FEM-based operator.

Several ‘rules of thumb’ can be obtained from Figure 5: i) The num-
ber of integration intervals must always be larger than the maximum
value of j1 required; ii) it is better not to use asymptotic formulas for
j1 < 20.

The results shown in Figure 5 (b) illustrate how important it is to
tabulate the values of the discrete Green’s function and avoid repetitive
calculation of them.

In a problem with N nodes on the scatterer boundary, the number
of operations (additions and multiplications) required in order to solve
the dense linear systems of equations is o(2N3/3). Moreover, it is
required to perform o(2αN2) operations and o(αN2) evaluations of
the discrete Green’s function in order to compute the coefficients of the
system matrix. Here α represents the number of nodes of the truncated
operator. For the node A in Figure 2 (c), α = 4 in the FD-based
operator and α = 6 in the FEM-based operator. But, in any of the
cases, α ≪ N . However, the number of operations required to evaluate
the discrete Green’s function is comparable or larger than N . As shown
in Figure 5, the singularity in the integral in equation (4.21) may lead
to the use of quite a large number of integration points. In addition, the
integrand contains trigonometric functions whose repetitive evaluation
tends to be expensive. This can cause the computation of the matrix
coefficients to be slower than the solution of the linear system. The
system matrices for the examples shown in the following sections are
calculated around 100 times faster if discrete Green’s function values
are precomputed. It is good to verify that most of the calculation time
is due to the solver routine.
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Figure 5. Numerical error in the evaluation of the discrete Green’s function
along the j1 axis (j2 = 0) for the finite difference based operator. n
is the number of intervals used in piecewise constant integration and the
dimensionless wavenumber is k = 0.9: (a) relative difference with a reference
value obtained by means of 200000 intervals; (b) absolute error in the
evaluation of the operator E = |L[G0]j1 − δ0,j1 |. ‘Martin’ is the asymptotic
formula proposed in [29].

4.4. Computational aspects. In terms of memory storage and cal-
culation times required to solve linear systems of equations, the compu-
tational costs of the proposed method are comparable with those of the
BEM. Both methods use a full system matrix which is the element con-
suming more memory. The linear systems of equations can be solved
by means of direct solvers if they are small but, in general, an iterative
solver is required (even if the system matrix can be stored, the direct
solver is too slow).

To reduce the condition number of matrices is needed in order to
use iterative solvers. In that sense, the integral formulation is relevant
[11], and CFIE becomes very important. It is shown in the numerical
examples how CFIE drastically improves the condition number of the
system matrix for all wavenumbers.

The proposed formulation also avoids boundary integrals. This
means that the calculation of the system matrix coefficients can be
done in a faster way. This is very relevant in order to extend the
technique with the fast multipole methods [47] idea. In these cases,
the improvement of the matrix conditioning due to CFIE is very often
combined with GMRES (or block GMRES). The whole system matrix
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is never in the memory, and their blocks are generated when required.
An important aspect of that methods is the ability to build this block
(that implies boundary integrals) very fast.

In addition to these general considerations, some possible guidelines
in order to implement a code are:

• The information to be stored is, for each node in the scatterer
boundary: the coordinates and the node type. Thus, a function
that provides this information for a given geometry is required.

• The unknowns of the linear systems of equations are the nodal
values at the boundary. Then, it is important to establish
some ordering of them to be assembled. Fast searches along
the boundary node list are required. This must be done many
times during assembly, pre and post processes.

• The operator L′ defined in Table 3 can be considered as a
function where the input data will be the node coordinates
and the node type and as output will provide: coordinates of
neighboring nodes and coefficients β′.

• Equation (4.21) is a non-trivial oscillatory integral that must
be done for each required value of G0

j . This is a time consuming
operation. It is very important to pre-compute the values of
G0

j for every wavenumber K because they are needed several
times. The performance of the method highly depends on this
step.

5. Numerical examples. The first example is a one-dimensional
problem with an available analytical solution. Moreover, the boundary
integral formulation is reduced to the solution of a linear system with
two equations. This simplicity is helpful for illustrating all the steps of
Sections 2 and 3. The other examples are two-dimensional problems
where the scatterer is L-shaped, a rectangle or a circle. They are used
in order to show numerically some of the properties of the method.

0 R−R S

Figure 6. One-dimensional scattering problem. Scatterer placed between
nodes −R and R. Unit point source placed at node S.
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5.1. One-dimensional scattering. The one-dimensional problem
on Figure 6 is solved. The scattering object is placed between the
nodes −R = −20 and R = 20. A point source that generates the wave
is placed at the node S = 32. The rigid boundary of the scatterer is
composed by two nodes. In this Neumann boundary, null normal de-
rivative of the total field u is imposed. Then, the problem is reduced
to a system of two linear equations where the unknowns are the value
of u at these two nodes:

(5.1) M

[
uR

u−R

]
= Ff .

M is the system matrix that can be calculated according to equation
(3.11):
(5.2)

M=

1+bRR+
ν
h2

(
1− (Kh)2

2 +bR+1
R

)
bR−R+

ν
h2 b

R+1
−R

b−R
R + ν

h2 b
−R−1
R 1+b−R

−R+
ν
h2

(
1− (Kh)2

2 +b−R−1
−R

)
Coefficients b are defined in equation (3.5). A more simplified expres-
sion of the matrix coefficients can be obtained by means of the one-
dimensional Green’s function described in subsection 4.3 (equations
4.14, 4.15 and 4.16).

M1,2 = M2,1 =
exp{i2κR}

2

(
1 +

ν

h2
exp{iκ}

)
(5.3)

M1,1 = M2,2 =
1

2
+

ν

h2

(
1− (Kh)2

2
+

A

h2
(5.4)

×
(
1− exp{iκ}

(
1− (Kh)2

2

)))
.

The force vector f is also obtained, thanks to equations 3.6 and 3.8:

(5.5) Ff =

[
fSG

R
S + ν

h2 fSG
R+1
S

fSG
−R
S + ν

h2 fSG
−R−1
S

]
,

where fS = 1 is due to the type of source considered and G is the
discrete Green’s function. Once the boundary values uR and u−R are
obtained after the resolution of equation (5.1), the value of u in all the
other nodes can be calculated by means of equation (3.6). Considering
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only the non-null coefficients:

(5.6) um = fSG
m
S − uRb

m
R − u−Rb

m
−R.

The problem has the following exact solution:

(5.7) uj =
1

2ik
(exp{iKh |j − S|}+ exp{iKh (j + S)}) .

It has been considered as a reference.

Figure 7 (a) shows the inverse of the condition number of matrix
M for several values of the parameter ν/h2. The case ν/h2 = 0 corre-
sponds to the solution of the problem by means of the boundary integral
equation (BIE) equation (3.6). The other cases use equation (3.8); it is
a combined field integral equation (CFIE). The eigenfrequencies of the
scatterer (with Dirichlet boundary conditions and taking into account
the numerical dispersion) are indicated with pink crosses. They can be
calculated by means of equation (4.15):

(5.8) Kn =
2

h
sin

(
1

2
κn

)
=

2

h
sin

(
nπ

4R

)
n = 1, 2, . . . .

The condition number of singular matrices is infinite. Its inverse is
0 just in the eigenfrequencies of the scatterer when ν/h2 = 0, which
are the spurious eigenfrequencies of the problem. This never happens
when the combined field formulation is used (ν ̸= 0). In [1], the value of
ν/h2 = i is used in the absence of a more detailed analysis. This seems
correct in our case and avoids the singularity of matrix M for all the
wavenumbers. Other values have been tested here without obtaining
an improvement in the condition number with respect to ν/h2 = i.
Note that the value of ‘u−R, CFIE’ is always null.

The relative error of uR and u−R depending on the dimensionless
wavenumber for ν/h2 = i has been plotted in Figure 7 (b). The general
trend is the same for BIE and CFIE. u−R has only rounding errors
because it is exactly 0 in both cases. uR is quite dependent on the
dispersion of the incident wave. However, the important difference
between both methods is found at the spurious frequencies of the
problem corresponding to the eigenfrequencies of the scatterer (interior
problem with Dirichlet boundary conditions). For these wavenumbers,
BIE provides bad results for both uR and also u−R while CFIE is still
coherent with the exact solution.
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Figure 7. One-dimensional scattering problem: (a) Inverse of the condition
number depending on the parameter ν/h2 for each dimensionless wavenumber
k = Kh, ‘Eig.Scatterer’ are the eigenfrequencies of the scatterer; (b) Relative
error of the values uR and u−R at both sides of the scatterer for the boundary
integral formulation (BIE) and the combined field integral equation (CFIE),
ν/h2 = i.

The field solution for two particular wavenumbers has been plotted
in Figure 8. In situation (a), both methods provide a correct solution.
The wavenumber is calculated with n = 4.5 in equation (5.8). On the
contrary, in situation (b), only CFIE is close to the exact solution. In
that case, n = 4, which means that we are exactly in one of the spurious
resonances of the problem. The wave of the BIE solution in the left
domain is, of course, caused by the failure of the formulation at that
frequency. It is shown as a ‘mirror effect.’

5.2. Scattering by two-dimensional objects. Three different scat-
tering objects have been considered: an ‘L,’ a rectangle and a circle.
The former is more adequate for the proposed technique because its
geometry can be exactly approximated. The latter is a case with ana-
lytical solution [10]. Moreover, it can be used to see the performance
of the method for curved boundary geometries.

5.2.1. Straight edges. The situation of Figure 9 (a) is considered.
A point source generates a cylindrical wave that is scattered by a
rectangle. The source is placed at the position (XS = 0 m; YS = 4 m).
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Figure 8. Detail of the solutions for a one-dimensional scattering problem:
(a) wavenumber which does not coincide with an eigenfrequency of the
scatterer, all methods provide equivalent solutions; (b) wavenumber which
coincides with an eigenfrequency of the scatterer, pathological behavior of
the BIE solution seen as a ‘mirror effect.’
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Figure 9. Sketches and notation of the two-dimensional examples. Scat-
tering of cylindrical incident wave by: (a) a rectangle; (b) a circle. The brick
discretization of the circle is plotted for θ varying between 0 and π/2 rad.
The BEM discretization is plotted for θ varying between π/2 rad and π rad.

The rectangle has dimensions (LX = 2.0 m; LY = 1.6 m) and the
bottom left corner is placed at the position (−1.6 m; 0 m).
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In a first example, the incident field is considered by means of
equation (3.9) with

(5.9) uinc(r) =
−i

4
H

(1)
0 (Kr) .

Four different methods are compared:

(i) The boundary integral of equation (3.6) (BIE);
(ii) The boundary integral of equation (3.8) with a coefficient ν = 1

(BIE + CFIE);
(iii) A standard boundary element solution based on Green’s formula.

The variables are interpolated by means of piecewise constant
elements with the collocation point in the middle of the element
(BEM);

(iv) The same boundary element formulation but taking into account
the CFIE [8] (BEM + CFIE).

Due to the lack of analytical solutions for this example, the refer-
ence solution is taken as the BEM + CFIE option, but dividing the
element size by two. A frequency analysis is performed. The analyzed
dimensionless wavenumbers (k = Kh) are chosen as: eigenfrequencies
of the rectangular shape by taking into account the ‘exact’ wavenum-
ber, eigenfrequencies of the rectangular shape by taking into account
the dispersion in the numerical wavenumber (in the same way as equa-
tion (5.8) but in two directions), some frequencies around these values
and frequencies distributed in a uniform way along the spectrum. The
frequency range has been limited to values of dimensionless wavenum-
ber below 1. For this value, there are approximately six nodes per wave
length. The relative error is calculated by means of the energy norm
on the boundary of the scattering object:

(5.10) e =

∫
∂Ω′ |u− uref |2 dS∫

∂Ω′ |uref |2 dS
.

The results for a grid size h = 0.1 m are shown in Figure 10. The
first thing to be noted is that both the BIE and the BEM suffer
from large errors at (and around) the eigenfrequencies of the rectangle
(with Dirichlet boundary conditions) as shown in Figure 10 (a). The
dimensions of the rectangle as well as the grid size h have been
chosen in order to show it clearly. However, for larger rectangles
and higher frequencies (smaller values of h), the effect of the spurious
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frequencies is much more dramatic because of the larger modal density
of the rectangle. This numerical pathology is overcome when a CFIE
formulation is used. The success of the technique is valid in all cases,
as well as for the discrete boundary integral equation proposed here.
CFIE formulation improves the conditioning of the system matrix. The
2-norm condition number of the system matrix is plotted in Figure
10 (b). We can see how CFIE keeps the condition number in all cases
below 50. On the contrary, without CFIE, large values of the condition
number are found around the spurious frequencies.
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Figure 10. Effect of CFIE: (a) Relative error around a rectangular scat-
terer (incident field according to (5.9), h = 0.1 m); (b) 2-norm condition
number of the system matrix depending on the wavenumber. Among all
cases without CFIE only FD-based operator is plot for clarity.

The behavior of the numerical models around spurious frequencies is
shown in Figure 11 and, for the sake of clarity, some meaningful values
are listed in Table 5. The behavior of the BEM and the boundary
algebraic equations is quite different. In the BEM, the effect of the
spurious frequency on the solution can be noted in a reasonably large
bandwidth (∆k ≃ 0.05 Hz in Figure 11 (b)). However, this is not the
case in boundary algebraic equations where this bandwidth is extremely
narrow (∆k ≃ 10−9 Hz from the values in Table 5). Another difference
is that the BEM seems more sensitive to the ill-conditioning of matrices.
The numerical error increases for values of the system condition matrix
around 102. On the contrary, in boundary algebraic equations, this
condition number must be larger than 108 in order to see its affect on
the quality of the solution.
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Figure 11. Detailed effect of a spurious frequency in BEM and for the FD
and FEM based operator: (a) 2-norm condition number of system matrices
without CFIE; (b) relative error.

Table 5. Meaningful numerical values of Figure 11.

FD-based
k cond cond (CFIE) e (%)

0.369200000000000 1.45× 104 12.4 0.16
0.369209000000000 1.00× 105 12.4 0.16
0.369210515000000 5.02× 107 12.4 0.16
0.369210518005500 5.40× 109 12.4 1.26
0.369210518033600 6.19× 1010 12.4 141.7

FEM-based
k cond cond (CFIE) e (%)

0.371730000000000 2.59× 104 8.07 7.53× 10−2

0.371735700000000 7.03× 105 8.07 7.53× 10−2

0.371735900000000 8.60× 106 8.07 7.53× 10−2

0.371735917801198 1.03× 1012 8.07 148

BEM
k cond cond (CFIE) e (%)

0.360000000000000 1.43× 101 4.06 3.40× 10−2

0.369000000000000 1.13× 102 4.22 1.14× 10−1

0.370220000000000 8.48× 102 4.23 4.63
0.370331500000000 1.08× 103 4.23 7.56

The precision of the method for several operators is shown in Fig-
ure 12. In addition to the variations of the original operator described
in subsection 4.1, the direct truncation of the finite difference operator
is considered (FD trunc). This is the simplest case where all grid nodes
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on the scatterer are removed (the weight of the central node is adapted
taking into account the number of adjacent nodes). The relative error
of a BEM solution using piecewise constant elements of size h is also
included in the comparison.

Two scatterers are considered: rectangular (the same as before) and
L-shaped. The bottom side of the L-shaped scatterer is horizontal and
coincides with the bottom side of the rectangle. Both scatterers are
2.0 m width. The L is 3.2 m height and 0.4 m thick, with the source
of the incident wave placed at (XS = 0m;YS = 4m).

It can be seen how, as expected, due to the simplification in the
geometry description, the method proposed here is a bit less accurate
than the BEM. This difference in accuracy is smaller for the L-shaped
scatterer. It could mean that, when the solution has stronger singulari-
ties, the difference (in terms of precision) between the proposed method
and the BEM is reduced. However, the convergence order is the same in
both methods. The slope of that curves is reduced when the scatterer
has a non-soft shape (i.e., sharp contours or corners) [22]. This leads
to solutions including strong singularities. The slope is around 2 (1 in
L2 norm), and it could be around 4 (2 in L2 norm) in a case without
singularities. Errors are larger in the case of the L-shaped scatterer
(for all the operators and in both methods) because the solution of the
problem has stronger singularities due to the re-entrant corner.

In both scatterers, the direct truncation of the operator (FD trunc)
leads to larger errors. A proper truncation of the operator L that
takes into account the boundary conditions improves the precision of
the solution. The main difference between the options ‘FD’ and ‘FD
trunc’ is that the first one represents a second order approximation of
the normal derivative around the scatterer while the second one does
not.

In the rectangular scatterer, the errors are smaller if the operator
L is based on a finite element (FEM, FEM lumped) instead of finite
differences (FD). However, it is not the case for the L-shaped scatterer.
The difference between the options ‘FEM’ and ‘FEM lumped’ is very
small. Consequently, it is better to use an operator based on finite
elements with a lumped matrix because the expressions to evaluate the
discrete Green’s functions in subsection 4.3 are much simpler (this also
reduces computation time).
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Figure 12. Relative error around a scatterer: (a) rectangular; (b) L-
shaped. Comparison between several operators based on: finite differences
(FD), finite element (FEM), finite element with lumped mas matrix (FEM
lumped) and finite differences with direct truncations (FD trunc). A BEM
solution using piecewise constant elements is also included. All the cases use
CFIE.

The method has also been compared with a finite difference analysis
in the time-domain (FDTD). The wave equation is solved in the time-
domain. A wave with compact support is generated in the source
position and propagated in an unbounded domain until introduction
of the scatterer. The outputs from the FDTD analysis are the time-
histories of the source force and the variable around the scatterer. They
can be transformed into the frequency domain by means of a discrete
Fourier transform (DFT). The ratio between the Fourier transform of
the received signal divided by the Fourier transform of the source force
has to be equivalent to a frequency domain analysis using equation (1.1)
where the force term is a Dirac delta placed in the source position. In
the FDTD analysis, the incident and reflected waves have numerical
dispersion. Thus, in order to make a fair comparison, the incident
field is generated by a Dirac delta force vector in the frequency-domain
analysis placed at the position (s1, s2)

(5.11) fj = δj1,s1δj2,s2 ,

instead of the dispersion-free incident field of equation (5.9) in equation
(3.9). The use of a discrete Green’s function ensures that the incident
field also has numerical dispersion.
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A comparison of the time and frequency analyses is shown in Fig-
ure 13. The reference solution is again the BEM + CFIE formu-
lation with a finer mesh. The wavenumbers analyzed in the ‘BIE’
and ‘BIE+CFIE’ options are chosen as before. The wavenumbers ob-
tained by the discrete Fourier transform coincide with the symbol (dark
square). Two aspects must be taken into account in order to fix the
validity range of the DFT output. On one hand, only the solutions
with wavenumbers with a significant contribution in the excitation have
sense. This frequency range can be increased by making the impulse
sharper (with shorter time duration) and closer to a Dirac delta. On the
other hand, the grid size indirectly determines the maximum wavenum-
ber with physical meaning. It does not seem adequate to consider fre-
quencies with less than six elements per wave length. For this reason,
only dimensionless wavenumber values in the range (0; 1) have been
considered.
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Figure 13. Relative error around a rectangular scatterer (the incident field
has numerical dispersion, h = 0.1 m). Comparison between methods: the
proposed BIE provides similar results than a finite difference time-domain
analysis (post-processed in frequencies).

The relative error has similar values and follows the same trend
in both the ‘BIE+CFIE’ and the frequency post-processed ‘FDTD.’ In
both cases, it drastically increases after k = 0.5. It has to be noted that
the BEM does not introduce dispersion in the incident field because its
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analytical expression is included directly in the force term. Thus, we
are comparing two solutions where the incident field has numerical
dispersion with a reference solution with dispersion free incident field.
When analyzed in detail, it can be seen how the numerical error is
mainly caused by a phase difference in the waves but their module is
similar.

To obtain similar results working in the time-domain and in the
frequency-domain is important in order to show that all of the aspects
more related to the frequency domain such as discrete Green’s func-
tions, the BIE of equation (3.6) or the definition of parameters b in
equation (3.5) are properly formulated and implemented.

5.2.2. Curved boundary: circle. Once the properties of the method
have been shown in the previous example, a new ingredient is added
here: approximation of curved boundaries by means of a brick-shaped
geometry. To do that, the scattering of a cylindrical wave caused by
a circle is considered. The approximation to curved surfaces by means
of stair-stepped discretizations represents an additional source of nu-
merical errors. Some attempts have been made in order to improve
this aspect of finite differences in time-domain [43] and in frequency
domain [50, 7].

The sketch of the problem can be seen in Figure 8 (b). The radius
of the circle is R = 3 m and the position of the source (XS =
0m;YS = 8m). The incident field is modeled using equation (5.9) in
equation (3.9). All the considerations done for the previous example
remain valid with the difference that, now, the reference solution is the
series solution [10]. The BEM options use nodes exactly over the radius
of the circle (thus, the collocation point in the middle of the element
is slightly displaced from the circumference). The reference solution is
evaluated on the circle at the same angle θ as the collocation point.
For the BIE options, the nodes of the grid are not exactly over the
circle. The reference solution is evaluated over the circle and at the
same angle θ aligned with the grid node.

The results are shown in Figure 14. Again, the use of CFIE dampens
the spurious frequencies. It can be seen how this circular example is
very favorable for the BEM due to the radial nature of the fundamental
solution of the problem. However, the convergence rate is quite similar
in both cases. It is around 4 (2 in L2 norm) and much larger than in
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Figure 12. This is expected due to the lack of corners in the scatterer
geometry which avoids singularities in the solution. Thus, the errors
are smaller than for the BIE where the Green function is constructed
following the orthogonal directions of the grid. The errors drastically
increase after k = 0.5 for BIE and k = 0.9 for the BEM.
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Figure 14. Relative error around a circle-shaped scatterer, comparison be-
tween methods: (a) incident field according to (5.9), h = 0.1 m, the standard
version of the BEM and the proposed BIE provide spurious solutions in the
eigenfrequencies of the scatterer. This problem is overcome with the CFIE
versions in both methods; (b) the incident field is a plane wave, accuracy
comparison when CFIE is used.

The relative error of Figure 14 is calculated on the boundary of the
scattering object (∂Ω′). It has two main causes in the proposed method.
On one hand, the stair-stepped approximation of the geometry is less
important in the evaluation of the solution outside the boundary (far
field). On the other hand, the fact remains that the nodes of the
grid cannot be exactly placed on the circle. This is improved in the
evaluation of the field in other positions (not on the scatterer boundary)
by simply interpolating the solution.

6. Conclusions and future developments. A numerical tech-
nique for the scattering problems governed by the Helmholtz equation
has been presented. It is based on the discrete form of the problem and
uses discrete Green’s functions. The main properties of the method
are:
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• Keeps the properties of the BEM and other techniques based
on boundary integral equations in the sense that automatically
satisfies the boundary conditions at infinity. This avoids the
use of specific techniques such as the perfectly matching layers,
the Dirichlet-to-Neumann maps or infinite elements and repre-
sents a good option to model unbounded domains in a finite
difference based model.

• The discrete equivalent version of the combined field integral
equation formulation (CFIE) has been used in order to damp
the spurious resonances of the scatterer with success.

• No boundary integral has to be done. This is a very important
advantage with respect to other boundary techniques such as
the BEM. One of the main drawbacks of the BEM is the
need to deal with singular integrals. This problem is even
more important when CFIE formulations are used because
they require normal derivatives of the original equations which
implies an increase on the degree of singularity of the integrals.

• According to the numerical results presented in Figures 12 and
14 (b), the convergence of the method is similar to those of
the BEM. It is of order 2 (L2 norm) in problems without
singularities in the solution and scatterers without corners but
the order of convergence is reduced otherwise.

• The idea presented here can be adapted to deal with other
equations and problems with minor changes. Two ingredients
are required: modify the operator L′ and use proper discrete
Green’s functions for the new problem. Both of these seem very
feasible because finite differences have been used in many other
physical problems and some other discrete Green’s functions
have also been studied.

Good properties of the method have been shown by means of several
examples.

The method presented here is a very promising technique for three-
dimensional applications. The difficulty to deal with singular and
hypersingular integrals is much more important for the BEM in 3D
than in 2D. In 2D, this problem can be overcome with minor difficulties
as shown in the circle example. However, this will not be the case in 3D.
Moreover, in 3D, it is even more necessary to use a CFIE formulation
due to the highest modal density of the scatterer. This increases the
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number of spurious frequencies and, in practice, it makes useless a
standard BIE formulation. In these cases, the property of avoiding
surface integrals will be even more relevant.
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Laboratori de Càlcul Numèric, E.T.S. d’Enginyers de Camins, Canals i

Ports de Barcelona, Universitat Politècnica de Catalunya. Correspon-
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