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ABSTRACT. In this article, by a concept of Stepanov
type µ-pseudo almost automorphic functions developed re-
cently, we investigate some new existence results on bounded
solutions to a semilinear integro-differential equation in Ba-
nach spaces. We first establish a new composition theorem
of such functions, and then we prove the main results via
ergodicity and composition theorems of Stepanov type µ-
pseudo almost automorphic functions combined with the-
ories of uniformly exponentially stable and strongly con-
tinuous family of operators. These bounded solutions can
cover (weighted) pseudo almost automorphic solutions with a
Stepanov type forcing term as special cases.

1. Introduction. The concept of almost automorphy was first in-
troduced in the literature in relation to some aspects of differential
geometry by Bochner in the 1960’s [4], which is a natural general-
ization of almost periodicity; for more details on this topic, we refer
to [11, 25, 26]. Since then, this concept has undergone several in-
teresting, natural and powerful generalizations. For example, Liang,
Xiao and Zhang in [21, 31] presented the concept of pseudo almost
automorphy. In [27], N’Guérékata and Pankov introduced the concept
of Stepanov-like almost automorphy and applied this concept to study
the existence and uniqueness of almost automorphic solutions to the au-
tonomous semilinear equation. Abbas et al. [2] introduced the notation
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of Stepanov type weighted pseudo almost automorphic sequence and
investigated the existence and uniqueness of Stepanov type weighted
pseudo almost automorphic sequence solutions to a difference equa-
tion. Particularly, Blot, Cieutat and Ezzinbi in [3] applied the measure
theory to define a new ergodic function, and they presented the con-
cept of µ-pseudo almost automorphic functions. Chang, N’Guérékata
and Zhang presented the notation of Stepanov type µ-pseudo almost
automorphic functions and investigated some ergodic properties and
composition theorems of Stepanov type µ-pseudo almost automorphic
functions in [7].

The above-mentioned concepts have been applied to various differ-
ential and integro-differential equations by many scholars; see, for in-
stance, [6, 8, 9, 10, 11, 14, 15, 17, 18, 20, 22, 24, 32, 33, 34] and
the references therein. In particular, Lizama and Ponce [22] systemat-
ically studied the existence and uniqueness of bounded solutions, such
as almost periodic (automorphic), pseudo-almost periodic (automor-
phic), asymptotically almost periodic (automorphic), to the following
semilinear integro-differential equation:

(1.1) u′(t) = Au(t) + α

∫ t

−∞
e−β(t−s)Au(s) ds+ f(t, u(t)), t ∈ R,

where α, β ∈ R with α > 0, α ̸= 0 and α+β > 0, A : D(A) ⊆ X → X is
the generator of an immediately norm continuous C0-semigroup defined
on the Banach space X, and f : R × X → X belongs to a closed
subspace of the space of continuous and bounded functions satisfying
some Lipschitz type conditions.

Since the concept of Stepanov type µ-pseudo almost automorphic
functions has richer information than those of Stepanov type (weighted)
pseudo almost automorphic functions, a natural question becomes:
what is it about the problem (1.1) when the nonlinear term f is
Stepanov type µ-pseudo almost automorphic? To close this gap,
the purpose of this article is to deal with the existence of µ-pseudo
almost automorphic solutions to problem (1.1) when the forcing term
f : R × X → X is a Stepanov type µ-pseudo almost automorphic
function presented in [7]. We first give a new composition theorem of
such functions (see Theorem 2.28), and then we prove the main results
via ergodicity and composition theorems of Stepanov type µ-pseudo
almost automorphic functions combined with theories of uniformly
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exponentially stable and strongly continuous family of operators. These
bounded solutions can cover (weighted) pseudo almost automorphic
solutions with a Stepanov type forcing term as special cases. For
more results on different integro-differential equations, please refer to
[1, 5, 19, 23, 28, 29, 30] and the references cited therein.

The rest of this paper is organized as follows. In Section 2, we
recall some basic definitions, lemmas, and preliminary results which
will be used throughout this paper, and a new composition theorem is
also proved. In Section 3, we prove the existence of µ-pseudo almost
automorphic mild solutions to the equation (1.1).

2. Preliminaries. In this section, we introduce some basic defini-
tions, notation and lemmas which will be used in what follows. In
particular, a new composition theorem is established.

Let (X, ∥ · ∥) and (Y, ∥ · ∥Y) be two Banach spaces, and let BC(R,X)
denote the Banach space of bounded continuous functions from R to
X, equipped with the supremum norm ∥f∥∞ = supt∈R ∥f(t)∥. The
notation B(X,Y) stands for the space of bounded linear operators from
X into Y endowed uniform operator topology, and we abbreviate to
B(X), whenever X = Y. Throughout this work, we denote by B the
Lebesgue σ-field of R and by M the set of all positive measures µ on
B satisfying µ(R) = +∞ and µ([a, b]) < +∞, for all a, b ∈ R(a < b).

Definition 2.1. [26]. A continuous function f : R → X is said to

be almost automorphic if for every sequence of real numbers {s′n}n∈N
there exists a subsequence {sn}n∈N such that

g(t) := lim
n→∞

f(t+ sn)

is well defined for each t ∈ R, and

lim
n→∞

g(t− sn) = f(t)

for each t ∈ R. The collection of all such functions will be denoted by
AA(R,X).

Definition 2.2. [20, 26]. A continuous function f : R × X → X is
said to be almost automorphic if f(t, x) is almost automorphic for each
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t ∈ R uniformly for all x ∈ B, where B is any bounded subset of X.
The collection of all such functions will be denoted by AA(R× X,X).

Definition 2.3. [24]. A bounded continuous function with vanishing
mean value can be defined as

AA0(R,X) =
{
ϕ ∈ BC(R,X) : lim

T→∞

1

2T

∫ T

−T

∥ϕ(σ)∥ dσ = 0

}
.

Similarly, we define by AA0(R × Y × Y,X) the set of all continuous
functions f : R × Y × Y → X which belong to BC(R × Y × Y,X) and
satisfy

lim
T→∞

1

2T

∫ T

−T

∥ϕ(σ, x, y)∥ dσ = 0,

uniformly for (x, y) in any bounded subset of Y× Y.

Definition 2.4. [3]. Let µ ∈ M. A bounded continuous function
f : R → X is said to be µ-ergodic if

lim
r→+∞

1

µ([−r, r])

∫
[−r,r]

∥f(t)∥ dµ(t) = 0.

We denote the space of all such functions by ϵ(R,X, µ) (or ϵ(X, µ) for
abbreviation).

Definition 2.5. [3]. Let µ ∈ M. A continuous function f : R×Y → X
is said to be µ-ergodic if f(·, y) is bounded for each y ∈ Y and

lim
r→+∞

1

µ([−r, r])

∫
[−r,r]

∥f(t, y)∥ dµ(t) = 0,

uniformly in y ∈ Y. We denote the set of all such functions by
ε(R× Y,X, µ) (or ϵ(Y,X, µ) for abbreviation).

Definition 2.6. [3]. Let µ ∈ M. A continuous function f : R → X is
said to be µ-pseudo almost automorphic if f is written in the form:

f = g + ϕ,

where g ∈ AA(R,X) and ϕ ∈ ϵ(R,X, µ). Let PAA(R,X, µ) denote the
space of all such functions.
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Definition 2.7. [3]. Let µ ∈ M. A continuous function f : R×Y → X
is said to be µ-pseudo almost automorphic if f is written in the form:

f = g + ϕ,

where g ∈ AA(R× Y,X) and ϕ ∈ ε(R× Y,X, µ).

Lemma 2.8. [3, Proposition 2.13]. Let µ ∈ M. Then ϵ(R,X, µ), ∥·∥∞)
is a Banach space.

For µ ∈ M and τ ∈ R, we denote µτ the positive measure on (R,B)
defined by

µτ (A) = µ(a+ τ : a ∈ A) for A ∈ B.

From µ ∈ M, we state the following hypothesis ([3]).

(H0) For all τ ∈ R, there exist γ > 0 and a bounded interval I such
that

µτ (A) ≤ γµ(A),

when A ∈ B satisfies A
∩
I = ∅.

Lemma 2.9. [3]. Let µ ∈ M satisfy (H0). Then ε(R,X, µ) is transla-
tion invariant ; therefore , PAA(R,X, µ) is also translation invariant.

Lemma 2.10. [3]. Let µ ∈ M. Assume that PAA(R,X, µ) is
translation invariant. Then the decomposition of a µ-pseudo almost
automorphic function in the form f = g + ϕ where g ∈ AA(R,X) and
ϕ ∈ ε(R,X, µ) is unique.

Lemma 2.11. [3]. Let µ ∈ M. Assume that PAA(R,X, µ) is
translation invariant. Then PAA(R,X, µ, ∥ · ∥∞) is a Banach space.

Definition 2.12. [12, 27]. The Bochner transform f b(t, s), t ∈ R,
s ∈ [0, 1], of a function f : R → X is defined by

f b(t, s) := f(t+ s).

Definition 2.13. [12, 27]. Let p ∈ [1,∞). The space BSp(X) of
all Stepanov bounded functions, with the exponent p, consists of all
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measurable functions f : R → X such that f b ∈ L∞(R, Lp(0, 1;X)).
This is a Banach space with the norm

∥f∥Sp = ∥f b∥L∞(R,Lp) = sup
t∈R

(∫ t+1

t

∥f(τ)∥pdτ
)1/p

.

Definition 2.14. [27]. The space ASp(X) of Stepanov type almost
automorphic (or Sp-almost automorphic) functions consists of all f ∈
BSp(X) such that f b ∈ AA(Lp(0, 1;X)). In other words, a function
f ∈ Lp

loc(R,X) is said to be Sp-almost automorphic if its Bochner

transform f b : R → Lp(0, 1;X) is almost automorphic in the sense that,
for every sequence of real numbers {s′n}n∈N, there exist a subsequence
{sn}n∈N and a function g ∈ Lp

loc(R,X) such that

lim
n→∞

(∫ t+1

t

∥f(s+ sn)− g(s)∥pds
)1/p

= 0

and

lim
n→∞

(∫ t+1

t

∥g(s− sn)− f(s)∥pds
)1/p

= 0

pointwise on R.

Definition 2.15. [27]. A function f : R×Y → X, (t, u) → f(t, u) with
f(·, u) ∈ Lp

loc(R,X) for each u ∈ Y, is said to be Sp-almost automorphic
in t ∈ R uniformly in u ∈ Y if t→ f(t, u) is Sp-almost automorphic for
each u ∈ Y. That means, for every sequence of real numbers {s′n}n∈N,
there exist a subsequence {sn}n∈N and a function g(·, u) ∈ Lp

loc(R,X)
such that

lim
n→∞

(∫ t+1

t

∥f(s+ sn, u)− g(s, u)∥pds
)1/p

= 0,

and

lim
n→∞

(∫ t+1

t

∥g(s− sn, u)− f(s, u)∥pds
)1/p

= 0,

pointwise on R and for each u ∈ Y. We denote by ASp(R × Y,X) the
set of all such functions.
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Definition 2.16. [10]. A function f ∈ BSp(X) is said to be Stepanov
type pseudo almost automorphic if it can be decomposed as f = g+φ
where g ∈ ASp(X) and φb ∈ AA0(R, Lp(0, 1;X)). Denote by PAAp(X)
the set of all functions.

Definition 2.17. [7]. Let µ ∈ M. A function f ∈ BSp(X) is said to be
Stepanov type µ-pseudo almost automorphic (or Sp-µ-pseudo almost
automorphic) if it can be expressed as f = g + ϕ, where g ∈ ASp(X)
and ϕb ∈ ϵ(Lp(0, 1;X), µ). In other words, a function f ∈ Lp

loc(R,X)
is said to be Stepanov type µ-pseudo almost automorphic relatively
to the measure µ, if its Bochner transform f b : R → Lp(0, 1;X)
is µ-pseudo almost automorphic in the sense that there exist two
functions g, ϕ : R → X such that f = g + ϕ, where g ∈ ASp(X)
and ϕb ∈ ϵ(Lp(0, 1;X), µ), that is, ϕb ∈ BC(Lp(0, 1;X)) and

lim
r→∞

1

µ([−r, r])

∫
[−r,r]

(∫ t+1

t

∥ϕ(s)∥pds
)1/p

dµ(t) = 0.

The set of all such functions will be denoted by PAAp(R,X, µ).

Definition 2.18. [7]. Let µ ∈ M. A function f : R × Y → X,
(t, u) → f(t, u) with f(·, u) ∈ Lp

loc(R,X) for each u ∈ Y, is said
to be Stepanov type µ-pseudo almost automorphic (or Sp-µ-pseudo
almost automorphic) if it can be expressed as f = g + ϕ, where
g ∈ ASp(R × Y,X) and ϕb ∈ ϵ(Y, Lp(0, 1;X), µ). We denote by
PAAp(R× Y,X, µ) the set of all such functions.

Lemma 2.19. [7]. Let µ ∈ M and I be a bounded interval (eventually
I = ∅). Assume that f(·) ∈ BSp(R,X). Then the following assertions
are equivalent :

(i) f b(·) ∈ ϵ(Lp(0, 1;X), µ).
(ii) limr→+∞

1

µ([−r, r] \ I)
∫
[−r,r]\I(

∫ t+1

t
∥f(s)∥pds)1/pdµ(t) = 0.

(iii) For any ε > 0,

lim
r→+∞

µ

({
t ∈ [−r, r] \ I :

(∫ t+1

t
∥f(s)∥pds

)1/p

> ε

})
µ([−r, r] \ I

= 0.
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Lemma 2.20. [7]. Let µ ∈ M satisfy (H0). Then ϵ(Lp(0, 1;X), µ)
is translation invariant ; therefore, PAAp(R,X, µ) is also translation
invariant.

Lemma 2.21. [7]. Let µ ∈ M satisfy (H0). If f ∈ PAA(R,X, µ),
then f ∈ PAAp(R,X, µ) for each 1 ≤ p < ∞. In other words,
PAA(R,X, µ) ⊆ PAAp(R,X, µ).

Thus, we have

AA(R,X) ⊂ PAA(R,X, µ) ⊂ PAAp(R,X, µ).

Lemma 2.22. [7]. Let µ ∈ M and f ∈ PAAp(R,X, µ) be such
that f = g + χ, where g ∈ ASp(X) and χb ∈ ϵ(Lp(0, 1;X), µ). If
PAAp(R,X, µ) is translation invariant, then

{g(t) : t ∈ R} ⊆ {f(t) : t ∈ R}, (the closure of range f).

Lemma 2.23. [7]. Let µ ∈ M. Assume that PAAp(R,X, µ) is
translation invariant. Then (PAAp(R,X, µ), ∥·∥Sp) is a Banach space.

Lemma 2.24. [7]. Let µ ∈ M. Assume that PAAp(R,X, µ) is trans-
lation invariant. Then the decomposition of an Sp-µ-pseudo almost
automorphic function in the form f = g + χ, where g ∈ ASp(X) and
χb ∈ ϵ(Lp(0, 1;X), µ) is unique.

Lemma 2.25. [7]. Let µ ∈ M. Suppose that f = g + h ∈ PAAp(R×
X,X, µ) with g ∈ ASp(R× X,X), hb ∈ ϵ(X, Lp(0, 1;X), µ) and satisfies
the following condition:

(H1) There exists a constant L > 0 such that, for all x, y ∈ X and
t ∈ R,

∥f(t, x)− f(t, y)∥ ≤ L∥x− y∥.

If v = v1+v2 ∈ PAAp(R,X, µ) with v1 ∈ ASp(X), vb2 ∈ ϵ(Lp(0, 1;X), µ)
and K1 = {v1(t); t ∈ R} is compact. Then f(·, v(·)) ∈ PAAp(R,X, µ).

Lemma 2.26. [7]. Let µ ∈ M and f = g+h ∈ PAAp(R×X,X, µ) with
g ∈ ASp(R×X,X), hb ∈ ϵ(X, Lp(0, 1;X), µ). Assume that the following
conditions are satisfied :
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(i) there exists a nonnegative function L(·) ∈ BSp(R) with p > 1
such that, for all x, y ∈ X and t ∈ R,(∫ t+1

t

∥f(s, x)− f(s, y)∥pds
)1/p

< L(t)∥x− y∥,

lim
r→∞

1

µ([−r, r])

∫
[−r,r]

L(t) dµ(t) <∞.

(ii) g(t, x) is uniformly continuous in any bounded subset K ′ ⊆ X
uniformly for t ∈ R. If u = u1 + u2 ∈ PAAp(R,X, µ), with

u1 ∈ ASp(X), ub2 ∈ ϵ(Lp(0, 1;X), µ) and K2 = {u1(t) : t ∈ R} is
compact, then f(·, u(·)) belongs to PAAp(R,X, µ).

Lemma 2.27. [7]. Let µ ∈ M and f = g + ϕ ∈ PAAp(R × X, X, µ)
with g ∈ ASp(R×X,X), ϕb ∈ ϵ(X, Lp(0, 1;X), µ). Assume that follow-
ing conditions hold :
(i) f(t, x) is uniformly continuous in any bounded subset K ′ ⊆ X uni-
formly for t ∈ R,
(ii) g(t, x) is uniformly continuous in any bounded subset K ′ ⊆ X uni-
formly for t ∈ R,
(iii) For any bounded subset K ′ ⊆ X, {f(·, x) : x ∈ K ′} is bounded
in PAAp(R × X,X, µ). If x = v1 + v2 ∈ PAAp(R,X, µ), with

v1 ∈ ASp(X), vb2 ∈ ϵ(Lp(0, 1;X), µ) and Q = {x(t) : t ∈ R}, Q1 =

{v1(t) : t ∈ R} are compact, then f(·, x(·)) belongs to PAAp(R,X, µ).

Based upon [13, Theorem 2.4] and [7, Theorem 3.1], we have
the following composition theorem for Stepanov type µ-pseudo almost
automorphic functions.

Theorem 2.28. Let µ ∈ M, p > 1 and f = g+χ ∈ PAAp(R×X, X, µ)
with g ∈ ASp(R × X,X), χb ∈ ϵ(X, Lp(0, 1;X), µ). Assume that the
following conditions are satisfied :

(i) there exist nonnegative functions Lf (·), Lg(·) ∈ ASr(R,R) with
r ≥ max{p, p

p−1} such that, for all u, v ∈ X and t ∈ R,

∥f(s, u)− f(s, v)∥ ≤ Lf (t) ∥u− v∥ ,

∥g(s, u)− g(s, v)∥ ≤ Lg(t) ∥u− v∥ ;
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(ii) u = u1 + u2 ∈ PAAp(R,X, µ), with u1 ∈ ASp(X), ub2 ∈
ϵ(Lp(0, 1;X), µ) and K3 = {u1(t) : t ∈ R} is compact in X.

Then there exists q ∈ [1, p) such that Ϝ : R → X defined by Ϝ(·) =
f(·, u(·)) belongs to PAAq(R,X, µ).

Proof. Let us decompose f as

f(t, u(t)) = g(t, u1(t)) + f(t, u(t))− g(t, u1(t))

= g(t, u1(t)) + f(t, u(t))− f(t, u1(t)) + χ(t, u1(t)),

and set

G(t) = g(t, u1(t)),

F (t) = f(t, u(t))− f(t, u1(t)),

H(t) = χ(t, u1(t)).

Then f(t, u(t)) = G(t) + F (t) + H(t). Since r ≥ p
p−1 , there exists

q ∈ [1, p) such that r = pq
p−q . Let p

′ = p
p−q , q

′ = p
q . Then p

′, q′ > 1 and
1
p′ +

1
q′ = 1. In view of assumptions (i)–(ii) and [13, Theorem 2.4],

we have g(t, u1(t)) ∈ ASq(X). The remainder of the proof is to show
F b(t), Hb(t) ∈ ϵ(Lq(0, 1;X), µ), which can be conducted similarly as
[7, Theorem 3.1] noting that 1

p′ +
1
q′ = 1. We omit the details here.

The proof is completed. �

Next, we recall some recent results from [22] on uniform exponential
stability of solutions to the following abstract homogeneous Volterra
equation:

(2.1)

{
u

′
(t) = Au(t) + α

∫ t

0
e−β(t−s)Au(s) ds, t ≥ 0

u(0) = x.

A solution of equation (2.1) is said to be uniformly exponentially
bounded if, for some ω ∈ R, there exists a constant M > 0 such that,
for each x ∈ D(A), the corresponding solution u(t) satisfies

(2.2) ∥u(t)∥ 6Me−ωt, t > 0.

In particular, we say that the solutions of equation (2.1) are uni-
formly exponentially stable if condition (2.2) holds for some ω > 0 and
M > 0.
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Definition 2.29. [22, Definition 2.3]. Let X be a Banach space. A
strongly continuous function T : R+ → B(X) is said to be immediately
norm continuous if T : (0,∞) → B(X) is continuous.

Lemma 2.30. [22, Theorem 2.4]. Let β > 0, α ̸= 0 and α+ β > 0 be
given. Assume that :

(A1) A generates an immediately norm continuous C0-semigroup on a
Banach space X;
(A2) sup{Kλ, λ ∈ C : λ(λ+ β)(λ+ α+ β)−1 ∈ σ(A)} < 0.
Then, the solutions of the problem (2.1) are uniformly exponentially
stable.

Lemma 2.31. [22, Proposition 3.1]. Let β > 0, α ̸= 0 and α+ β > 0.
Assume that conditions (A1) and (A2) in Lemma 2.30 hold. Then there
exists a uniformly exponentially stable and strongly continuous family
of operators {S(t)}t>0 ⊂ B(X) such that S(t) commutes with A, that
is, S(t)D(A) ⊂ D(A), AS(t)x = S(t)Ax for all x ∈ D(A), t > 0, and

S(t)x = x+

∫ t

0

b(t− s)AS(s)x ds, for all x ∈ X, t > 0,

where b(t) := 1 + α
β [1− e−βt], t ≥ 0.

Now, we list a useful compactness criterion.

Let ϱ(·) : R → R be a continuous function such that ϱ(t) ≥ 1 for all
t ∈ R and ϱ(t) → ∞ as |t| → ∞. We consider the space

Cϱ(X) =
{
u ∈ C(R,X) : lim

|t|→∞

u(t)

ϱ(t)
= 0

}
.

Endowed with the norm ∥u∥ϱ = supt∈R
∥u(t)∥
ϱ(t) , it is a Banach space (see

[18]).

Lemma 2.32. [18]. A subset Ξ ⊆ Cϱ(X) is a relatively compact set if
it verifies the following conditions: (C1) The set Ξ(t) = {u(t) : u ∈ Ξ}
is relatively compact in X for each t ∈ R.
(C2) The set Ξ is equicontinuous.
(C3) For each ε > 0, there exists L > 0 such that ∥u(t)∥ ≤ εϱ(t) for all
u ∈ Ξ and all |t| > L.
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Lemma 2.33. [16] (Leray-Schauder alternative theorem). Let D be
a closed convex subset of a Banach space X such that 0 ∈ D. Let
Γ : D → D be a completely continuous map. Then the set {x ∈ D : x =
λΓ(x), 0 < λ < 1} is unbounded or the map Γ has a fixed point in D.

3. Main results. In this section, we consider the existence of µ-
pseudo almost automorphic mild solutions for the problem (1.1) with
Stepanov type µ-pseudo almost automorphic forcing term f under some
suitable conditions.

Definition 3.1. [22]. A function u : R → X is said to be a mild
solution to equation (1.1) if

u(t) =

∫ t

∞
S(t− s)f(s, u(s)) ds

for all t ∈ R, where {S(t)}t>0 is given in Lemma 2.31.

First, we list the following basic assumptions:
(T1) For strongly continuous functions S : [0,∞) → B(X), there exist
ω > 0, M > 0 such that ∥S(t)∥ ≤Me−ωt for all t ∈ R+.
(T2) Assume that f ∈ PAAp(R × X,X, µ) and there exists a positive
number Lf such that

∥f(t, x)− f(t, y)∥ ≤ Lf∥x− y∥

for all t ∈ R and each x, y ∈ X.
(T3) Suppose that f ∈ PAAp(R× X,X, µ) and there exists a nonneg-
ative function Lf (·) ∈ BSp(R), with p > 1 such that

∥f(t, x)− f(t, y)∥ ≤ Lf (t)∥x− y∥,

lim
r→∞

1

µ([−r, r])

∫
[−r,r]

Lf (t) dµ(t) <∞,

for all t ∈ R and each x, y ∈ X.
(T4) The function f = g + h ∈ PAAp(R× X,X, µ) with g ∈ ASp(R×
X,X), hb ∈ ϵ(X, Lp(0, 1;X), µ), and there exist nonnegative functions
Lf (·), Lg(·) ∈ ASr(R,R) with r ≥ max {p, p

p−1} such that for all
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u, v ∈ X and t ∈ R,

∥f(s, u)− f(s, v)∥ ≤ Lf (t) ∥u− v∥ ,
∥g(s, u)− g(s, v)∥ ≤ Lg(t) ∥u− v∥ .

(T5) The function f = g + h ∈ PAAp(R × X,X, µ) where g ∈
ASp(R× X,X) is uniformly continuous in any bounded subset M ⊂ X
uniformly in t ∈ R and hb ∈ ϵ(X, Lp(0, 1;X), µ).
(T6) f ∈ PAAp(R×X,X, µ) and f(t, x) is uniformly continuous in any
bounded subset M ⊂ X uniformly for t ∈ R and for every bounded
subset M ⊂ X, {f(·, x) : x ∈ M} is bounded in PAAp(R× X,X, µ).

Lemma 3.2. Let µ ∈ M and β > 0, α ̸= 0 with α + β > 0
and conditions (A1)–(A2) in Lemma 2.30 hold. Assume that (T1) is
satisfied. If f : R → X is Stepanov type µ-pseudo almost automorphic,
and F (t) is given by

F (t) =

∫ t

−∞
S(t− s)f(s)ds, t ∈ R,

then F ∈ PAA(R,X, µ).

Proof. The proof of uniqueness is similar to [32]. Now let us
investigate the existence. Since f ∈ PAAp(R,X, µ), there exist g1 ∈
ASp(X) and gb2 ∈ ϵ(Lp(0, 1;X), µ) such that f = g1 + g2. So

F (t) =

∫ t

−∞
S(t− s)g1(s) ds

+

∫ t

−∞
S(t− s)g2(s)ds

= ϕ(t) + ψ(t),

where ϕ(t) =
∫ t

−∞ S(t − s)g1(s) ds, and ψ(t) =
∫ t

−∞ S(t − s)g2(s) ds.

We just need to verify ϕ(t) ∈ AA(X) and ψ(t) ∈ ϵ(R,X, µ). First we
prove that ϕ(t) ∈ AA(X). It follows from [11, Lemma 11.2] that ϕ(t)
is almost automorphic. Next, we prove that ψ(t) ∈ ϵ(R,X, µ). For this,
we consider

ψn(t) =

∫ t−n+1

t−n

S(t− s)g2(s) ds,
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for each t ∈ R and n = 1, 2, 3, . . . . From assumption (T1) and Hölder’s
inequality, it follows that

∥ψn(t)∥ ≤M

∫ t−n+1

t−n

e−ω(t−s)∥g2(s)∥ds

≤M

(∫ t−n+1

t−n

e−qω(t−s)ds

)1/q(∫ t−n+1

t−n

∥g2(s)∥pds
)1/p

≤M

(∫ n

n−1

e−qωsds

)1/q(∫ t−n+1

t−n

∥g2(s)∥pds
)1/p

≤ M
q
√
qω

(
e−qω(n−1) − e−qωn

)1/q
(∫ t−n+1

t−n

∥g2(s)∥pds
)1/p

≤ Me−ωn

q
√
qω

(eqω − 1)
1/q

(∫ t−n+1

t−n

∥g2(s)∥pds
)1/p

≤ Me−ωn

q
√
qω

(eqω + 1)
1/q

(∫ t−n+1

t−n

∥g2(s)∥pds
)1/p

.

Then, for r > 0, we see that

1

µ([−r, r])

∫
[−r,r]

∥ψn(t)∥ dµ(t)

≤ Me−ωn

q
√
qω

(eqω + 1)
1/q 1

µ([−r, r])

×
∫
[−r,r]

(∫ t−n+1

t−n

∥g2(s)∥pds
)1/p

dµ(t).

Since gb2 ∈ ϵ(Lp(0, 1;X), µ), the above inequality gives rise to ψn ∈
ϵ(R,X, µ). The above inequality also leads to

∥ψn(t)∥ ≤ Me−ωn

q
√
qω

(eqω + 1)
1/q ∥g2∥Sp .

Since the series
M
q
√
qω

(eqω + 1)
1/q ×

∞∑
n=1

e−ωn

is convergent, then we deduce from the Weierstrass M-test that the

series
∑∞

n=1 ψn(t) is uniformly convergent on R and ψ(t) =
∫ t

−∞ S(t−



SEMILINEAR INTEGRO-DIFFERENTIAL EQUATIONS 167

s)g2(s) ds =
∑∞

n=1 ψn(t). Applying ψn ∈ ϵ(R,X, µ) and the inequality

1

µ([−r, r])

∫
[−r,r]

∥ψ(t)∥ dµ(t)

≤ 1

µ([−r, r])

∫
[−r,r]

∥∥∥∥ψ(t)− n∑
k=1

ψk(t)

∥∥∥∥ dµ(t)
+

n∑
k=1

1

µ([−r, r])

∫
[−r,r]

∥ψk(t)∥ dµ(t),

we obtain the uniform limit ψ(t) =
∑∞

n=1 ψn(t) ∈ ϵ(R,X, µ). Therefore,
F (t) = ϕ(t) + ψ(t) is µ-pseudo almost automorphic. This ends of the
proof. �

Theorem 3.3. Let µ ∈ M and β > 0, α ̸= 0 with α + β > 0 and
conditions (A1)–(A2) in Lemma 2.30 hold. Assume the conditions
(H0), (T1)–(T2) are satisfied and the function f = h1+h2 ∈ PAAp(R×
X,X, µ) with h1 ∈ ASp(R × X,X), and hb2 ∈ ϵ(X, Lp(0, 1;X), µ). Then
equation (1.1) has a unique µ-pseudo almost automorphic mild solution

on R, provided that
MLf

ω < 1.

Proof. Let Γ : PAA(R,X, µ) → PAA(R,X, µ) be the nonlinear
operator defined by

(Γx)(t) =

∫ t

−∞
S(t− s)f(s, x(s)) ds, t ∈ R.

First, let us prove that Γ(PAA(R,X, µ)) ⊆ PAA(R,X, µ). For
each x ∈ PAA(R,X, µ), by using the fact that the range of an al-
most automorphic function is relatively compact combined with the
above Lemma 2.21, Lemma 2.25 one can easily see that f(·, x(·)) ∈
PAAp(R,X, µ). Hence, from Lemma 3.2, we know that (Γx)(·) ∈
PAA(R,X, µ). That is, Γ maps PAA(R,X, µ) into PAA(R,X, µ). Now,
let us prove that Γ has a unique fixed point. To the end, for each t ∈ R,
x, y ∈ PAA(R,X, µ), we have

∥(Γx)(t)− (Γy)(t)∥ ≤
∥∥∥∥∫ t

−∞
∥S(t− s)[f(s, x(s))− f(s, y(s))]

∥∥∥∥ ds
≤M

∫ t

−∞
e−ωt∥f(s, x(s))− f(s, y(s))∥ ds
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≤MLf

∫ t

−∞
e−ωt∥x(s)− y(s)∥ ds

≤MLf

∫ t

−∞
e−ωtds∥x− y∥∞

≤ MLf

ω
∥x− y∥∞,

which implies

∥Γx− Γy∥∞ ≤ MLf

ω
∥x− y∥∞.

Hence, by the Banach contraction principle with
MLf

ω < 1, Γ has a
unique fixed-point x in PAA(R,X, µ), which is the µ-pseudo almost
automorphic solution to equation (1.1). This finishes the proof. �

Different Lipschitz type conditions involved in equation (1.1) are
considered in the following results.

Theorem 3.4. Let µ ∈ M and β > 0, α ̸= 0 with α + β >
0 and conditions (A1)–(A2) in Lemma 2.30 be true. Assume that
(H0), (T1), (T3) and (T5) hold, then equation (1.1) admits a unique
µ-pseudo almost automorphic mild solution whenever

∥Lf∥Sp <
1− e−ω

M

(
ωq

1− e−ωq

)1/q

,

where 1
q = 1− 1

p .

Proof. Consider the nonlinear operator Γ given by

(Γx)(t) =

∫ t

−∞
S(t− s)f(s, x(s) )ds, t ∈ R.

Letting x ∈ PAA(R,X, µ), with Lemma 2.21 and Lemma 2.26 it follows
that the function s → f(s, x(s)) is in PAAp(R,X, µ). Moreover,
from Lemma 3.2, we infer that Γx ∈ PAA(R,X, µ), that is, Γ maps
PAA(R,X, µ) into itself. Next, we prove that the operator Γ has
a unique fixed point in PAA(R,X, µ). Indeed, for each t ∈ R,
x, y ∈ PAA(R,X, µ), we have

∥Γx(t)− Γy(t)∥ ≤
∥∥∥∥∫ t

−∞
S(t− s)[f(s, x(s))− f(s, y(s))] ds

∥∥∥∥
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≤M

∫ t

−∞
e−ωt∥f(s, x(s))− f(s, y(s))∥ ds

≤M

∫ t

−∞
e−ωtLf (s) ds∥x− y∥∞

=

∞∑
n=1

∫ t−n+1

t−n

Me−ωtLf (s) ds∥x− y∥∞

≤
∞∑

n=1

(∫ t−n+1

t−n

Mqe−ωqtds

)1/q

∥Lf∥Sp∥x− y∥∞

≤ M

1− e−ω

(
1− e−qω

ωq

)1/q

∥Lf∥Sp∥x− y∥∞.

Thus, we get

∥Γx− Γy∥∞ ≤ M

1− e−ω

(
1− e−qω

ωq

)1/q

∥Lf∥Sp∥x− y∥∞.

Since

∥Lf∥Sp <
1− e−ω

M

(
ωq

1− e−ωq

)1/q

,

Γ has a unique fixed point x ∈ PAA(R,X, µ) by the Banach contraction
principle. The proof is finished. �

Theorem 3.5. Let µ ∈ M, β > 0, α ̸= 0 with α+β > 0 and conditions
(A1)–(A2) in Lemma 2.30 hold. Assume that (H0), (T1) and (T4) are
true. Then there exists a unique µ-pseudo almost automorphic mild
solution to equation (1.1), provided that

M

1− e−ω
∥Lf∥Sr < 1.

Proof. Consider the nonlinear operator Γ given by

(Γx)(t) =

∫ t

−∞
S(t− s)f(s, x(s)) ds, t ∈ R.

Letting x ∈ PAA(R,X, µ), with Lemma 2.21 and Theorem 2.28, it
follows that the function s→ f(s, x(s)) is in PAAq(R,X, µ), q ∈ [1, p).
Moreover, from Lemma 3.2, we infer that Γx ∈ PAA(R,X, µ), that is,
Γ maps PAA(R,X, µ) into itself. Next, we prove that the operator Γ
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has a unique fixed point in PAA(R,X, µ). In fact, for each t ∈ R, x, y ∈
PAA(R,X, µ), we have

∥Γx(t)− Γy(t)∥ ≤
∥∥∥∥ ∫ t

−∞
S(t− s)[f(s, x(s))− f(s, y(s))] ds

∥∥∥∥
≤M

∫ t

−∞
e−ωt∥f(s, x(s))− f(s, y(s))∥ ds

≤M

∫ t

−∞
e−ωtLf (s)∥x(s)− y(s)∥ ds

≤
∞∑

n=1

Me−ω(n−1)

∫ t−n+1

t−n

Lf (s)∥x− y∥∞ ds

≤
∞∑

n=1

Me−ω(n−1)

(∫ t−n+1

t−n

∥Lf∥Sr ds

)1/r

∥x− y∥∞

≤ M

1− e−ω
∥Lf∥Sr∥x− y∥∞,

which gives

∥Γx− Γy∥∞ ≤ M

1− e−ω
∥Lf∥Sr∥x− y∥∞.

In view of the inequality

M

1− e−ω
∥Lf∥Sr < 1,

Γ has a unique fixed point x ∈ PAA(R,X, µ) due to the Banach
contraction principle. The proof is completed. �

We next deal with existence of µ-pseudo almost automorphic so-
lutions to equation (1.1) when the forcing term f does not necessarily
satisfy Lipschitz type conditions. The following existence result is based
upon Leray-Schauder nonlinear alternative theorem. For that, we re-
quire the following assumption:
(T7) There exists a continuous nondecreasing function Θ : [0,∞) →
(0,∞) such that

∥f(t, θ)∥ ≤ Θ(∥θ∥) for all t ∈ R and θ ∈ X.
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Theorem 3.6. Let µ ∈ M and β > 0, α ̸= 0 with α + β > 0 and
conditions (A1)–(A2) in Lemma 2.30 hold. Assume the conditions
(H0), (T1) are satisfied. Let f : R×X → X be a function which satisfies
assumptions (T5)–(T7) and the following additional conditions:

(i) For each κ ≥ 0, the function t →
∫ t

−∞Me−ω(t−s)Θ(κϱ(s)) ds

belongs to BC(R). We set

λ(κ) =M

∥∥∥∥ ∫ t

−∞
e−ω(t−s)Θ(κϱ(s)) ds

∥∥∥∥
ϱ

.

(ii) For each ε > 0, there is a δ > 0 such that, for every x, y ∈ Cϱ(X),
∥x− y∥ϱ ≤ δ impliesx that∫ t

−∞
Me−ω(t−s)∥f(s, x(s))− f(s, y(s))∥ ds ≤ ε

for all t ∈ R.
(iii) lim infξ→∞

ξ
λ(ξ) > 1.

(iv) For all a, b ∈ R, a < b and κ > 0, the set {f(s, x) : a ≤ s ≤ b,
x ∈ Cϱ(X), ∥x∥ϱ ≤ κ} is relatively compact in X.
Then equation (1.1) has at least one µ-pseudo almost automorphic
mild solution on t ∈ R.

Proof. We define the nonlinear operator Γ : Cϱ(X) → Cϱ(X) by

(Γx)(t) :=

∫ t

−∞
S(t− s)f(s, x(s)) ds, t ∈ R.

We will show that Γ has a fixed point in PAA(R,X, µ). For the sake
of convenience, we divide the proof into several steps.

(i) For x ∈ Cϱ(X), we have that

∥(Γx)(t)∥ ≤
∫ t

−∞
Me−ω(t−s)Θ(∥x(s)∥) ds

≤
∫ t

−∞
Me−ω(t−s)Θ(∥x∥ϱϱ(s)) ds.

It follows from condition (i) that Γ is well defined.
(ii) The operator Γ is continuous. In fact, for any ε > 0, we take

δ > 0 involved in condition (ii). If x, y ∈ Cϱ(X) and ∥x−y∥ϱ ≤ δ,
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then

∥(Γx)(t)− (Γy)(t)∥

≤
∫ t

−∞
Me−ω(t−s)∥f(s, x(s))− f(s, y(s))∥ ds ≤ ε,

which shows the assertion.
(iii) We will show that Γ is completely continuous. We set Bκ(X)

for the closed ball with center at 0 and radius κ in the space
X. Let V = Γ(Bκ(Cϱ(X))) and ν = Γ(x) for x ∈ Bκ(Cϱ(X)).
First, we will prove that V (t) is a relatively subset of X for
each t ∈ R. It follows from condition (i) that the function
s→Me−ωsΘ(κϱ(t− s)) is integrable on [0,∞). Hence, for ε > 0,
we can choose a ≥ 0 such that

∫∞
a
Me−ωsΘ(κϱ(t − s)) ds ≤ ε.

Since

ν(t)=

∫ a

0

S(s)f(t−s, x(t−s)) ds+
∫ ∞

a

S(s)f(t−s, x(t−s)) ds

and∥∥∥∥∫ ∞

a

S(s)f(t−s, x(t−s)) ds
∥∥∥∥≤∫ ∞

a

Me−ωsΘ(κϱ(t−s)) ds ≤ ε,

we get ν(t) ∈ ac0(K) + Bε(X), where c0(K) denotes the convex
hull of K and

K = {S(s)f(ξ, x) : 0 ≤ s ≤ a, t− a ≤ ξ ≤ t, ∥x∥ϱ ≤ κ}.

Considering the strong continuity of S(·) and condition (iv) on f ,

we see that K is a relatively compact set, and V (t) ⊆ ac0(K) +
Bε(X), which establishes our assertion.

Second, we show that the set V is equicontinuous. In fact, we
can decompose

ν(t+ s)− ν(t)

=

∫ s

0

S(σ)f(t+ s− σ, x(t+ s− σ)) dσ

+

∫ a

0

[S(σ + s)− S(σ)]f(t− σ, x(t− σ)) dσ

+

∫ ∞

a

[S(σ + s)− S(σ)]f(t− σ, x(t− σ)) dσ.
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For each ε > 0, we can choose a > 0 and δ1 > 0 such that∥∥∥∥ ∫ s

0

S(σ)f(t+ s− σ, x(t+ s− σ)) dσ

+

∫ ∞

a

[S(σ + s)− S(σ)]f(t− σ, x(t− σ) dσ

∥∥∥∥
≤

∫ s

0

Me−ωσΘ(κϱ(t+ s− σ)) dσ

+

∫ ∞

a

[
M

(
e−ω(σ+s) + e−ωσ

)]
Θ(κϱ(t− σ))dσ

≤ ε

2

for s ≤ δ1. Moreover, since {f(t − σ, x(t − σ)) : 0 ≤ σ ≤ a, x ∈
Bκ(Cϱ(X))} is relatively compact and S(·) is strongly continuous,
we can choose δ2 > 0 such that

∥[S(σ + s)− S(σ)]f(t− σ, x(t− σ))∥ ≤ ε

2a
for s ≤ δ2.

Combining these estimates, we get ∥ν(t + s) − ν(t)∥ ≤ ε for s
small enough and independent of x ∈ Bκ(Cϱ(X)).

Finally, in view of condition (i), it is easy to see that

∥ν(t)∥
ϱ(t)

≤ 1

ϱ(t)

∫ t

−∞
Me−ω(t−s)Θ(κϱ(s)) ds −→ 0, |t| → ∞,

and this convergence is independent of x ∈ Bκ(Cϱ(X)). Hence,
by Lemma 2.32, V is a relatively compact set in Cϱ(X).

(iv) Let us now assume that xγ(·) is a solution of equation xγ =
γΓ(xγ) for some 0 < γ < 1. We can estimate

∥xγ(t)∥ = γ

∥∥∥∥ ∫ t

−∞
S(t− s)f(s, xγ(s))

∥∥∥∥
≤

∫ t

−∞
Me−ω(t−s)Θ(∥xγ∥ϱϱ(s)) ds

≤ λ (∥xγ∥ϱ) ϱ(t).

Hence, we get
∥xγ∥ϱ

λ(∥xγ∥ϱ)
≤ 1
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and, combining with condition (iii), we conclude that the set
{xγ : xγ = γΓ(xγ), γ ∈ (0, 1)} is bounded.

(v) It follows from Lemma 2.21, (T6)–(T7) and Lemma 2.27 that
the function t → f(t, x(t)) belongs to PAAp(R,X, µ), whenever
x ∈ PAA(R,X, µ). Moreover, from Lemma 3.2, we infer that
Γ(PAA(R,X, µ)) ⊆ PAA(R,X, µ) and noting that PAA(R,X, µ)
is a closed subspace of Cϱ(X), consequently, we can consider
Γ : PAA(R,X, µ) → PAA(R,X, µ). Using properties (i)–(iii),
we deduce that this map is completely continuous. Applying
Lemma 2.33, we infer that Γ has a fixed point x ∈ PAA(R,X, µ),
which completes the proof. �

The following result is a direct consequence of Theorem 3.6.

Corollary 3.7. Let β > 0, α ̸= 0 with α + β > 0 and conditions
(A1)–(A2) in Lemma 2.30 hold. Assume that (H0) and (T1) are
satisfied. Let f : R × X → X be a function satisfying assumptions
(T5)–(T6) and the following condition

∥f(t, x)− f(t, y)∥ ≤ ζ∥x− y∥ι, 0 < ι < 1,

for all t ∈ R and x, y ∈ X, where ζ > 0 is a constant. Moreover,
assume the following conditions hold:

(a) f(t, 0) = q.

(b) supt∈R
∫ t

−∞Me−ω(t−s)ϱ(s)ι ds = ζ1 <∞.

(c) For all a, b ∈ R, a < b, and κ > 0, the set {f(s, x) : a ≤ s ≤ b, x ∈
Cϱ(X), ∥x∥ϱ ≤ κ} is relatively compact in X.

Then equation (1.1) has a µ-pseudo almost automorphic mild solution
on R.

Proof. Let ζ0 = ∥q∥, ζ2 = ζ, and Θ(θ) = ζ0 + ζ2θ
ι. Thus,

condition (T7) is true. In view of assumption (b), we can see that
condition (i) in Theorem 3.6 is also true. To prove condition (ii)
in Theorem 3.6, note that for each ε > 0 there exists 0 < δι <
ε

ζ1ζ2
such that, for every x, y ∈ Cϱ(X), ∥x − y∥ϱ ≤ δ implies that∫ t

−∞ e−ω(t−s)∥f(s, x(s)) − f(s, y(s))∥ ds ≤ ε for all t ∈ R. On the

other hand, hypothesis (iii) in Theorem 3.6 can be easily verified by
the definition of Θ. This completes the proof. �
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Remark 3.8. Condition (T7) in Theorem 3.6 can be replaced by the
following more general condition:

(T8) There exist a bounded continuous function p(t) : R → (0,+∞)
and a continuous nondecreasing function Θ : [0,∞) → (0,∞) such
that

∥f(t, θ)∥ ≤ p(t)Θ(∥θ∥) for all t ∈ R and θ ∈ X.

In fact, if we let P = supt∈R |p(t)|, Θ(∥θ∥) := P ·Θ(∥θ∥), then the main
proofs of Theorem 3.6 still hold true.

Example 3.9. Consider the following problem:

(3.1)


∂u
∂t (t, x) =

∂2u
∂x2 (t, x) +

∫ t

−∞ e−(t−s) ∂2u
∂x2 (s, x) ds

+f(t, u(t, x)), t ∈ R,
u(0, t) = u(π, t) = 0,

where f ∈ L2[0, π] → L2[0, π] is given by

f(t, u(t, x)) = u(t, x) sin
1

2 + cos t+ cosπt
+ e−|t| sinu(t, x).

We set X := L2[0, π], and define A := ∂2u
∂x2 , with the domain of the

operator A as

D(A) :=
{
u ∈ L2[0, π] : u(0) = u(π) = 0, u′′ ∈ L2[0, π]

}
.

From the deduction of [22, Example 4.10], we know that the operator A
satisfies condition (A2) in Lemma 2.30 and generates an immediately
norm continuous and compact C0-semigroup T (t) on X. Thus, the
problem (3.1) can be converted into the abstract system (1.1) with
α = β = 1.

If we define its Radon-Nikodym derivative as dµ(t)
dt := 1 + t2, then

the measure µ is absolutely continuous with respect to the Lebesgue
measure ([3, 7]). Note that the function f defined above is Stepanov
type µ-pseudo almost automorphic, and

∥f(t, u)− f(t, v)∥ ≤ 2∥u− v∥.

By a consequence of Theorem 3.3, we conclude that the problem (3.1)
admits a unique µ-pseudo almost automorphic solution if M

ω < 1
2 .
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