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ABSTRACT. In the present work, we are concerned with
approximations of solutions to a retarded type fractional
differential equation with a deviated argument in a separable
Hilbert space H. We consider an integral equation associated
with a given problem and then consider a sequence of
approximate integral equations. We prove the existence,
uniqueness and convergence to each of the approximate
integral equations by using analytic semigroup theory and
the fixed point method. We also prove that the limiting
function satisfies the associated integral equation. Finally,
we consider Faedo-Galerkin approximations of solutions and
prove some convergence results.

1. Introduction. In this article, we consider the following retarded
type fractional differential equation with a deviated argument in a
separable Hilbert space (H, ∥ · ∥, (·, ·)):
(1.1)

cDη
t [u(t) + g(t, u(t))] +Au(t) = f(t, u(t), u[h(u(t), t)]), η ∈ [0, 1),

u(0) = u0, 0 < t ≤ T <∞

}
where cDη

t is the Caputo fractional derivative of order η andA : D(A) ⊂
H → H is a closed, densely defined, positive definite, self-adjoint linear
operator which satisfies assumption (H1), stated later. Functions f , g
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and h are suitably defined and satisfy certain conditions to be stated
later.

In the present work, we are interested in Faedo-Galerkin approxi-
mations of solutions to problem (1.1). In [20], Milleta has discussed
the Faedo-Galerkin approximations of solutions to the particular case
of (1.1) in the cases when η = 1, h ≡ 0 and f(t, u) =M(u). For a nice
introduction and related study of various problems in this direction, we
refer to the reader to [1, 2, 3, 4, 20, 22, 23] and the references cited
therein.

In [23], Muslim et al. have established the existence, uniqueness and
convergence of approximations of solutions in a separable Hilbert space
and convergence of the Faedo-Galerkin approximations of solutions to
the following problem:

u(t) = u0 +
1

Γβ

∫ t

0

(t− s)β−1(−Au(s))ds

+
1

Γβ

∫ t

0

(t− s)β−1f(s, u(s), u(a(s))) ds,

where −A is the infinitesimal generator of an analytic semigroup of
bounded linear operators {S(t), t ≥ 0} on a Banach space (H, ∥·∥, (·, ·)),
the functions f : [T ]×H ×H → H and a : [0, T ] → [0, T ] are suitable
functions.

In [24], Ntouyas et al. proved existence results for semilinear neutral
functional differential inclusions with finite or infinite delay in Banach
spaces to the following problem

d

dt
[y(t)−f(t, yt)] = Ay(t)+F (t, yt), almost everywhere t∈J := [0, T ],

(1.2)

y(t) = Φ(t), t ∈ J0 := [−r, 0],(1.3)

where f : J × D → E, F : J × D → P(E) is a multivalued map,
D = {Ψ : [−r, 0] → E : Ψ is continuous}, Φ ∈ D, 0 < r < ∞, E is a
real separable Banach space with norm ∥ · ∥ and P(E) is the family of
all nonempty subsets of E.

For earlier work on the existence and uniqueness of solutions to
differential equations of fractional order, we refer to [5, 12, 14, 15,
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16, 17, 18, 19, 21, 27, 28, 31, 33] and the references cited therein.

The book [6] by El’sgol’ts and Norkin provides a comprehensive
study of differential equations with deviated arguments. The existence,
uniqueness, almost automorphic solutions and asymptotic behaviors of
differential equations with deviating arguments has been studied by
many authors like Grimm [8], Obreg [25], Driver [10], Gal [7] (see
also [9, 11, 13, 29, 32]) and the references cited therein.

The rest of the paper is organized as follows. In Section 2, we put
some notations, notions and results that are required for proving the
main results. In Section 3, we consider an integral equation associated
with problem (1.1) and then consider a sequence of approximate inte-
gral equations and establish the existence and uniqueness of solutions
to each of the approximate integral equations. We also prove the con-
vergence of solutions to each of the approximate integral equations in
Section 4 and then prove that the limiting function satisfies the asso-
ciated integral equation. In Section 5, we consider the Faedo-Galerkin
approximations of solutions and prove some convergence results for
such approximations. Finally, we give an example to demonstrate the
applications of abstract results obtained in the earlier sections.

2. Preliminaries and assumptions. In this section, we present
some assumptions, preliminaries and lemmas required for proving the
main results. The details of the material presented here can be found
in [26]. We shall use the following assumption on operator A:

(H1) Let A be a closed, positive definite, self-adjoint linear operator
from the domain D(A) ⊂ H into H with D(A) dense in H. We
also assume that A has the pure point spectrum

0 < λ0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λm ≤ · · · ,

where λm → ∞ as m → ∞ and a corresponding complete
orthonormal system of eigenfunctions {ϕi}, i.e.,

Aϕi = λiϕi and ⟨ϕi, ϕj⟩ = δij ,

where δij = 1 for i = j, zero otherwise.

Assumption (H1) implies that −A generates an analytic semigroup of

bounded linear operators S(t), t ≥ 0. Then there exist constants M̃ ≥ 1
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and ω ≥ 0 such that

∥S(t)∥ ≤ M̃eωt, t ≥ 0.

We also note that [26, Lemma 4.2, page 52]∥∥∥∥ didtiS(t)
∥∥∥∥ ≤Mi, t > t0

for some positive constant Mi.

Without loss of generality, we may assume that ∥S(t)∥ is uniformly
bounded by M , i.e., ∥S(t)∥ ≤ M for t ≥ 0, and that 0 ∈ ρ(−A), i.e.,
−A is invertible. This allows us to define the positive fractional power
Aα for 0 ≤ α ≤ 1 as closed linear operator with domain D(Aα) ⊆ H.
Furthermore, D(Aα) is dense in H endowed with the norm

∥x∥α = ∥Aαx∥.

Henceforth, we denote the space D(Aα) by Hα endowed with the norm
∥ · ∥α. Also, for each α > 0, we define H−α = (Hα)

∗, the dual space of
Hα endowed with the norm ∥x∥−α = ∥A−αx∥.

Lemma 2.1 ([26, pages 72, 74, 195–196]). Suppose that −A is the
infinitesimal generator of an analytic semigroup S(t), t ≥ 0 with
∥S(t)∥ ≤M for t ≥ 0 and 0 ∈ ρ(−A). Then

(i) Hα is a Hilbert space for 0 ≤ α ≤ 1;
(ii) for any 0 < δ ≤ α implies D(Aα) ⊂ D(Aδ), the embedding

Hα ↩→ Hδ is continuous;
(iii) the operator AαS(t) is bounded for every t > 0 and

∥AαS(t)∥ ≤ Cαt
−α.

We denote the space of all Hα-valued continuous functions on [0, t]
by Cα

t = C([0, t];Hα), for all t ∈ (0, T ]. Then Cα
t is a Banach space

endowed with the norm,

∥ψ∥t,α := sup
0≤r≤t

∥ψ(r)∥α, ψ ∈ Cα
t .

For 0 ≤ α < 1, define

Cα−1
T = {y ∈ Cα

T : ∥y(t)− y(s)∥α−1 ≤ L|t− s|, ∀t, s ∈ [0, T ]},
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where L is a suitable positive constant to be specified later.

We assume the following conditions:

(H2) Let U1 ⊂ Dom(f) be an open subset of R+ ×Hα ×Hα−1 and,
for each (t, u, v) ∈ U1, there is a neighborhood V1 ⊂ U1 of
(t, u, v). The nonlinear map f : R+×Hα×Hα−1 → H satisfies
the following condition:

∥f(t, x, ψ)− f(s, y, ψ̃)∥ ≤ Lf [|t− s|θ1 + ∥x− y∥α + ∥ψ − ψ̃∥α−1],

where 0 < θ1 ≤ 1, 0 ≤ α < 1, Lf > 0 is a constant,

(t, x, ψ) ∈ V1 and (s, y, ψ̃) ∈ V1.
(H3) Let U2 ⊂ Dom(h) be an open subset of Hα×R+ and, for each

(x, t) ∈ U2, there is a neighborhood V2 ⊂ U2 of (x, t). The map
h : Hα × [0, T ] → [0, T ] satisfies the following condition:

|h(x, t)− h(y, s)| ≤ Lh[∥x− y∥α + |t− s|θ2 ],

where 0 < θ2 ≤ 1, 0 ≤ α < 1, Lh > 0 is a constant,
(x, t), (y, s) ∈ V2 and h(·, 0) = 0.

(H4) Let U3 ⊂ Dom(g) be an open subset of [0, T ]×Hα−1 and, for
each (t, x) ∈ U3, there is a neighborhood V3 ⊂ U3 of (x, t).
There exists a positive constant β, 0 < α < β < 1, such that
the function Aβg is continuous for (t, u) ∈ [0, T0]×Hα−1 such
that

∥Aβg(t, x)−Aβg(s, y)∥ ≤ Lg{|t− s|+ ∥x− y∥α−1},

and
Lg∥Aα−β−1∥ ≤ δ < 1

where Lg, δ > 0 is a positive constant and (x, t), (y, s) ∈ V3.

3. Approximate integral equations. The existence of a solution
to (1.1) is closely related to the following integral equation (3.9).

Definition 1 ([31, Definition 1.2]). Let f ∈ L1((0, T ),H) and α ≥ 0.
Then the expression

Iαt f(t) = (f ∗Θα)(t) =
1

Γα

∫ t

0

(t− s)α−1f(s) ds,

t > 0, α > 0,(3.1)
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where I0t f(t) = f(t) and

Θα(t) =


1

Γα
tα−1, t > 0,

0, t ≤ 0,

and Θ0(t) = 0, is called the Riemann-Liouville integral of order α of f .

Definition 2 ([31, Definition 1.3]). Let f ∈ Cm−1((0, T ),H), (Θm−α∗
f) ∈ Wm,1((0, T ),H) (m ∈ N, 0 ≤ m− 1 < α < m). Then the ex-
pression

(3.2) cDα
t f(t) = Dm

t I
m−α
t

(
f(t)−

m−1∑
0

f i(0)Θi+1(t)

)
,

where Dm
t = dm/(dtm), is called the Caputo fractional derivative of

order α of f .

Then, by definitions (1) and (3.2), we can rewrite (1.1) as

u(t) = (u0 + g(0, u0))− g(t, u(t))

(3.3)

− 1

Γα

∫ t

0

(t− s)α−1[Au(s) + g(s, u(s))] ds

+
1

Γα

∫ t

0

(t− s)α−1f(s, u(s), u(h(u(s), s))) ds, t ∈ [0, T ].

For a fixed R > 0, we choose 0 < T0 = T0(α, β, u0) ≤ T sufficiently
small, such that

(3.4) Cα+1−βLg∥A−1∥T
η(β−α)
0

β − α
+ CαLf [2 + LLh]

T
η(1−α)
0

1− α
≤ 1− δ,

where δ = Lg∥Aα−β−1∥ < 1 and T0 < min(d1, d2) with

d1 =

(
R

4
(β − α)(C1+α−βLg)

−1

)1/[η(β−α)]

,(3.5)

d2 =

(
R

4
(1− α)(Cα[2 + LLh]Lf )

−1

)1/[η(1−α)]

(3.6)
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and satisfying the following

(3.7) ∥(S(tηθ)−I)Aα[u0+gn(0, u0)]∥+∥Aα−β∥Lg[T0+∥A−1∥R]≤ R

2
,

for all t ∈ [0, T0] and

(3.8) Cα+1−βN1
T

η(β−α)
0

β − α
+ CαN

T
η(1−α)
0

1− α
≤ R

2
.

For more details of choosing such a T0, we refer to [7, Theorem 2.2].

We set

W = {u ∈ Cα
T0

∩ Cα−1
T0

: u(0) = u0, ∥u− u0∥T0,α ≤ R}.

Clearly, W is a closed, bounded subset of Cα−1
T0

and complete.

Definition 3 ([5, page 434]). By a solution of problem (1.1), we mean
a function u : [0, T ] → Hα satisfying the following three conditions:

(i) u(·) + g(·, u(·)) ∈ Cα−1
T ∩ C([0, T ],H).

(ii) u(t) + g(t, u(t)) ∈ D(A) and (t, u(t), u[h(u(t), t)]) ∈ U1 for all
t ∈ [0, T ].

(iii) dη/dtη[u(t) + g(t, u(t))] +Au(t) = f(t, u(t), u[h(u(t), t)]) for all
t ∈ (0, T ].

(iv) u(0) = u0.

Definition 4 ([30, Definition 2.7]). By the mild solution of Cauchy
problem (1.1), we mean a continuous function u : (0, T0] → H which
satisfies the following integral equation associated with (1.1):

u(t) =

∫ ∞

0

θξη(θ)S(t
ηθ)[u(0) + g(0, u0)] dθ − g(t, u(t))

+ η

∫ t

0

∫ ∞

0

θξη(θ)(t− s)η−1AS((t− s)ηθ)g(s, u(s)) dθ ds

+ η

∫ t

0

∫ ∞

0

θξη(θ)(t− s)η−1S((t− s)ηθ)

× f(s, u(s), u[h(u(s), s)]) dθ ds, t ∈ (0, T0].(3.9)
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where

ξη(θ) =
1

η
θ−1−(1/η)ρη(θ

−1/η) ≥ 0,

ρη(θ) =
1

π

∞∑
n=1

(−1)n−1θ−nη−1Γ(nη + 1)

n!
sin(nπη), θ ∈ (0,∞),

ξη is a probability density function defined on (0,∞), that is,∫ ∞

0

ξη(θ)dθ = 1.

Also, we have∫ ∞

0

θγξη(θ) =

∫ ∞

0

1

θγβ
ρη(θ) =

Γ(1 + γ)

Γ(1 + γη)
, for any γ ∈ [0, 1].

For more details, we refer to [5, 31, 33].

Let Hn ⊆ H denote the finite dimensional subspace spanned by
{u0, u1, · · · , un}, and let Pn : H → Hn be the corresponding projection
operator for n = 0, 1, 2, . . . . We define

gn : R+ ×H −→ H as gn(t, u(t)) = g(t, Pnu(t)) and(3.10)

fn : R+ ×H ×H −→ H given by

fn(s, u(s), u[h(u(s), s)]) = f(s, Pnu(s), Pnu[h(u(s), s)]).(3.11)

For n = 0, 1, . . . , we define a map Fn : W → W given by

(Fnu)(t) =

∫ ∞

0

θξη(θ)S(t
ηθ)[u(0) + gn(0, u0)] dθ − gn(t, u(t))

+ η

∫ t

0

∫ ∞

0

θξη(θ)(t− s)η−1AS((t− s)ηθ)gn(s, u(s)) dθ ds

+ η

∫ t

0

∫ ∞

0

θξη(θ)(t− s)η−1S((t− s)ηθ)

× fn(s, u(s), u[h(u(s), s)]) dθ ds, t ∈ (0, T0].(3.12)

Theorem 3.1. Let assumptions (H1)–(H4) hold and also let u0 ∈ Hα

for 0 ≤ α < 1. Then there exists a unique un ∈ Cα−1
T0

∩ Cα
T0

such
that Fnun = un for each n = 0, 1, 2, . . ., un satisfies the following
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approximate integral equation corresponding to the integral equation
(3.9),

un(t) =

∫ ∞

0

θξη(θ)S(t
ηθ)[u(0) + gn(0, u0)] dθ − gn(t, un(t))

+ η

∫ t

0

∫ ∞

0

θξη(θ)(t− s)η−1AS((t− s)ηθ)gn(s, un(s)) dθ ds

+ η

∫ t

0

∫ ∞

0

θξη(θ)(t− s)η−1S((t− s)ηθ)

× fn(s, un(s), u[h(un(s), s)]) dθ ds, t ∈ (0, T0].(3.13)

Proof. In order to prove this theorem, first we need to show that
Fnu ∈ Cα−1

T0
for any u ∈ Cα−1

T0
. Clearly, Fn : Cα

T0
→ Cα

T0
.

If u ∈ Cα−1
T0

, T0 > t2 > t1 > 0, and 0 ≤ α < 1, then we get

∥(Fnu)(t2)− (Fnu)(t1)∥α−1

(3.14)

≤
∫ ∞

0

θξη(θ)∥(S(tη2θ)− S(tη1θ))(u0 + gn(0, u0))∥α−1 dθ

+ ∥Aα−1−β∥∥Aβgn(t2, u(t2))−Aβgn(t1, u(t1))∥

+

∫ t1

0

∫ ∞

0

ξη(θ)∥∥∥(ηθ(t2−s)η−1AS((t2−s)ηθ)−ηθ(t1−s)η−1AS((t1−s)ηθ)
)∥∥∥

× ∥Aα−1gn(s, u(s))∥ dθ ds

+

∫ t2

t1

∫ ∞

0

ξη(θ)∥ηθ(t2 − s)η−1AS((t2 − s)ηθ)∥

∥Aα−1gn(s, u(s))∥ dθ ds

+

∫ t1

0

∫ ∞

0

ξη(θ)∥(ηθ(t2 − s)η−1S((t2 − s)ηθ)− ηθ(t1 − s)η−1

S((t1 − s)ηθ))Aα−1∥∥fn(s, u(s), u[h(u(s), s)])∥ dθ ds

+

∫ t2

t1

∫ ∞

0

ξη(θ)∥ηθ(t2 − s)η−1S((t2 − s)ηθ)Aα−1∥
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∥fn(s, u(s), u[h(u(s), s)])∥ dθ ds

For the first part of the right hand side of (3.14), we have∫ ∞

0

ξη(θ)∥(S(tη2θ)− S(tη1θ))(u0 + gn(0, u0))∥α−1 dθ

≤
∫ ∞

0

ξη(θ)

[ ∫ t2

t1

d

dt
S((tηθ)) dt

]
∥Aα−1(u0 + gn(0, u0))∥ dθ

≤
∫ ∞

0

ξη(θ)[M1(t2 − t1)]∥Aα−1(u0 + gn(0, u0))∥ dθ

≤ C1(t2 − t1),(3.15)

where C1 = [∥u0∥α−1 + ∥Aα−β−1∥∥gn(0, u0)∥β ]M .

For the second part of the right hand side of (3.14), we can see that

∥Aα−β−1∥∥Aβgn(t2, u(t2))−Aβgn(t1, u(t1))∥

≤ ∥Aα−β−1∥Lg[(t2 − t1) + ∥u(t2)− u(t1)∥α−1]

≤ C2(t2 − t1),(3.16)

where C2 = ∥Aα−β−1∥[Lg(1 + L)]. To handle the third and fifth parts
of the right hand side of (3.14), observe that∫ t1

0

∫ ∞

0

ξη(θ)∥[ηθ(t2 − s)η−1AS((t2 − s)ηθ)− ηθ(t1 − s)η−1

AS((t1 − s)ηθ)]∥
× ∥Aα−2fn(s, u(s), u[h(u(s), s)])∥ dθ ds

≤
∫ t1

0

∫ ∞

0

ξη(θ)

∥∥∥∥[ ddtS((t− s)ηθ)

∣∣∣∣
t=t2

− d

dt
S((t− s)ηθ)

∣∣∣∣
t=t1

]∥∥∥∥
× ∥Aα−2∥N dθ ds

≤
∫ t1

0

∫ ∞

0

ξη(θ)

[ ∫ t2

t1

∣∣∣∣ d2dt2S((t− s)ηθ)

∣∣∣∣ dt]∥Aα−2∥N dθ ds

≤
∫ t1

0

∫ ∞

0

ξη(θ)[M2(t2 − t1)]∥Aα−2∥N dθ ds

≤ C3(t2 − t1),

(3.17)
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where C3 = NM2∥Aα−2∥T0. Similarly, for the third part of (3.14), we
have ∫ t1

0

∫ ∞

0

ξη(θ)∥[ηθ(t2 − s)η−1S((t2 − s)ηθ)

− ηθ(t1 − s)η−1S((t1 − s)ηθ)]Aα−β∥

× ∥Aβgn(s, u(s))∥ dθ ds

≤ C4(t2 − t1)(3.18)

where C4 = N1M2∥Aα−β−1∥T0. For the sixth part of (3.14), we have∫ t2

t1

∫ ∞

0

ξη(θ)∥ηθ(t2 − s)η−1AS((t2 − s)ηθ)∥

∥Aα−2fn(s, u(s), u[h(u(s), s)])∥ dθ ds

≤
∫ t2

t1

∫ ∞

0

ξη(θ)

∣∣∣∣∣∣∣∣ ddtS((t− s)ηθ)

∣∣∣∣
t=t2

∣∣∣∣∥Aα−2∥N dθ ds

≤ C5(t2 − t1),(3.19)

where C5 = ∥Aα−2∥M1N . Finally, for the fourth part of (3.14), we
have ∫ t2

t1

∫ ∞

0

ξη(θ)∥ηθ(t2 − s)η−1AS((t2 − s)ηθ)Aα−β−1∥

∥Aβgn(s, u(s))∥ dθ ds

≤ C6(t2 − t1),(3.20)

where C6 = ∥Aα−β−1∥M1N1.

We use (3.15), (3.16) and (3.17)-(3.20) in (3.14) to get the following
inequality:

(3.21) ∥(Fnu)(t2)− (Fnu)(t1)∥α−1 ≤ L|t2 − t1|,

where L = max{Ci, i = 1, 2, . . . 6}. Hence, Fn : Cα−1
T0

→ Cα−1
T0

follows.

Our next task is to show that Fn : W → W. Now, for t ∈ [0, T0]
and u ∈ W, we have

∥(Fnu)(t)− u0∥α
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≤
∫ ∞

0

θξη(θ)∥(S(tηθ)− I)Aα[u0 + gn(0, u0)]∥ dθ

+ ∥Aα−β∥∥Aβgn(s, u(s)))−Aβgn(0, u(0))∥

+ η

∫ t

0

∫ ∞

0

θξη(θ)(t− s)η−1∥S((t− s)ηθ)A1+α−β∥

∥Aβgn(s, u(s)))])∥ dθ ds

+ η

∫ t

0

∫ ∞

0

θξη(θ)(t− s)η−1∥S((t− s)ηθ)Aα∥

∥fn(s, u(s), u(h(u(s), s))])∥ dθ ds
≤ ∥(S(tηθ)− I)Aα[u0 + gn(0, u0)]∥

+ ∥Aα−β∥Lg[T0 + ∥A−1∥R]

+ C1+α−βN1
T

η(β−α)
0

β − α
+ CαN

T
η(1−α)
0

1− α
.

Hence, from (3.7) and (3.8), we get

∥Fnu− u0∥T0,α ≤ R.

Therefore, Fn : W → W.

Now, if t ∈ [0, T0] and u, v ∈ W, then

∥(Fnu)(t)− (Fnv)(t)∥α
≤ ∥Aα−β∥∥Aβgn(t, u(s))−Aβgn(t, v(s))∥

+ η

∫ t

0

∫ ∞

0

θξη(θ)(t− s)η−1∥S((t− s)ηθ)A1+α−β∥

× ∥Aβgn(s, u(s)))−Aβgn(s, v(s))∥ dθ ds

+ η

∫ t

0

∫ ∞

0

θξη(θ)(t− s)η−1∥S((t− s)ηθ)Aα∥

∥fn(s, u(s), u(h[u(s), s]))

− fn(s, v(s), v(h[v(s), s])))∥ dθ ds.(3.22)

We have the following inequalities:

(3.23) ∥Aβgn(s, u(s)))−Aβgn(t, v(t))∥ ≤ Lg∥A−1∥∥u− v∥T0,α,
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(3.24) ∥fn(s, u(s), u[h(u(s), s)])− fn(s, v(s), v[h(v(s), s)])∥

≤ Lf (2 + LLh)∥u− v∥T0,α.

We use the inequalities (3.23) and (3.24) in (3.22) and get

∥(Fnu)(t)− (Fnv)(t)∥α ≤
[
Lg∥Aα−β−1∥+ C1+α−βLg∥A−1∥T

η(β−α)
0

β − α

+ CαLf (2 + LLh)
T

η(1−α)
0

1− α

]
∥u− v∥T0,α.(3.25)

Hence, from inequality (3.4), we get the following inequality:

∥Fnu−Fnv∥T0,α < ∥u− v∥T0,α,

i.e., the map Fn is a contraction on W. Therefore, the map Fn has a

unique fixed point un ∈ W, given by

un(t) =

∫ ∞

0

θξη(θ)S(t)[u0 + gn(0, u0)] dθ − gn(t, un(t))

+ η

∫ t

0

∫ ∞

0

θξη(θ)(t− s)η−1AS((t− s)ηθ)gn(s, un(s))) dθ ds,

+ η

∫ t

0

∫ ∞

0

θξη(θ)(t− s)η−1S((t− s)ηθ)

fn(s, un(s), un(h(un(s), s))) dθ ds, t ∈ (0, T0].

(3.26)

This completes the proof of Theorem 3.1. �

Lemma 3.2. Assume that assumptions (H1)–(H3) are satisfied. We
have the following results

(i) If u0 ∈ D(Aα), then un(t) ∈ D(Aϑ) for all t ∈ (0, T0],
(ii) If u0 ∈ D(A), then un(t) ∈ D(Aϑ) for all t ∈ (0, T0],

for 0 < ϑ < β < 1.

Proof. Since we have proved that un ∈ W ⊆ Cα−1
T0

, then un must be
Hölder continuous on [0, T0]. Furthermore, the inequalities (H2)–(H4)
imply the Hölder continuity of f(t, un(t), un(h(un(t), t))) and g(t, un(t))
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on [0, T0]. We also note that [26, Theorem 3.2, page 111]

η

∫ t

0

∫ ∞

0

θξη(θ)(t− s)η−1AS((t− s)ηθ)gn(s, un(s)) dθ ds ∈ D(A).

Hence, we can easily prove that un(t) ∈ D(A). For more details, we
refer to [5, Theorem 2.2]. Part (i) follows from (ii) and the fact that
D(A) ⊂ D(Aϑ), 0 < ϑ ≤ 1 (see Lemma 2.1 (ii)). �

Lemma 3.3. Suppose that assumptions (H1)–(H4) are satisfied. We
have the following inequalities:

(i) If u0 ∈ D(Aα), then for any t0 ∈ (0, T0]

∥un(t)∥ϑ ≤ Ut0 , t ∈ [t0, T0], n = 1, 2, . . . ,

for some constant Ut0 , independent of n.
(ii) If u0 ∈ D(A), then there exists a constant U0 such that

∥un(t)∥ϑ ≤ U0, t ∈ [0, T0], n = 1, 2, . . . .

Proof. Let u0 ∈ D(Aα). Applying Aϑ on both sides of (3.26), for
t ∈ [t0, T0] and α < ϑ < β, we have

∥un(t)∥ϑ ≤
∫ ∞

0

ξη(θ)∥AϑS(tηθ)(u0 + gn(0, u0)∥ dθ

+ ∥Aϑ−β∥ ∥Aβgn(t, un(t))∥

+ η

∫ t

0

∫ ∞

0

θξη(θ)(t− s)η−1∥A1+ϑ−βS((t− s)ηθ)∥

× ∥Aβgn(s, un(s))∥ dθ ds

+ η

∫ t

0

∫ ∞

0

θξη(θ)(t− s)η−1

× ∥S((t− s)ηθ))Aϑ∥
∥fn(s, un(s), un(h(un(s), s)))∥ dθ ds

≤ Cϑt
−ηϑ
0 (∥u0∥+ ∥gn(0, u0)∥

+ ∥Aϑ−β∥N1

+ C1+ϑ−βN1
T η(β−ϑ)

β − ϑ
+ CϑN

T η(1−ϑ)

1− ϑ
≤ Ut0 .(3.27)
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Similarly, we can find the estimate

∥un(t)∥ϑ ≤M(∥Aϑu0∥+ ∥gn(0, ũ0∥ϑ) + ∥Aϑ−β∥N1

+ C1+ϑ−βN1
T η(β−ϑ)

β − ϑ
+ CϑN

T η(1−ϑ)

1− ϑ
≤ U0,(3.28)

for given u0 ∈ D(A) and t ∈ (0, T0]. �

4. Convergence of solutions. In this section we establish the
convergence of the solution un ∈ Hα(T0) of each approximate integral
equation to a unique solution u of (3.9).

Theorem 4.1. Let us assume that conditions (H1)–(H3) are satisfied.
If u0 ∈ D(Aα), then for t0 ∈ (0, T0]

∥un − um∥T0,α −→ 0, as m,n→ ∞,

i.e., un is a Cauchy sequence in W on [t0, T0].

Proof. Let 0 < α < ϑ < β. For n ≥ m, we have

∥fn(t, un(t), un[h(un(t), t)])− fm(t, um(t), um[h(um(t), t)])∥
≤ ∥fn(t, un(t), un[h(un(t), t)])
− fn(t, um(t), um[h(um(t), t)])∥
+ ∥fn(t, um(t), um[h(um(t), t)])

− fm(t, um(t), um[h(um(t), t)])∥
≤ Lf (2 + LLh)∥un(t)− um(t)∥α
+ Lf [∥(Pn − Pm)um(t)∥α
+ ∥A−1∥∥(Pn − Pm)um(h(um(t), t))∥α].

Also,

∥(Pn − Pm)um(t)∥α ≤ ∥Aα−ϑ(Pn − Pm)Aϑum(t)∥

≤ 1

λϑ−α
m

∥Aϑum(t)∥.(4.1)

Thus, we have

∥fn(t, un(t), un[h(un(t), t)])− fm(t, um(t), um[h(um(t), t)])∥
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≤ Lf (2 + LLh)∥un(t)− um(t)∥α + Lf

[
1

λϑ−α
m

∥Aϑum(t)∥

+
∥A−1∥
λϑ−α
m

∥Aϑum(h(um(t), t))∥
]
.

Similarly,

∥Aβgn(t, un(t))−Aβgm(t, um(t))∥

≤ ∥Aβgn(t, un(t))−Aβgn(t, um(t))∥

+ ∥Aβgn(t, um(t))−Aβgm(t, um(t))∥

≤ Lg∥A−1∥
[
∥un(t)− um(t)∥α +

1

λϑ−α
m

∥Aϑum(t)∥
]
.

Now, for 0 < t′0 < t0, we may write

∥un(t)− um(t)∥α ≤
∫ ∞

0

ξη(θ)∥S(tηθ)Aα(gn(0, u0)− gm(0, u0))∥ dθ

+ ∥Aα−β∥ ∥Aβgn(t, un(t))−Aβgm(t, um(t))∥

+ η

(∫ t′0

0

+

∫ t

t′0

)∫ ∞

0

θξη(θ)(t− s)η−1

∥A1+α−βS((t− s)ηθ))∥

× ∥Aβgn(s, un(s))−Aβgm(s, um(s))∥ dθ ds

+ η

(∫ t′0

0

+

∫ t

t′0

)∫ ∞

0

θξη(θ)(t− s)η−1

∥AαS((t− s)ηθ)∥
× ∥fn(s, un(s), un(h(un(s), s)))

− fm(s, um(s), um(h(um(s), s)))∥dθds.

We estimate the first term as∫ ∞

0

ξη(θ)∥S(tηθ)Aα(gn(0, u0)− gm(0, u0))∥ dθ

≤
∫ ∞

0

ξη(θ)M∥Aα−β∥ ∥Aβg(0, Pnu0)−Aβg(0, Pmu0)∥ dθ

≤M∥Aα−β−1∥Lg∥(Pn − Pm)Aαu0∥
∫ ∞

0

ξη(θ) dθ
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≤M∥Aα−β−1∥Lg∥(Pn − Pm)Aαu0∥

≤ 1

λϑ−α
m

M∥Aα−β−1∥Lg∥ ∥Aϑu0∥.

The first and third integrals are estimated as

η

∫ t′0

0

∫ ∞

0

θξη(θ)(t− s)η−1∥A1+α−βS((t− s)ηθ)∥

∥Aβgn(s, un(s))−Aβgm(s, um(s))∥ dθ ds

≤ 2C1+α−βN1

β − α
(tη(β−α) − (t− t′0)

η(β−α))

≤ 2C1+α−βN1

β − α
(t− δ1t

′
0)

η(β−α)−1t′0, 0 < δ1 < 1,

≤ 2C1+α−βN1

β − α
(t0 − t′0)

η(β−α)−1t′0.(4.2)

η

∫ t′0

0

∫ ∞

0

ξη(θ)(t− s)η−1∥AαS((t− s)ηθ)∥

∥fn(s, un(s), un(h(un(s), s)))
− fm(s, um(s), um(h(um(s), s)))∥ dθ ds

≤ 2CαN

1− α
(tη(1−α) − (t− t′0)

η(1−α))

≤ 2CαN

1− α
(t− δ2t

′
0)

η(1−α)−1t′0, 0 < δ2 < 1,

≤ 2CαN

1− α
(t0 − t′0)

η(1−α)−1t′0.(4.3)

For the second and fourth integrals, we have

η

∫ t

t′0

∫ ∞

0

θξη(θ)(t− s)η−1∥A1+α−βS((t− s)ηθ)∥

∥Aβgn(s, un(s))−Aβgm(s, um(s))∥ dθ ds

≤ ηC1+α−βLg∥A−1

∥∥∥∥( Ut′0
T0

η(β−α)

λϑ−α
m η(β − α)

(4.4)

+

∫ t

t′0

(t− s)η(β−α)−1∥un(s)− um(s)∥αds
)
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η

∫ t

t′0

∫ ∞

0

θξη(θ)(t− s)η−1∥AαS((t− s)ηθ)∥

× fn(s, un(s), un[h(un(s), s)])

− fm(s, um(s), um[h(um(s), s)]) dθ ds

≤ ηCαLf

(
(1 + ∥A−1∥)

Ut′0
T0

η(1−α)

λϑ−α
m η(1− α)

+ (2 + LLh)

∫ t

t′0

(t− s)η(1−α)−1∥un(s)− um(s)∥αds
)
.(4.5)

Therefore,

∥un(t)− um(t)∥α ≤ 1

λϑ−α
m

M∥Aα−β−1∥Lg∥∥Aϑu0∥

+ ∥Aα−β−1∥Lg

(
∥un(t)− um(t)∥α +

Ut′0

λϑ−α
m

)
+ 2

(
C1+α−βN1

(t0 − t′0)
1−η(β−α)

+
CαN

(t0 − t′0)
1−η(1−α)

)
t′0

+ Cα,β

Ut′0

λϑ−α
m

+

∫ t

t′0

(
CαLf (2 + LLh)

(t− s)η(α−1)+1
+
C1+α−βLg∥A−1∥
(t− s)η(α−β)+1

)
∥un(s)− um(s)∥αds,

where

Cα,β = (1 + ∥A−1∥)CαLf
T0

η(1−α)

1− α
+ C1+α−βLg∥A−1∥T0

η(β−α)

β − α
.

Since ∥Aα−β−1∥Lg < 1, we have

∥un(t)− um(t)∥α ≤ 1

(1− ∥Aα−β−1∥Lg)

×
{
∥Aα−β−1∥Lg

(
M

1

λϑ−α
m

∥Aϑu0∥+
Ut′0

λϑ−α
m

)
+ 2

(
C1+α−βN1

(t0 − t′0)
1−η(β−α)
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+
CαN

(t0 − t′0)
1−η(1−α)

)
t′0 + Cα,β

Ut′0

λϑ−α
m

}
+

∫ t

t′0

(
CαLf (2 + LLh)

(t− s)η(α−1)+1

+ C1+α−βLg∥A−1∥(t− s)η(α−β)+1

)
∥un(s)− um(s)∥αds.

Applying Gronwall’s inequality and estimating t− s by T0, we get the
following:

∥un(t)− um(t)∥α ≤ 1

(1− ∥Aα−β−1∥Lg){(
∥Aα−β−1∥LgM∥Aϑu0∥

+ ∥Aα−β−1∥LgUt′0
+ Cα,βUt′0

)
1

λϑ−α
m

+ 2

(
C1+α−βN1

(t0 − t′0)
1−η(β−α)

+
CαN

(t0 − t′0)
1−η(1−α)

)
t′0

}
C.

Letting m→ ∞ and taking the supremum over [t0, T0], we obtain

∥un − um∥T0,α

≤ 2

(1− ∥Aα−β−1∥Lg)

(
C1+α−βN1

(t0 − t′0)
1−η(β−α)

+
CαN

(t0 − t′0)
1−η(1−α)

)
t′0C.

As t′0 is arbitrary, the right hand side may be made as small as
desired by taking t′0 sufficiently small. This completes the proof of
Theorem 4.1. �

Similarly, we can prove the following corollary.

Corollary 4.2. If u0 ∈ D(A), then

∥un − um∥T0,α −→ 0, as m,n→ ∞,

i.e., un is a Cauchy sequence in W on (0, T0].
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With the help of Theorems 3.1 and 4.1, we have the following result
for the convergence of solutions to each of the approximate integral
equations.

Theorem 4.3. Let us suppose that assumptions (H1)–(H4) are satis-
fied, and let u0 ∈ D(Aα) or D(A). Then there exists a unique function
un ∈ W,

un(t) =

∫ ∞

0

ξη(θ)S(t
ηθ)[u(0) + gn(0, u0)] dθ − gn(t, un(t))

+ η

∫ t

0

∫ ∞

0

θξη(θ)(t− s)η−1AS((t− s)ηθ)gn(s, un(s)) dθ ds

+ η

∫ t

0

∫ ∞

0

θξη(θ)(t− s)η−1S((t− s)ηθ)

× fn(s, un(s), un(hn(un(s), s))) dθ ds, t ∈ (0, T0]

and u ∈ W,

u(t) =

∫ ∞

0

ξη(θ)S(t
ηθ)[u(0) + g(0, u0)] dθ − g(t, u(t))

+ η

∫ t

0

∫ ∞

0

θξη(θ)(t− s)η−1AS((t− s)ηθ)g(s, u(s)) dθ ds

+ η

∫ t

0

∫ ∞

0

θξη(θ)(t− s)η−1S((t− s)ηθ)

× f(s, u(s), u(h(u(s), s))) dθ ds, t ∈ (0, T0],

such that un → u as n→ ∞ in W and u satisfies (3.9) on (0, T0].

5. Faedo-Galerkin approximations. In this section, we will study
the Faedo-Galerkin approximation solution of (1.1) and prove the con-
vergence result for such an approximation.

We have proved a unique solution u ∈ W of the integral equation:

u(t) =

∫ ∞

0

ξη(θ)S(t
ηθ)[u(0) + g(0, u0)] dθ − gn(t, u(t))

+ η

∫ t

0

∫ ∞

0

θξη(θ)(t− s)η−1AS((t− s)ηθ)g(s, u(s)) dθ ds
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+ η

∫ t

0

∫ ∞

0

θξη(θ)(t− s)η−1S((t− s)ηθ)

f(s, u(s), u(h(u(s), s))) dθ ds, t ∈ [0, T0].(5.1)

Then it has the representation

(5.2) u(t) =

∞∑
i=0

αi(t)ϕi, αi(t) = (u(t), ϕi), i = 0, 1, . . . ;

where the ϕi’s are defined in (H1).

Also, we have a unique solution un ∈ W of the approximate integral
equation

un(t) =

∫ ∞

0

ξη(θ)S(t
ηθ)[u(0) + gn(0, u0)] dθ − gn(t, un(t))

+ η

∫ t

0

∫ ∞

0

θξη(θ)(t− s)η−1AS((t− s)ηθ)gn(s, un(s)) dθ ds

+ η

∫ t

0

∫ ∞

0

θξη(θ)(t− s)η−1S((t− s)ηθ)

fn(s, un(s), un(h(un(s), s))) dθ ds, t ∈ [0, T0].(5.3)

Let Pnun(t) = ûn(t) be the orthogonal projection of (5.3) on the first
n elements of {ϕi} satisfying the following equation:

ûn(t) =

∫ ∞

0

ξη(θ)S(t
ηθ)Pn[u(0) + gn(0, u0)] dθ − Pngn(t, un(t))

+ η

∫ t

0

∫ ∞

0

θξη(θ)(t− s)η−1AS((t− s)ηθ)Pngn(s, un(s)) dθ ds

+ η

∫ t

0

∫ ∞

0

θξη(θ)(t− s)η−1S((t− s)ηθ)Pn

fn(s, un(s), un(h(un(s), s))) dθ ds, t ∈ [0, T0].

(5.4)

Using (3.10) and (3.11) in (5.4), we get

ûn(t) =

∫ ∞

0

ξη(θ)S(t
ηθ)Pn[u(0) + gn(0, u0)] dθ − Png(t, ûn(t))
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+ η

∫ t

0

∫ ∞

0

θξη(θ)(t− s)η−1AS((t− s)ηθ)Png(s, ûn(s)) dθ ds

+ η

∫ t

0

∫ ∞

0

θξη(θ)(t− s)η−1S((t− s)ηθ)Pn

f(s, ûn(s), ûn(h(ûn(s), s))) dθ ds, t ∈ [0, T0].

(5.5)

The solution ûn of (5.5) has the following representation

(5.6) ûn(t) =

n∑
i=0

αn
i (t)ϕi, αn

i (t) = (ûn(t), ϕi), i = 0, 1, . . . ;

Then we get a system of equations from (5.4) and (5.6)

dβ

dtβ
[αn

i (t) +Hn
i (t, α

n
0 , α

n
1 , · · · , αn

n)] + λiα
n
i (t)

= Fn
i (t, α

n
0 , α

n
1 , · · · , αn

n, τ
n
0 , τ

n
1 , · · · , τnn )

αn
i (0) = ui,(5.7)

where

Fn
i =

(
f(t,

n∑
i=0

αn
i ϕi,

n∑
i=0

τni ϕi), ϕi

)
,

Hn
i =

(
g(t,

n∑
i=0

αn
i ϕi), ϕi

)
,

τni = αn
i (h(α

n
0 , α

n
1 , . . . , α

n
n, t))

and ui = (u0, ϕi) for i = 1, 2, . . . , n . Convergence of αn
i (t) → αi(t)

follows from the following theorem and the fact that

Aα[u(t)− ûn(t)] = Aα

[ ∞∑
i=0

(αi(t)− αn
i (t))ϕi

]

=

∞∑
i=0

λαi (αi(t)− αn
i (t))ϕi.
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Thus, we have

∥Aα[u(t)− ûn(t)]∥2 ≥
n∑

i=0

λ2αi (αi(t)− αn
i (t))

2.

Theorem 5.1. Let us suppose that propositions (H1)–(H4) are satis-
fied. Then we have the following :

(a) If u0 ∈ D(Aα), then for any 0 < t0 ≤ T0,

sup
t0≤t≤T0

[ n∑
i=0

λ2αi (αi(t)− αn
i (t))

2

]
−→ 0, as n→ ∞.

(b) If u0 ∈ D(A), then

sup
0≤t≤T0

[ n∑
i=0

λ2αi (αi(t)− αn
i (t))

2

]
−→ 0, as n→ ∞.

As a consequence of Theorems 3.1 and 4.1, we have the following
result.

Proposition 5.2. Let us suppose that assumptions (H1)–(H4) are
satisfied. Then we have the following :

(a) If u0 ∈ D(Aα), then for any 0 < t0 ≤ T0,

∥ûn − ûm∥T,α −→ 0, as m,n→ ∞,

i.e., ûn is a cauchy sequence in W on [t0, T0].
(b) If u0 ∈ D(A), then

∥ûn − ûm∥T,α −→ 0, as m,n→ ∞,

i.e., ûn is a cauchy sequence in W on [0, T0].

Proof. Letting n ≥ m and 0 ≤ α < ϑ, we have

∥ûn(t)− ûm(t)∥α = ∥Pnun(t)− Pmum(t)∥α
≤ ∥Pn[un(t)− um(t)]∥α + ∥(Pn − Pm)um∥α

≤ ∥un(t)− um(t)∥α +
1

λϑ−α
m

∥Aϑum∥.
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If u0 ∈ D(Aα), then the result in (a) follows from Theorem 4.1. If
u0 ∈ D(A), (b) follows from Corollary 4.2. �

For the convergence of ûn(t) → u(t), we have the following theorem.

Theorem 5.3. Let assumptions (H1)–(H4) be satisfied, and let u0 ∈
D(Aα) or D(A). Then there exists a unique function ûn ∈ W satisfying

ûn(t) =

∫ ∞

0

ξη(θ)S(t
ηθ)[u(0) + gn(0, u0)] dθ − gn(t, ûn(t))

+ η

∫ t

0

∫ ∞

0

θξη(θ)(t− s)η−1AS((t− s)ηθ)gn(s, ûn(s)) dθ ds

+ η

∫ t

0

∫ ∞

0

θξη(θ)(t− s)η−1S((t− s)ηθ)

fn(s, ûn(s), ûn(hn(ûn(s), s))) dθ ds, t ∈ [0, T0],

and u ∈ W

u(t) =

∫ ∞

0

ξη(θ)S(t
ηθ)[u(0) + g(0, u0)]dθ − gn(t, û(t))

+ η

∫ t

0

∫ ∞

0

θξη(θ)(t− s)η−1AS((t− s)ηθ)g(s, u(s)) dθ ds

+ η

∫ t

0

∫ ∞

0

θξη(θ)(t− s)η−1S((t− s)ηθ)

f(s, u(s), u(h(u(s), s))) dθ ds, t ∈ [0, T0],

such that ûn → u as n→ ∞ in W and u satisfies (3.9) on [0, T0].

6. Example. We consider the following fractional order partial dif-
ferential equation with a deviated argument:

(6.1)
∂ηt [w(t, x) + ∂xf1(t, w(t, x))]− ∂2x[w(t, x)]

= f2(x,w(t, x)) + f3(t, x, w(t, x)), x ∈ (0, 1), t > 0, η ∈ [0, 1),
w(t, 0) = w(t, 1) = 0,
w(0, x) = u0, x ∈ (0, 1),

where

f2(x,w(t, x)) =

∫ x

0

K(x, s)w(s, k(t)|w(s, t)|) ds.
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The function f3 : R+ × [0, 1] × R → R is measurable in its second
variable x, locally Hölder continuous in its first variable t, locally
Lipschitz continuous in its third variable w and uniformly in x. Further,
we assume that k : R+ → R+ is locally Hölder continuous in t with
k(0) = 0 and K(·, ·) ∈ C1([0, 1]× [0, 1];R).

Let X = L2((0, 1);R), Au = d2u/dx2, D(A) = H2(0, 1) ∩H1
0 (0, 1),

X1/2 = D((A)1/2) = H1
0 (0, 1) and X−1/2 = (H1

0 (0, 1))
∗ = H−1(0, 1) ≡

H1(0, 1).

For x ∈ (0, 1), we define the function f : R+ ×X1/2 ×X−1/2 → X
by

(6.2) f(t, u, ξ)(x) = f2(x, ξ) + f3(t, x, u),

where f2 : [0, 1]×X → H1
0 (0, 1) is given by

(6.3) f2(t, ξ) =

∫ x

0

K(x, y)ξ(y) dy,

and f3 : R× [0, 1]×H2(0, 1) → H1
0 (0, 1) satisfies the following

(6.4) ∥f3(t, x, u)∥ ≤ Q(x, t)(1 + ∥u∥H2(0,1)),

with Q(·, t) ∈ X and Q is continuous in its second argument. Next we
assume that the function h : H1

0 (0, 1)×R+ → R+ is defined by

(6.5) h(u(x, t), t) = k(t)|u(x, t)|.

For u ∈ D(A) and λ ∈ R with −Au = λu, we have

⟨−Au, u⟩ = ⟨λu, u⟩

∥u′∥L2 = λ∥u∥L2 ,(6.6)

so we have λ > 0. The solution u of −Au = λu is

(6.7) u(x) = D1 cos(
√
λx) +D2 sin(

√
λx).

Using the boundary condition, we get D1 = 0 and λ = λn = n2π2 for
n ∈ N. Thus, for n ∈ N, we have

un(x) = D2 sin(
√
λnx).
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Also ⟨un, um⟩ = 0,m ̸= n and ⟨un, un⟩ = 1. So, for u ∈ D(A), there
exists a sequence αn of real numbers such that u(x) =

∑
n∈N αnun(x)

with
∑

n∈N(αn)
2 <∞ and

∑
n∈N(αn)

2(λn)
2 <∞.

The semigroup is given by

S(t)u =
∑
n∈N

exp(−n2t)⟨u, um⟩um.

The abstract formulation of (6.1) can be written as the following:

dη

dtη
[u(t) + g(t, u(t))] +Au(t) = f(t, u(t), u[h(u(t), t)]), t > 0, η[0, 1),

u(0) = u0,(6.8)

where u(t) = w(t, ·) that is u(t)(x) = w(t, x), x ∈ (0, 1). The function
g : R+ ×X1/2 → X, such that g(t, u(t))(x) = ∂xf1(t, w(t, x)).

It’s not difficult to prove that all the assumptions (H1)–(H4) are
satisfied. For more details, see [7].
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