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ON THE HALF-HARTLEY TRANSFORM,
ITS ITERATION AND

COMPOSITIONS WITH FOURIER TRANSFORMS

S. YAKUBOVICH

ABSTRACT. Employing the generalized Parseval equal-
ity for the Mellin transform and elementary trigonometric
formulas, the iterated Hartley transform on the nonnegative
half-axis (the iterated half-Hartley transform) is investigated
in L2. Mapping and inversion properties are discussed, its
relationship with the iterated Stieltjes transform is estab-
lished. Various compositions with the Fourier cosine and
sine transforms are obtained. The results are applied to the
uniqueness and universality of the closed form solutions for
certain new singular integral and integro-functional equa-
tions.

1. Introduction and auxiliary results. The familiar reciprocal
pair of the Hartley transforms [1]

(1.1) (Hf)(x) = 1√
2π

∫ ∞

−∞
[cos(xt) + sin(xt)]f(t) dt, x ∈ R,

(1.2) f(x) =
1√
2π

∫ ∞

−∞
[cos(xt) + sin(xt)](Hf)(t) dt

is well known in connection with various applications in mathematical
physics. Mapping and inversion properties of these transforms in
L2, related generalized convolutions as well as their multidimensional
analogs were investigated, for instance, in [6], [5], [2], [8]. These
operators were treated as the so-called bilateral Watson transforms,

2010 AMS Mathematics subject classification. Primary 44A15, 44A35, 45E05,
45E10.

Keywords and phrases. Hartley transform, Mellin transform, Fourier transforms,
Hilbert transform, Stieltjes transform, Plancherel theorem, singular integral equa-
tions, integro-functional equations.

The present investigation was supported, in part, by the “Centro de Matemática”
of the University of Porto.

Received by the editors on March 17, 2014, and in revised form on June 18,
2014.
DOI:10.1216/JIE-2014-26-4-581 Copyright c⃝2014 Rocky Mountain Mathematics Consortium

581



582 S. YAKUBOVICH

and in some sense they are related to the Fourier cosine and Fourier
sine transforms

(1.3) (Fcf)(x) =

√
2

π

∫ ∞

0

cos(xt)f(t) dt, x ∈ R+,

(1.4) (Fsf)(x) =

√
2

π

∫ ∞

0

sin(xt)f(t) dt, x ∈ R+.

Recently [7], the author investigated the Hartley transform (1.1) with
the integration over R+ (the half-Hartley transform)

(1.5) (H+f)(x) =

√
2

π

∫ ∞

0

[cos(xt) + sin(xt)]f(t) dt, x ∈ R+

and proved an analog of the Plancherel theorem, establishing its recip-
rocal inverse operator in L2(R+)

(1.6) f(x) =

√
2

π

∫ ∞

0

[sin(xt) S(xt) + cos(xt) C(xt)] (H+f)(t) dt,

where S(x), C(x) are Fresnel sine- and cosine- integrals, respectively,

S(x) =

√
2

π

∫ √
x

0

sin(t2)dt, C(x) =

√
2

π

∫ √
x

0

cos(t2) dt.

Our goal here is to examine the iteration of operator (1.5) (H2
+f)(x)

≡ (H+H+f)(x), which will be called the iterated half-Hartley trans-
form and investigate its compositions in L2 with the Fourier transforms
(1.3), (1.4) of the form: H+Fc, H+Fs, H+FcFs, H2

+Fc, H2
+Fs, H2

+FcFs.
The corresponding integral representations of these compositions will
be established in L2 and their boundedness and invertibility will be
proved. Moreover, we will apply these results to establish the unique-
ness of solutions in the closed form for the corresponding second kind
singular integral and integro-functional equations.

Our natural approach is based on the L2-theory of the Mellin
transform [4]
(1.7)

(Mf)(s) = f∗(s) =

∫ ∞

0

f(t)ts−1dt, s ∈ σ =
{
s ∈ C, s =

1

2
+ iτ

}
,
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where the integral is convergent in the mean square sense with respect
to the norm in L2(σ). Reciprocally, the inversion formula takes place

(1.8) f(x) =
1

2πi

∫
σ

f∗(s)x−sds, x > 0

with the convergence of the integral in the mean square sense with
respect to the norm in L2(R+). Furthermore, for any f1, f2 ∈ L2(R+),
the generalized Parseval identity holds

(1.9)

∫ ∞

0

f1 (xt) f2(t)dt =
1

2πi

∫
σ

f∗1 (s)f
∗
2 (1− s)x−sds, x > 0

with Parseval’s equality of squares of L2- norms

(1.10)

∫ ∞

0

|f(x)|2dx =
1

2π

∫ ∞

−∞

∣∣∣∣f∗(1

2
+ iτ

)∣∣∣∣2dτ.
Finally in this section, we exhibit the known formulas [4]∫ ∞

0

sin t

t
ts−1dt =

Γ(s)

1− s
cos

(
πs

2

)
, s ∈ σ,(1.11) ∫ ∞

0

1− cos t

t
ts−1dt =

Γ(s)

1− s
sin

(
πs

2

)
, s ∈ σ,(1.12)

where Γ(s) is the Euler gamma-function, which will be used in the
sequel.

2. Plancherel’s type theorems. It is widely known [4] via the
classical Plancherel theorem in L2(R+) that the Fourier cosine and
Fourier sine transforms extend to bounded invertible and isometric
mappings, having the properties F 2

c = I, F 2
s = I, where I is the

identity operator. We begin, demonstrating our method on the simple
composition FcFs of operators (1.3), (1.4). Precisely, it drives us to the
Plancherel theorem for the Hilbert transform [4].

Theorem 1. The composition F (x) = (FcFsf)(x) extends to a
bounded invertible and isometric map F : L2(R+) → L2(R+) and can
be written in the form of the Hilbert transform in L2

(2.1) F (x) =
2

π
PV

∫ ∞

0

tf(t)

t2 − x2
dt, x ∈ R+.



584 S. YAKUBOVICH

Reciprocally,

(2.2) f(x) =
2

π
PV

∫ ∞

0

x F (t)

x2 − t2
dt, x ∈ R+

and this map is isometric, i.e., ||F || = ||f || for all f ∈ L2(R+).

Proof. Let f belong to the space C
(2)
c (R+) of continuously dif-

ferentiable functions of compact support, which is dense in L2(R+).
Then integrating by parts in (1.3), (1.4) and (1.7), we find that
(Fcf)(x) = O(x−2), (Fsf)(x) = O(x−2), x → ∞ and s2f∗(s) is
bounded on σ. Therefore, (Fcf)(x), (Fsf)(x) ∈ L2(R+) ∩ L1(R+),
f∗(s) ∈ L2(σ) ∩ L1(σ). Hence, minding equalities (1.11), (1.12), the
generalized Parseval equality (1.9) and the supplement formula for the
gamma-function, we derive for all x > 0 (cf., [4, Section 8.4])

F (x) =
1

2πi

∫
σ

F ∗(s)x−sds

=
2

π

1

2πi

∫
σ

Γ(s)Γ(1− s) cos2
(πs

2

)
f∗(s)x−sds

=
1

2πi

∫
σ

f∗(s) cot
(πs

2

)
x−sds =

2

π
PV

∫ ∞

0

tf(t)

t2 − x2
dt.

Hence, reciprocally via (1.8), we obtain

f(x) =
1

2πi

∫
σ

f∗(s)x−sds =
1

2πi

∫
σ

F ∗(s) tan

(
πs

2

)
x−sds

=
1

2πi

∫
σ

F ∗(1− s) cot
(πs

2

)
xs−1ds =

2

πx
PV

∫ ∞

0

F (t)

1− (t/x)2
dt

=
2

π
PV

∫ ∞

0

xF (t)

x2 − t2
dt.

Thus, we proved (2.1) and (2.2) for any f ∈ C
(2)
c (R+). Further, since

C
(2)
c (R+) is dense in L2(R+), there is a unique extension of F as

an invertible continuous map F : L2(R+) → L2(R+). Clearly, it is
isometric by virtue of the Plancherel theorem for Fourier cosine and
Fourier sine transforms. �

Extending this approach, we prove the Plancherel type theorem for
the iterated half-Hartley transform H2

+. Indeed, we have
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Theorem 2. The iterated half-Hartley transform extends to a bounded
invertible map H2

+ : L2(R+) → L2(R+) and the following reciprocal
formulas hold

(2.3) (H2
+f)(x) = 2f(x) +

2

π

∫ ∞

0

f(t)

x+ t
dt, x > 0,

(2.4) f(x) =
1

2
(H2

+f)(x)−
1

π2

∫ ∞

0

√
xt [log x− log t]

x2 − t2
(H2

+f)(t) dt.

Moreover, the norm inequalities take place

(2.5) ||f || ≤
∣∣∣∣H2

+f
∣∣∣∣ ≤ 8 ||f || .

Proof. Assuming again f ∈ C
(2)
c (R+), and taking into account (1.8),

(1.9) and relation (8.4.2.5) in [3, Vol. 3], we derive in the same manner
the equalities

(H2
+f)(x)=

1

2πi

2

π

∫
σ

Γ(s)Γ(1− s)
(
cos
(πs

2

)
+ sin

(πs
2

))2
f∗(s) x−sds

=
1

πi

∫
σ

1 + sin (πs)

sin (πs)
f∗(s) x−sds(2.6)

= 2f(x) +
1

2πi

2

π

∫
σ

Γ(s)Γ(1− s)f∗(s) x−sds

= 2f(x) +
2

π

∫ ∞

0

f(t)

x+ t
dt,

which prove representation (2.3), involving the classical Stieltjes trans-
form [8, 4]. Conversely, appealing to relation (8.4.6.11) in [3, Vol. 3],
and elementary properties of the Mellin transform, it gives

f(x) =
1

4πi

∫
σ

sin (πs)

1 + sin (πs)
(H2

+f)
∗(s) x−sds =

1

2
(H2

+f)(x)

− 1

8πi

∫
σ

(H2
+f)

∗(s)

sin2 (π(s+ 1/2)/2)
x−sds =

1

2
(H2

+f)
∗(x)(2.7)

− 1

2πi

1

4π2

∫
σ

[
Γ

(
s

2
+

1

4

)
Γ

(
3

4
− s

2

)]2
(H2

+f)
∗(s)x−sds

=
1

2
(H2

+f)(x)−
1

π2

∫ ∞

0

√
xt [log x− log t]

x2 − t2
(H2

+f)(t) dt,
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which proves (2.4), involving the iterated Stietltjes transform recently
treated in [9]. In order to establish inequalities (2.5), we call the
Parseval equality (1.10) for the Mellin transform, which yields (see
(2.6), (2.7))

∣∣∣∣H2
+f
∣∣∣∣ = 2

(
1

2π

∫ ∞

−∞

(
1 + cosh (πτ)

)2

cosh2 (πτ)

∣∣∣∣f∗(1

2
+ iτ

)∣∣∣∣2dτ)1/2

= 4

(
1

2π

∫ ∞

−∞

cosh4 (πτ/2)

cosh2 (πτ)

∣∣∣∣f∗(1

2
+ iτ

)∣∣∣∣2dτ)1/2

≤ 8 ||f ||,

and, on the other hand,

||f || = 1

4
√
2π

(∫ ∞

−∞

cosh2 (πτ)

cosh4 (πτ/2)

∣∣∣∣(H2
+f)

∗
(
1

2
+iτ

)∣∣∣∣2dτ)1/2

≤
∣∣∣∣H2

+f
∣∣∣∣ .

Now the same argument of the denseness of C
(2)
c (R+) in L2(R+)

drives us to a unique extension of H2
+ as an invertible continuous map

H2
+ : L2(R+) → L2(R+). �

Remark 1. As we observe via the Schwarz inequality, the convergence
of integrals (2.3), (2.4) is pointwise.

Concerning the composition H+Fc it has

Theorem 3. The composition F (x) = (H+Fcf)(x) extends to a
bounded invertible map F : L2(R+) → L2(R+) and the following
reciprocal formulas hold:

(2.8) F (x) = f(x) +
2

π
PV

∫ ∞

0

xf(t)

x2 − t2
dt, x > 0,

(2.9) f(x) =
1

π
PV

∫ ∞

0

√
xt

t2 − x2
F (t) dt.

Moreover, the norm inequalities are valid

(2.10) ||f || ≤ ||F || ≤ 2
√
2 ||f || .
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Proof. For f ∈ C
(2)
c (R+), we obtain

F (x) =
1

2πi

2

π

∫
σ

Γ(s)Γ(1− s)

×
(
cos
(πs

2

)
+ sin

(πs
2

))
sin
(πs

2

)
f∗(s) x−sds

=
1

2πi

∫
σ

(
1 + tan

(
πs

2

))
f∗(s) x−sds

= f(x) +
2

π
PV

∫ ∞

0

xf(t)

x2 − t2
dt,

which prove representation (2.8), relating again to the classical Hilbert
transform in L2(R+). The inverse operator (2.9) can be deduced via
the equality

f(x) =
1

2πi

∫
σ

F ∗(s)

1 + tan (πs/2)
x−s ds

(2.11)

=
1

2
√
2 πi

d

dx

∫
σ

F ∗(s)
Γ ((s+ 1/2)/2) Γ ((3/2− s)/2)

Γ ((1 + s)/2) Γ ((1− s)/2)

x1−s

1− s
ds,

where the differentiation is allowed under the integral sign via the
absolute and uniform convergence. In the meantime, due to the residue
theorem

1

2πi

∫
σ

Γ ((s+ 1/2)/2) Γ ((3/2− s)/2)

Γ ((1 + s)/2) Γ ((1− s)/2)

x1−s

1− s
ds =

√
2

π

∞∑
n=0

x2n+3/2

2n+ 3/2

=

√
2

π

∫ x

0

√
y dy

1− y2
,

0 < x < 1,

and

1

2πi

∫
σ

Γ ((s+ 1/2)/2) Γ ((3/2− s)/2)

Γ ((1 + s)/2) Γ ((1− s)/2)

x1−s

1− s
ds =

√
2

π

∞∑
n=0

x−2n−1/2

2n+ 1/2

=

√
2

π

∫ ∞

x

√
y dy

y2 − 1
,

x > 1.
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Therefore, returning to (2.11), differentiating with respect to x under
the integral sign and using (1.9), we write it in the form

f(x) =
1

π
PV

∫ ∞

0

√
x/t

1− (x/t)2
F (t)

dt

t
.

Thus, we come up with (2.9). Finally, in a similar manner, we derive
inequalities (2.10). In fact, we have

||f ||≤||F ||=2

(
1

2π

∫ ∞

−∞

cosh2 (πτ/2)

cosh (πτ)

∣∣∣∣f∗(1

2
+iτ

)∣∣∣∣2 dτ
)1/2

≤ 2
√
2||f ||.

Hence, extending F on the whole L2(R+) as an invertible continuous
mapping, we complete the proof. �

The Plancherel theorem for the composition H+Fs can be proved
analogously, and we leave it without proof.

Theorem 4. The composition F (x) = (H+Fsf)(x) extends to a
bounded invertible map F : L2(R+) → L2(R+), and the following
reciprocal formulas hold :

(2.12) F (x) = f(x) +
2

π
PV

∫ ∞

0

tf(t)

t2 − x2
dt, x > 0,

(2.13) f(x) =
1

π
PV

∫ ∞

0

√
xt

x2 − t2
F (t) dt.

Moreover, the norm inequalities (2.10) are valid.

The case H+FcFs can be treated with the use of Theorem 1.
Precisely, we state:

Theorem 5. The composition F (x) = (H+FcFsf)(x) extends to a
bounded invertible map F : L2(R+) → L2(R+), having the integral
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representation:

F (x) =

√
2

π

∫ ∞

0

[
sin(xt)− cos(xt) +

2

π

√
xt S−1/2,1/2(xt)

]
f(t) dt,

(2.14)

x > 0,

where S−1/2,1/2(x) is the Lommel function and the integral converges
in the mean square sense. The inverse operator is written in the form
of the integral

(2.15) f(x) = 2

√
2

π

∫ ∞

0

[(1− S(xt)) sin(xt)− C(xt) cos(xt)]F (t) dt,

which converges in the mean square sense as well. Moreover, the norm
inequalities (2.10) take place.

Proof. In fact, for f ∈ C
(2)
c (R+) we write via (1.9)

F (x) =
1

2πi

(
2

π

)3/2 ∫
σ

Γ2(s)Γ(1− s)

×
(
cos

(
πs

2

)
+ sin

(
πs

2

))
sin2

(
πs

2

)
f∗(1− s) x−s ds

(2.16)

=
1

2πi

√
2

π

∫
σ

Γ(s) sin
(πs

2

)(
1 + tan

(πs
2

))
f∗(1− s) x−s ds

= (Fsf)(x)− (Fcf)(x) +
1

2πi

√
2

π

∫
σ

Γ(s)

cos (πs/2)
f∗(1− s) x−sds.

Meanwhile, the latter integral can be calculated, appealing to relations
(8.4.2.5) in [3, Vol. 3], (8.4.23.1) in [3, Vol. 3] and (2.16.3.14) in [3,
Vol. 2]. But first, employing the supplement and duplication formulas
for the gamma-function, we find the following inverse Mellin transform
written in terms of the Mellin type convolution with the modified Bessel
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function, namely,

1

2πi

∫
σ

Γ(s)

cos (πs/2)
x−sds

=
1

4π5/2i

∫
σ

Γ2

(
1 + s

2

)
Γ
(s
2

)
Γ

(
1− s

2

)
(x/2)−sds

=
2

π

∫ ∞

0

√
t K0(2

√
t)√

1 + (x2/4t)

dt

t
=

2

π

∫ ∞

0

y K0(y)√
y2 + x2

dy

=
2
√
x

π
S−1/2,1/2(x), x > 0,

where Sµ,ν(z) is the Lommel function [3, Vol. 3]. Therefore, returning
to (2.16) and recalling the generalized Parseval equality (1.9), we get

1

2πi

√
2

π

∫
σ

Γ(s)

cos (πs/2)
f∗(1− s) x−sds

=
2
√
2

π
√
π

∫ ∞

0

√
xt S−1/2,1/2(xt)f(t)dt, x > 0,

and the latter integral is absolutely convergent for any f ∈ L2(R+).
Combining with (2.16), we come up with representation (2.14) for the

dense set C
(2)
c (R+) of L2(R+). Moreover, the norm inequalities (2.10)

follow immediately from (2.16). In fact, we have

||f ||≤||F || =
√
2

π

(∫ ∞

−∞

∣∣∣∣Γ(12 + iτ

)∣∣∣∣2cosh2(πτ/2)∣∣∣∣f∗(12+iτ
)∣∣∣∣2dτ)1/2

=

√
2

π

(∫ ∞

−∞

cosh2(πτ/2)

cosh(πτ)

∣∣∣∣f∗(1

2
+iτ

)∣∣∣∣2dτ)1/2

≤ 2
√
2||f ||.

Concerning the inverse operator (2.15), we recall (2.16) and reciprocal
formulas (1.7) and (1.8) of the Mellin transform. It yields

f(x) =
1

2πi

√
π

2

∫
σ

F ∗(1− s)

Γ(1− s) cos (πs/2) (1 + cot (πs/2))
x−sds(2.17)

=
1

4πi

∫
σ

Γ ((s+ 1)/2) Γ ((s+ 1/2)/2) Γ ((3/2− s)/2)

Γ (s/2) Γ2 (1− s/2)

× F ∗(1− s) (x/2)−sds.
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Meanwhile, the residue theorem and relation (7.14.4.6) in [3, Vol. 3]
lead us to the value of the integral with the ratio of gamma-functions
in terms of Fresnel’s integrals (see above)

1

2πi

∫
σ

Γ ((s+ 1)/2) Γ ((s+ 1/2)/2) Γ ((3/2− s)/2)

Γ (s/2) Γ2 (1− s/2)
(x/2)−sds

= 2

√
2

π
[(1− S(x)) sinx− C(x) cosx] .

Hence, returning to (2.17), we easily come up with (2.15), and after ex-
tension of F on the whole L2(R+) as an invertible continuous mapping,
complete the proof of Theorem 5. �

The Plancherel theorem for compositions H2
+Fc, H2

+Fs is related to
Theorem 2 and can be stated as follows:

Theorem 6. Compositions F (x) = (H2
+Fcf)(x), G(x) = H2

+Fs extend
to bounded invertible mappings F,G : L2(R+) → L2(R+), having
integral representations

F (x) = 2

√
2

π

∫ ∞

0

[
cos(xt) +

1

π

√
xt S−3/2,−1/2(xt)

]
f(t) dt, x > 0,

(2.18)

G(x) = 2

√
2

π

∫ ∞

0

[
sin(xt) +

1

π

√
xt S−1/2,1/2(xt)

]
f(t) dt, x > 0,

(2.19)

where both integrals converge in the mean square sense. Inverse opera-
tors are written, respectively, in the form

(2.20) f(x) =

∫ ∞

0

kc(xt)F (t) dt, x > 0

where

kc(x) =

√
x

π

∞∑
k=0

(−1)k x2k

(3/2)2k

[
2

π
ψ(−1/2− 2k)− 2

π
log x+ 1

]
and ψ(x) is the psi-function,

(2.21) f(x) =

∫ ∞

0

ks(xt)G(t) dt,
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where

ks(x) =

√
x

π

∞∑
k=0

(−1)k x2k

(3/2)2k

[
1− 2

π
ψ(−1/2− 2k) +

2

π
log x

]

and integrals converge in the mean square sense. Moreover, the norm
inequalities (2.5) take place

(2.22) ||f || ≤
{

||F ||
||G||

}
≤ 8 ||f || .

Proof. Indeed, for f ∈ C
(2)
c (R+) we use (2.6) to obtain

F (x) =
1

2πi

(
2

π

)3/2 ∫
σ

Γ(s)Γ2(1− s)

×
(
cos
(πs

2

)
+ sin

(πs
2

))2
sin
(πs

2

)
f∗(s) xs−1ds

=
1

2πi

√
2

π

∫
σ

1 + sin (πs)

sin (πs/2)
Γ(s)f∗(1− s) x−sds(2.23)

= 2 (Fcf) (x) +
1

2πi

√
2

π

∫
σ

Γ(1− s)

cos (πs/2)
f∗(s) xs−1ds.

Hence, making similar calculations, which were done for the latter
integral in (2.16), we find

1

2πi

∫
σ

Γ(1− s)

cos (πs/2)
x−sds =

2x−2

π

∫ ∞

0

y K0(y)√
y2 + x−2

dy

=
2x−3/2

π
S−3/2,−1/2

(
1

x

)
, x > 0.

Therefore,

F (x) = 2 (Fcf) (x) +

(
2

π

)3/2 ∫ ∞

0

√
xt S−3/2,−1/2(xt)f(t) dt,
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which coincides with (2.18). Similarly,

G(x) =
1

2πi

(
2

π

)3/2 ∫
σ

Γ(s)Γ2(1− s)

×
(
cos

(
πs

2

)
+ sin

(
πs

2

))2

cos

(
πs

2

)
f∗(s)xs−1ds

=
1

2πi

√
2

π

∫
σ

1 + sin (πs)

sin (πs/2)
Γ(1− s)f∗(s)xs−1ds

= 2 (Fsf) (x) +
1

2πi

√
2

π

∫
σ

Γ(s)

cos (πs/2)
f∗(1− s) x−sds,

and we end up with (2.19), appealing again to the latter integral in
(2.16). Concerning inverse operator (2.20), we write, recalling (2.23)
and formula (1.8) of the inverse Mellin transform

f(x) =
1

2πi

√
π

2

∫
σ

cos (πs/2)

(1 + sin (πs))Γ(1− s)
F ∗(1− s)x−sds

(2.24)

=
1

2
(FcF )(x)−

1

2πi

1

2
√
2π

∫
σ

Γ(s) cos (πs/2)

sin2 (π(s+ 1/2)/2)
F ∗(1− s)x−sds,

x > 0.

In the meantime, the integral

1

2πi

∫
σ

Γ(s) cos (πs/2)

sin2 (π(s+ 1/2)/2)
x−sds

can be calculated by the residue theorem. It has

1

2πi

∫
σ

Γ(s) cos (πs/2)

sin2 (π(s+ 1/2)/2)
x−sds

=
∞∑
k=0

Ress=−k

[
Γ(s) cos (πs/2)

sin2 (π(s+ 1/2)/2)
x−s

]
(2.25)

+

∞∑
k=0

Ress=−1/2−2k

[
Γ(s) cos (πs/2)

sin2 (π(s+ 1/2)/2)
x−s

]
, x > 0.

The first sum in the right-hand side of the latter equality contains
residues in simple poles s = −k, k ∈ N0 of the gamma-function and,
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by straightforward calculations, it gives

∞∑
k=0

Ress=−k

[
Γ(s) cos (πs/2)

sin2 (π(s+ 1/2)/2)
x−s

]

= 2
∞∑
k=0

(−1)kxk

k!
cos (πk/2) = 2 cosx.

The second sum involves double poles s = −1/2 − 2k, k ∈ N0 of the
integrand, and we find

Ress=−1/2−2k

[
Γ(s) cos (πs/2)

sin2 (π(s+ 1/2)/2)
x−s

]
= lim

s→−1/2−2k

d

ds

[
(s+ 1/2 + 2k)2

x−s Γ(s) cos (πs/2)

sin2 (π(s+ 1/2)/2)

]
=

√
2(−1)k

π
x2k+1/2Γ(−1/2− 2k)[

2

π
ψ(−1/2− 2k)− 2

π
log x+ 1

]
,

where ψ(x) is the psi-function (the logarithmic derivative of the gamma-
function). Therefore, substituting these values in (2.25), we obtain

1

2πi

∫
σ

Γ(s) cos (πs/2)

sin2 (π(s+ 1/2)/2)
x−sds

= 2 cosx− 2

√
2x

π

∞∑
k=0

(−1)k x2k

(3/2)2k

×
[
2

π
ψ(−1/2− 2k)− 2

π
log x+ 1

]
, x > 0.

Hence, returning to (2.24) and employing the generalized Parseval
equality (1.9), we come up with inversion formula (2.20). Analogously,
we establish (2.21). The norm inequalities (2.22) are immediate con-
sequences of (2.5) and isometry properties of the Fourier cosine and
sine transforms in L2. To end the proof, we extend F,G on the whole
L2(R+) as invertible continuous mappings. �

Finally in this section we prove the Plancherel theorem for compo-
sition H2

+FcFs. We have:
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Theorem 7. The composition F (x) = (H2
+FcFsf)(x) extends to a

bounded invertible map F : L2(R+) → L2(R+) and

(2.26) F (x) =
23/2√
π
PV

∫ ∞

0

[
1

π
log
(x
t

)
− 1

]
tf(t)

x2 − t2
dt, x > 0.

The inverse operator is written in the form of the integral

(2.27) f(x) =

√
2

π3
PV

∫ ∞

0

√
xt

x2 − t2
F (t) dt.

Moreover, the composition F satisfies the norm inequalities (2.5).

Proof. Let f ∈ C
(2)
c (R+). Then Theorems 1 and 2 yield

F (x) =
1

2πi

(
2

π

)3/2

×
∫
σ

[
Γ(s)Γ(1− s)

(
cos
(πs
2

)
+ sin

(πs
2

))
cos
(πs
2

)]2
f∗(s)x−sds

=
1

2πi

√
π

2

∫
σ

1 + sin(πs)

sin2 (πs/2)
f∗(s)x−sds

=

(
2

π

)3/2 ∫ ∞

0

log x− log t

x2 − t2
tf(t) dt

− 2
√
2√
π
PV

∫ ∞

0

tf(t)

x2 − t2
dt.

Hence we arrive at (2.26). Further, to derive (2.27), we have, recipro-
cally,

(2.28) f(x) =
1

2πi

1√
2π

d

dx

∫
σ

sin2 (πs/2) F ∗(s)

sin2 (π(s+ 1/2)/2)

x1−s

1− s
ds,

where the differentiation is allowed under the integral sign via the abso-
lute and uniform convergence. Meanwhile, calculating the convergent
integral,

1

2πi

1√
2π

∫
σ

sin2 (πs/2)

sin2 (π(s+ 1/2)/2)

x1−s

1− s
ds
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with the use of the residue theorem, involving the left-hand double
poles of the integrand s = −2k − 1/2, k ∈ N0, when 0 < x < 1, we
obtain

1

2πi

1√
2π

∫
σ

sin2 (πs/2)

sin2 (π(s+ 1/2)/2)

x1−s

1− s
ds

= −
√
2

π
√
π

[
1 +

log x

π

] ∞∑
k=0

x2k+3/2

2k + 3/2
+

√
2

π2
√
π

∞∑
k=0

x2k+3/2

(2k + 3/2)2

= −
√
2

π
√
π

[
1 +

log x

π

] ∫ x

0

y1/2 dy

1− y2
+

√
2

π2
√
π

∫ x

0

y1/2 log(x/y) dy

1− y2
,

0 < x < 1.

When x > 1, we should employ the right-hand double poles s =
2k − 1/2, k ∈ N and the simple pole s = 1. This gives the value
of the integral

1

2πi

1√
2π

∫
σ

sin2 (πs/2)

sin2 (π(s+ 1/2)/2)

x1−s

1− s
ds

= −
√

2

π
−

√
2

π
√
π

[
1 +

log x

π

] ∫ ∞

x

y1/2 dy

y2 − 1

+

√
2

π2
√
π

∫ 1/x

0

y−1/2 log(xy)

1− y2
dy, x > 1.

Hence, returning to (2.28) and appealing again to the generalized
Parseval equality (1.9), we come up with the inversion formula (2.27)
after differentiation under the integral sign, which can be motivated
similar to formulas of the Hilbert transform in L2 (see, [4, Theorem
90]). The norm inequalities (2.5) follow immediately from the isometry
property of the Fourier transform in L2. Extending the composition on
the whole L2(R+) as an invertible continuous mapping, we complete
the proof. �

3. Integral and integro-functional equations. In this section
we will apply Plancherel theorems for the considered half-Hartley trans-
form (1.5), its iteration (2.3) and compositions with the Fourier trans-
forms to investigate the uniqueness and universality of the closed form
solutions of certain singular integral and integro-functional equations.
We begin with an immediate corollary of Theorem 2.
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Corollary 1. Let g ∈ L2(R+) be a given function. The second kind
integral equation with the Stieltjes kernel

(3.1) f(x) +
1

π

∫ ∞

0

f(t)

x+ t
dt = g(x), x > 0,

has a unique solution in L2(R+) given by the formula

(3.2) f(x) = g(x)− 2

π2

∫ ∞

0

√
xt [log x− log t]

x2 − t2
g(t) dt.

Conversely, for a given f ∈ L2(R+), integral equation (3.2) has a
unique solution g ∈ L2(R+) via formula (3.1).

On the other hand, Theorem 1 leads us to the solvability criterium in
L2(R+) of the following integro-functional equations with the Hilbert
kernel

1

x
f

(
1

x

)
=

2

π

∫ ∞

0

tf(t)

t2 − x2
dt, x ∈ R+,(3.3)

1

x
f

(
1

x

)
=

2

π

∫ ∞

0

xf(t)

x2 − t2
dt, x ∈ R+.(3.4)

In fact, substituting in (3.3) and (3.4) x instead of 1/x, we arrive at the
corresponding second kind homogeneous singular integral equations

f(x) =
2

π

∫ ∞

0

xtf(t)

x2t2 − 1
dt, x > 0,(3.5)

f(x) =
2

π

∫ ∞

0

f(t)

1− x2t2
dt, x > 0.(3.6)

Corollary 2. In order for an arbitrary function f ∈ L2(R+) to be
a solution of either homogeneous integro-functional equation (3.3) or
second kind integral equation (3.5), it is necessary and sufficient that f
have the form of the integral

(3.7) f(x) =
1

2πi

∫
σ

φ(s)

cos(πs/2)
x−sds, x > 0,

which is convergent in the mean square sense. It is written in terms of
some function φ(s), satisfying condition φ(s) = φ(1 − s), s ∈ σ, i.e.,
φ(1/2+ iτ) is even with respect to τ ∈ R. Analogously, in order for an
arbitrary function f ∈ L2(R+) to be a solution of either homogeneous
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integro-functional equation (3.4) or second kind integral equation (3.6),
it is necessary and sufficient that f have the form of the integral

(3.8) f(x) =
1

2πi

∫
σ

ρ(s)

sin(πs/2)
x−sds, x > 0,

which is convergent in the mean square sense and written in terms of
some function ρ(s), which satisfies condition ρ(s) = ρ(1− s), s ∈ σ.

Proof. Necessity. Let f ∈ L2(R+) be a solution of equation (3.3).
In terms of the Mellin transform it can be written as the following
functional equation (see the proof of Theorem 1)

f∗(s) cot

(
πs

2

)
= f∗(1− s), s ∈ σ.

Hence,

(3.9) f∗(s) cos
(πs

2

)
= f∗(1− s) sin

(πs
2

)
= φ(s), s ∈ σ,

and we observe that φ(s) = φ(1− s), s ∈ σ. Therefore,

f∗(s) =
φ(s)

cos(πs/2)
,

and, inverting the Mellin transform, we end up with (3.7).

Sufficiency. Conversely, if φ(1/2 + iτ) is an even function, then
from (3.7) we get equalities (3.9). Hence, the uniqueness theorem for
the Mellin transform in L2 drives us at (3.3). The same concerns the
integral equation (3.5) by virtue of its equivalence to (3.3). In a similar
manner, we treat the pair of equations (3.4) and (3.6). �

Theorems 3 and 4 drive us to the following results.

Corollary 3. Let g ∈ L2(R+) be a given function. The second kind
integral equations with the Hilbert kernel

f(x) +
2

π

∫ ∞

0

xf(t)

x2 − t2
dt = g(x), x > 0,

f(x) +
2

π

∫ ∞

0

tf(t)

t2 − x2
dt = g(x), x > 0,
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have unique solutions in L2(R+) given by formulas, respectively,

f(x) =
1

π

∫ ∞

0

√
xt

t2 − x2
g(t) dt,

f(x) =
1

π

∫ ∞

0

√
xt

x2 − t2
g(t) dt.

Theorem 8. Let λ ∈ C, |1−λ| ̸= 1. In order for an arbitrary function
f ∈ L2(R+) to be a solution of the homogeneous integro-functional
equation

(3.10) f(x) +
2

π

∫ ∞

0

xf(t)

x2 − t2
dt =

λ

x
f

(
1

x

)
, x > 0,

it is necessary that f have the form of the mean square sense convergent
integral

(3.11) f(x) =
1

2πi

∫
σ

φ(s)x−s

tan (πs/2) + 1− λ
ds

of some function φ(s) ∈ L2(σ), which satisfies the condition φ(s) =
−φ(1− s), s ∈ σ. This condition and the form of solutions (3.11) are
also sufficient for those φ, whose reciprocal inverse Mellin transform
µ(x) is a solution of the integral equation

(3.12) (2− λ2)µ(x) +
2

π

∫ ∞

0

µ(t)

x+ t
dt = 0, x ∈ R+,

where integral (3.12) converges absolutely. Analogously, in order for
an arbitrary function f ∈ L2(R+) to be a solution of the homogeneous
integro-functional equation

(3.13) f(x) +
2

π

∫ ∞

0

tf(t)

t2 − x2
dt =

λ

x
f

(
1

x

)
, x > 0,

it is necessary that f have the form of the integral

(3.14) f(x) =
1

2πi

∫
σ

φ(s)x−s

cot (πs/2) + 1− λ
ds,

which converges in the mean square sense and depends on some function
φ(s) ∈ L2(σ), satisfying the condition φ(s) = −φ(1 − s). This
condition and the form of solutions (3.14) are sufficient for those φ,
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whose reciprocal inverse Mellin transform µ(x) is a solution of integral
equation (3.12).

Proof. Let f ∈ L2(R+) be a solution of equation (3.10). In terms
of the Mellin transform it can be written as the following functional
equation (see the proof of Theorem 3)

(3.15) f∗(s)

(
1 + tan

(
πs

2

))
= λf∗(1− s), s ∈ σ.

Hence,

f∗(s) tan

(
πs

2

)
= λf∗(1− s)− f∗(s)

and, changing s on 1− s in the previous equality, we get

f∗(1− s) cot

(
πs

2

)
= λf∗(s)− f∗(1− s).

Thus, adding these two equations, we find

f∗(s)

[
tan

(
πs

2

)
+ 1− λ

]
+ f∗(1− s)

[
cot

(
πs

2

)
+ 1− λ

]
= 0.

Denoting by φ(s) = f∗(s)[tan(πs/2) + 1 − λ], we observe that φ(s) =
−φ(1−s), s ∈ σ and φ(s) ∈ L2(σ) if and only if f∗(s) ∈ L2(σ) because

(3.16) 0 < |1− |1− λ|| ≤ | tan (πs/2) + 1− λ| ≤ 2 + |λ|, s ∈ σ.

Hence, f∗(s) = φ(s)[tan(πs/2) + 1− λ]−1, and formula (1.8) drives us
to solution (3.11).

Assuming now the existence of such a function φ(s) ∈ L2(σ) un-
der condition φ(s) = −φ(1 − s), we substitute the value f∗(s) =
φ(s)[tan(πs/2) + 1− λ]−1 into equation (3.15). We have

φ(s)

[
1 + tan (πs/2)

tan (πs/2) + 1− λ
+

λ

cot (πs/2) + 1− λ

]
= 0,

or, via (3.16) and after simple calculations

(3.17) φ(s)

[
2− λ2 +

2

sin(πs)

]
= 0, s ∈ σ.

Taking the inverse Mellin transform of both sides of the latter equality,
we arrive at equation (3.12). Thus, f(x) by formula (3.11) is a solution
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of integro-functional equation (3.10) for all φ(s) under condition φ(s) =
−φ(1−s) such that its inverse Mellin transform is a solution of integral
equation (3.12). The absolute convergence of the corresponding integral
follows from the Schwarz inequality. In the same manner, integro-
functional equation (3.13) and its solution (3.14) can be treated. �

Corollary 4. Let λ ∈ (−
√
2,
√
2). Then the only trivial solution

satisfies integro-functional equations (3.10) and (3.13).

Proof. When λ = 0, then the condition on λ in Theorem 8 fails.
However, the solution of (3.10) is trivial via Corollary 3. Otherwise,
since 2 − λ2 + 2/ sin(πs) > 0, s ∈ σ, we have from (3.17) φ(s) ≡ 0
on σ. Therefore, f∗(s) ≡ 0 and the inverse Mellin transform implies
f = 0, i.e., the solution of (3.10) is trivial. The same concerns integro-
functional equation (3.13). �

Composition operator (2.14) is involved to investigate the solvability
of the corresponding homogeneous second kind integral equation

λf(x) +

√
2

π

∫ ∞

0

[
sin(xt)− cos(xt) +

2

π

√
xt S−1/2,1/2(xt)

]
f(t) dt=0,

(3.18)

x > 0, λ ∈ C.

We have:

Theorem 9. Let |λ| < 2. In order for an arbitrary function f ∈
L2(R+) to be a solution of the homogeneous integro-functional equation
(3.18), it is necessary that f have the representation

f(x) =
1

2πi

∫
σ

[√
2

π
Γ(1− s) cos

(
πs

2

)(
1 + cot

(
πs

2

))
−λ
]−1

φ(s)x−sds,

(3.19)

x > 0,

where the integral is convergent in the mean square sense, depending
on some function φ(s) ∈ L2(σ), which satisfies the condition φ(s) =
φ(1 − s), s ∈ σ. This condition and the form of solutions (3.19) are
also sufficient for those φ, whose reciprocal inverse Mellin transform
µ(x) is a solution of integral equation (3.12).
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Proof. Let f ∈ L2(R+) be a solution of (3.18). Then, in terms of the
Mellin transform, it can be written as follows (see the proof of Theorem
5)
(3.20)√

2

π
Γ(s) sin

(
πs

2

)(
1 + tan

(
πs

2

))
f∗(1− s) = −λf∗(s), s ∈ σ.

Hence, changing s on 1− s in the previous equation, we find√
2

π
Γ(1− s) cos

(
πs

2

)(
1 + cot

(
πs

2

))
f∗(s) = −λf∗(1− s).

Subtracting one equality from another, after simple manipulations we
end up with[√

2

π
Γ(1− s) cos

(
πs

2

)(
1 + cot

(
πs

2

))
− λ

]
f∗(s)

=

[√
2

π
Γ(s) sin

(
πs

2

)(
1 + tan

(
πs

2

))
− λ

]
f∗(1− s).

Denoting the left-hand side of the previous equation by φ(s), we easily
verify the condition φ(s) = φ(1− s), s ∈ σ. Moreover, via elementary
calculus, we derive (s = 1/2 + iτ, τ ∈ R)∣∣∣∣

√
2

π
Γ(1− s) cos

(
πs

2

)(
1 + cot

(
πs

2

))
− λ

∣∣∣∣
≥
∣∣∣∣
√

2

π
Γ(1− s) cos

(
πs

2

)(
1 + cot

(
πs

2

))∣∣∣∣− |λ|

=
2
√
2 cosh(πτ/2)

cosh1/2(πτ)
− |λ| ≥ 2− |λ| > 0

and∣∣∣∣
√

2

π
Γ(1− s) cos

(
πs

2

)(
1 + cot

(
πs

2

))
− λ

∣∣∣∣
≤ 2

√
2 cosh(πτ/2)

cosh1/2(πτ)
+ |λ| ≤ 2

√
2 + |λ|.

Therefore, φ(s) ∈ L2(σ). Hence, calling in inversion formula (1.8) of the
Mellin transform, we come up with solution (3.19) of equation (3.18).
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Conversely, assuming the existence of such a function φ(s) ∈ L2(σ)
under condition φ(s) = φ(1− s), we substitute the value

f∗(s) =

[√
2

π
Γ(1− s) cos

(
πs

2

)(
1 + cot

(
πs

2

))
− λ

]−1

φ(s)

into equation (3.20). However, after straightforward calculations, it
becomes equation (3.17). Consequently, under same conclusions as in
Theorem 8, we complete the proof. �

Similarly to Corollary 4, we establish

Corollary 5. Let λ ∈ (−
√
2,
√
2). Then the only trivial solution

satisfies integral equation (3.18).

Further, integral operators (2.18) and (2.19) are employed to investi-
gate the L2- solvability of the following homogeneous integral equations
of the second kind:

2

√
2

π

∫ ∞

0

[
cos(xt) +

1

π

√
xt S−3/2,−1/2(xt)

]
f(t) dt = λf (x) ,(3.21)

x > 0, λ ∈ C,

2

√
2

π

∫ ∞

0

[
sin(xt) +

1

π

√
xt S−1/2,1/2(xt)

]
f(t) dt = λf (x) ,(3.22)

x > 0, λ ∈ C.

Precisely, we arrive at

Theorem 10. Let |λ| < 2. In order for an arbitrary function f ∈
L2(R+) to be a solution of the integral equation (3.21), it is necessary
that f have the representation
(3.23)

f(x) =
1

2πi

∫
σ

[√
2

π

1 + sin (πs)

cos (πs/2)
Γ(1− s) + λ

]−1

φ(s)x−s ds, x > 0,

where the integral is convergent in the mean square sense and depends
on some function φ(s) ∈ L2(σ), which satisfies the condition φ(s) =
φ(1 − s), s ∈ σ. This condition and the form of solutions (3.23) are
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also sufficient for those φ, whose reciprocal inverse Mellin transform
µ(x) is a solution of the integral equation
(3.24)

(4−λ2)µ(x)+ 8

π

∫ ∞

0

µ(t)

x+ t
dt+

4

π2

∫ ∞

0

log(x/t)µ(t)

x− t
dt = 0, x ∈ R+,

where the integrals converge absolutely. Analogously, in order for an
arbitrary function f ∈ L2(R+) to be a solution of the integral equation
(3.22), it is necessary that f have the representation
(3.25)

f(x) =
1

2πi

∫
σ

[√
2

π

1 + sin (πs)

sin (πs/2)
Γ(1− s) + λ

]−1

φ(s)x−sds, x > 0,

where the integral is convergent in the mean square sense and depends
on some function φ(s) ∈ L2(σ), which satisfies the condition φ(s) =
φ(1 − s), s ∈ σ. This condition and the form of solutions (3.24) are
also sufficient for those φ, whose reciprocal inverse Mellin transform
µ(x) is a solution of integral equation (3.24).

Proof. Let f ∈ L2(R+) be a solution of (3.21). Using the same tech-
nique of the Mellin transform and appealing to the proof of Theorem 6,
we obtain

(3.26)

√
2

π

1 + sin (πs)

sin (πs/2)
Γ(s)f∗(1− s) = λf∗(s), s ∈ σ.

The change s on 1− s gives√
2

π

1 + sin (πs)

cos (πs/2)
Γ(1− s)f∗(s) = λf∗(1− s).

Subtracting one equality from another, we define the function φ as

φ(s) =

[√
2

π

1 + sin (πs)

cos (πs/2)
Γ(1− s) + λ

]
f∗(s)

=

[√
2

π

1 + sin (πs)

sin (πs/2)
Γ(s) + λ

]
f∗(1− s),

which evidently satisfies the equation φ(s) = φ(1−s), s ∈ σ. Moreover,
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via elementary calculus we derive (s = 1/2 + iτ, τ ∈ R)∣∣∣∣
√

2

π

1 + sin (πs)

cos (πs/2)
Γ(1− s) + λ

∣∣∣∣ ≥ ∣∣∣∣
√

2

π

1 + sin (πs)

cos (πs/2)
Γ(1− s)

∣∣∣∣− |λ|

=
4 cosh2(πτ/2)

cosh(πτ)
− |λ| ≥ 2− |λ| > 0

and∣∣∣∣
√

2

π

1 + sin (πs)

cos (πs/2)
Γ(1− s) + λ

∣∣∣∣ ≤ 4 cosh2(πτ/2)

cosh(πτ)
+ |λ| ≤ 4 + |λ|.

Therefore, φ(s) ∈ L2(σ). Hence, calling in inversion formula (1.8) of the
Mellin transform, we come up with solution (3.23) of equation (3.21).
Conversely, assuming the existence of such a function φ(s) ∈ L2(σ)
under condition φ(s) = φ(1− s), we substitute the value

f∗(s) =

[√
2

π

1 + sin (πs)

cos (πs/2)
Γ(1− s) + λ

]−1

φ(s)

into equation (3.26). But, after straightforward calculations, it becomes

φ(s)

[
λ2 − 4− 4

sin2(πs)
− 8

sin(πs)

]
= 0, s ∈ σ.

Taking the inverse Mellin transform of both sides of the latter equality,
we derive integral equation (3.24) (cf., (2.6) and (2.7)). In the same
manner, we examine integral equation (3.22) and its solution (3. 25).

�

Corollary 6. Let λ ∈ (−2, 2). Then the only trivial solution satisfies
integral equations (3.21), (3.22).

The final result is the solvability of the integro-functional equation,
corresponding to the composition operator (2.26)
(3.27)

23/2√
π

∫ ∞

0

[
1

π
log

(
x

t

)
− 1

]
tf(t)

x2 − t2
dt =

λ

x
f

(
1

x

)
, x > 0, λ ∈ C.

Theorem 11. Let |λ| <
√
2π. In order for an arbitrary function

f ∈ L2(R+) to be a solution of the integro-functional equation (3.27),
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it is necessary that f have the representation

(3.28) f(x) =
1

2πi

∫
σ

[√
π

2

1 + sin (πs)

sin2 (πs/2)
+ λ

]−1

φ(s)x−sds, x > 0,

where the integral is convergent in the mean square sense and depends
on some function φ(s) ∈ L2(σ), which satisfies the condition φ(s) =
φ(1 − s), s ∈ σ. This condition and the form of solutions (3.28) are
also sufficient for those φ, whose reciprocal inverse Mellin transform
µ(x) is a solution of the integral equation
(3.29)

(2π− λ2)µ(x) + 4

∫ ∞

0

µ(t)

x+ t
dt+

2

π

∫ ∞

0

log(x/t)µ(t)

x− t
dt = 0, x ∈ R+,

where the integrals converge absolutely.

Proof. Let f ∈ L2(R+) be a solution of (3.28). Similarly as above
(see the proof of Theorem 7), we find

(3.30)

√
π

2

1 + sin (πs)

sin2 (πs/2)
f∗(s) = λf∗(1− s), s ∈ σ.

Changing s on 1− s, we have√
π

2

1 + sin (πs)

cos2 (πs/2)
f∗(1− s) = λf∗(s).

Hence, we define the function φ as

φ(s) =

[√
π

2

1 + sin (πs)

sin2 (πs/2)
+λ

]
f∗(s) =

[√
π

2

1 + sin (πs)

cos2 (πs/2)
+λ

]
f∗(1− s),

and clearly, φ(s) = φ(1− s), s ∈ σ. Moreover, (s = 1/2 + iτ, τ ∈ R)∣∣∣∣√π

2

1 + sin (πs)

sin2 (πs/2)
+ λ

∣∣∣∣ ≥ 2
√
2π cosh2(πτ/2)

cosh(πτ)
− |λ| ≥

√
2π − |λ| > 0

and∣∣∣∣√π

2

1 + sin (πs)

sin2 (πs/2)
+ λ

∣∣∣∣ ≤ 2
√
2π cosh2(πτ/2)

cosh(πτ)
+ |λ| ≤ 2

√
2π + |λ| > 0.

Therefore, φ(s) ∈ L2(σ). Hence, calling in inversion formula (1.8) of the
Mellin transform, we come up with solution (3.28) of integro-functional
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equation (3.27). Conversely, assuming the existence of such a function
φ(s) ∈ L2(σ) under condition φ(s) = φ(1− s), we substitute the value

f∗(s) =

[√
π

2

1 + sin (πs)

sin2 (πs/2)
+ λ

]−1

φ(s)

into equation (3.30). But, after straightforward calculations, it becomes

φ(s)

[
λ2 − 2π

[
1 +

1

sin2(πs)
+

2

sin(πs)

]]
= 0, s ∈ σ.

Taking the inverse Mellin transform of both sides of the latter equality
we end up with integral equation (3.29) and complete the proof. �

Corollary 8. Let λ ∈ (−
√
2π,

√
2π). Then the only trivial solution

satisfies integro-functional equation (3.27).
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