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MULTILEVEL AUGMENTATION METHODS
WITH MATRIX COMPRESSION FOR SOLVING
REFORMULATED HAMMERSTEIN EQUATIONS

XIANGLING CHEN, ZHONGYING CHEN AND BIN WU

Communicated by Kendall Atkinson

ABSTRACT. In this paper we supplement matrix trunca-
tion strategies with the multilevel augmentation methods for
solving the reformulated Hammerstein equations. The result-
ing numerical solutions have nearly optimal convergence order
with linear order computational complexity up to a logarith-
mic factor with respect to the dimension of the discretization
subspace. Numerical experiments on one and two dimensional
equations illustrate that our algorithm gains remarkably high
efficiency without losing accuracy.

1. Introduction. The Hammerstein equation is an important
kind of nonlinear integral equation. It serves as a mathematical
model for many applications, such as astrophysics, fluid dynamics,
cell kinetics, mathematical economies and so on. Moreover, it is used
as a model equation to test numerical methods for solving nonlinear
integral equations. There are various numerical methods for solving
the Hammerstein equation, which include projection methods, Nyström
methods, homotopy analysis, domain decomposition, etc. In [1], several
popular numerical schemes are reviewed. For more recent developments
on the numerical methods, see [4, 5, 18 20, 22, 28, 29]. All of
these methods involve evaluating the Jacobian matrix. Thanks to the
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structure of the nonlinear operator emerging in the equation, it requires
evaluating integrals while we update the Jacobian matrix, which brings
high computational complexity to numerical algorithms. The multigrid
method effectively utilizes the information on coarse grids, so that the
difficulty coming from the nonlinearity can be overcome to some extent.
However, the method still has an operation count of O(N2), where N
is the dimension of the discretization subspace.

In [27], Kumar and Sloan gave a reformulation of the Hammerstein
equation, the solution of which is equivalent to the original Hammer-
stein equation. It was observed that the discretization equation result-
ing from the collocation methods for solving the reformulated equation
can be solved much faster since, when we update the Jacobian ma-
trix, we make use of the representation matrix of the integral operator
emerging in the equation and need not evaluate the associated integrals.
Due to this advantage, the efficiency of the numerical algorithm is com-
parable with solving the corresponding linear integral equations of the
second kind. See also [25, 26] for more discussion of the algorithm.

The multilevel augmentation method is introduced in [11] in abstract
form for solving operator equations. Then it is used to solve integral
equations in [14], differential equations in [12] and ill-posed problems
in [16]. It is applied for solving Hammerstein equations in [15], which
is then extended to the fast solution of nonlinear integral equations
resulting from boundary value problems with nonlinear boundary con-
ditions (cf. [6, 7]). Recently, it has been used to solve the reformulated
Hammerstein equations in [8]. The key idea of the multilevel augmen-
tation methods is to invert the (linear or nonlinear) operator in a small
subspace rather than in the whole discretization space, which avoids es-
tablishing Jacobian matrices and solving linear systems in large scale.
This has been proved helpful in improving computational efficiency by
theoretical results and numerical experiments (cf. [11, 14, 15]). How-
ever, we still need to generate the representation matrix of the integral
operator, which is a full matrix in general. Therefore, the computa-
tional complexity of the algorithm in [8], which is not equipped with
truncation process, is obviously of quadratic order.

In this paper we embed truncation techniques for representation ma-
trices of integral operators into the algorithm from [8]. For a represen-
tation matrix associated with multiscale bases, truncation strategies
are established for weakly singular operators in [9] and for smooth op-
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erators in [16]. In both cases, the matrices can be truncated into sparse
matrices, the number of the nonzero entries of which is linear up to a
logarithmic factor with respect to the dimension of the matrices. Our
algorithm is very efficient because of three reasons. Firstly, the Ham-
merstein equation is reformulated and then discretized by collocation
methods, which avoids evaluation of integrals during the update of Ja-
cobian matrices. Secondly, the multilevel augmentation methods based
on multiscale discretization are applied to avoid matrix inversion in the
whole discretization subspace. Finally, matrix truncation remarkably
reduces the number of the integrals to be evaluated in the algorithm.

However, we are faced with two problems in integrating the trun-
cation techniques with the multilevel augmentation methods. Firstly,
truncation is basically a method of approximation and will introduce
error to the algorithm. Thus, we have to analyze the error induced
from truncation to the resulting numerical solutions. Secondly, when
the multiscale bases are used to establish collocation schemes for solv-
ing integral equations, the associated collocation functionals are not
single point evaluations, but linear combinations of point evaluations.
Correspondingly, the values of entries of the representation matrix of
the integral operator are linear combinations of function values. How-
ever, because of the existence of the nonlinear operator, the creation of
the Jacobian matrix needs function values on single points. This needs
special tricks to close the gap. In this paper we will address the above
two issues.

We organize the paper in four sections. In Section 2 we establish the
multilevel augmentation methods for solving the reformulated Ham-
merstein equation with truncation, where the truncation is character-
ized by a condition on the error between the original and truncated
integral operators. The error estimate is then given for the algorithm.
In Section 3 the concrete truncation strategies for two types of integral
operators are described and proved to satisfy the condition in Section 2.
Then the discrete form of the multilevel augmentation methods is pro-
posed, and the computational efforts are estimated according to the
computing steps. In Section 4, four numerical experiments are carried
out to compare our algorithm and that from [8]. We also compare
our algorithm with fast multilevel augmentation methods for solving
Hammerstein equations from [6].
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2. The multilevel augmentation methods for the reformu-
lated Hammerstein equations. In this section we first review the
collocation scheme for solving the reformulated Hammerstein equa-
tions, as well as the corresponding multilevel augmentation scheme
proposed in [8]. Then we state strategies for truncating the repre-
sentation matrix of the integral operator to establish a fast algorithm.
The accuracy of the resulting numerical solutions is estimated.

2.1. The collocation scheme and multilevel augmentation
methods without matrix truncation. For d ≥ 1, let E ⊆ Rd be a
compact domain. We consider solving the Hammerstein equation

(2.1) u(s)−
∫
E

K(s, t)ψ(t, u(t)) dt = f(s), s ∈ E,

where K, f and ψ are given functions and u is the unknown to be
determined. We assume that f ∈ C(E), the space of all continuous
functions on E, and for any s ∈ E, we denote Ks(t) := K(s, t).
The following assumptions are usually imposed when we consider the
numerical solution of equation (2.1).

(H1) lims→t ‖Ks−Kt‖1 = 0 for any t ∈ E, and sups∈E

∫
E
|K(s, t)| dt <

∞;

(H2) ψ(t, u) is continuous in t ∈ E and Lipschitz continuous in
u ∈ R, the partial derivative Duψ of ψ, with respect to the vari-
able u, exists and is Lipschitz continuous, and for any u ∈ C(E),
ψ(·, u(·)), Duψ(·, u(·)) ∈ C(E).

Let X := L∞(E), the space of essentially bounded functions on E.
We define the linear integral operator K : X→ X by

(Ku)(s) :=
∫
E

K(s, t)u(t) dt, s ∈ E,

and the nonlinear operator Ψ : X→ X by

(Ψu)(s) := ψ(s, u(s)), s ∈ E.

With the above notations, (2.1) is written in the operator form

(2.2) u−KΨu = f.
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To obtain the reformulation of (2.2), we define

(2.3) z := Ψ(u).

Then z satisfies the nonlinear equation

(2.4) z −Ψ(f +Kz) = 0.

It is proved in [27] that, if u∗ is an isolated solution of (2.2), then
z∗ = Ψ(u∗) is an isolated solution of (2.4). Conversely, if z∗ is an
isolated solution of (2.4), then u∗ = f + Kz∗ is an isolated solution of
(2.2). Note that, in (2.4), the unknown function z is first applied by the
linear operator K and then by the nonlinear operator Ψ, which brings
convenience to the numerical treatment (cf. [26, 27]). Specifically,
if we discretize the equations by projection methods and then apply
Newton iteration method to solving the resulting nonlinear system, the
computational efforts for updating the Jacobian matrix associated with
(2.4) are significantly lower than that of (2.2). Moreover, when we have
an approximate solution zn of (2.4), the corresponding approximate
solution un of (2.2) can be obtained through

un = f +Kzn.
It is stated in [26] that, under suitable conditions, un has a higher
convergence rate than zn, which is called a superconvergence property.

Now we establish the collocation scheme for solving (2.4). To this
end, we choose a sequence of finite-dimensional subspaces Xn, n ∈
N0 := {0, 1, 2, . . .} of X with the property

C(E) ⊂
⋃

n∈N0

Xn ⊂ X.

For each n ∈ N0, let Pn : X → Xn be the interpolatory projection
operator onto Xn. We remark that, although the point evaluation
functional is not well defined onX, there is a norm preserving extension
of the point evaluation functionals on C(E) toX. See [3] for the details.
Throughout this paper, we assume that

(H3) the sequence Pn, n ∈ N0 converges pointwise to the identity
operator in C(E), i.e., for any x ∈ C(E), there holds

lim
n→∞ ‖Pnx− x‖ = 0.
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The collocation method for solving (2.4) is to find zn ∈ Xn such that

(2.5) zn − PnΨ(f +Kzn) = 0.

The following theorem was established in [27] for the existence and
convergence property of zn.

Theorem 2.1. Let z∗ be an isolated solution of (2.4). Suppose that
the assumptions (H1) (H3) hold and 1 is not an eigenvalue of the linear
operator Ψ′(f + Kz∗)K. Then there exists a neighborhood of z∗ and a
positive integer N such that, for all n > N , (2.5) has a unique solution
zn in the neighborhood. Moreover, there exist two positive constants c1
and c2 such that

c1‖z∗ − Pnz
∗‖∞ ≤ ‖z∗ − zn‖∞ ≤ c2‖z∗ − Pnz

∗‖∞.

In the sense of the above theorem, the collocation solution zn is quasi-
optimal to approximate z∗ in Xn.

For any positive integer n, we define the index set Zn := {0, 1, . . . , n−
1}. The classical way to obtain the discretization form of (2.5) is by
choosing a basis {wj : j ∈ Zdn} of the subspace Xn and a set of points
{ti : i ∈ Zdn}, where dn := dim (Xn), and assuming zn =

∑
j∈Zdn

ajwj ,

such that

(2.6)
∑

j∈Zdn

ajwj(ti)−Ψ

(
f(ti) +

∑
j∈Zdn

ajKwj(ti)

)
= 0, i ∈ Zdn .

For i, j ∈ Zdn , let

Ĵij := wj(ti)−Ψ′
(
f(ti) +

∑
j∈Zdn

ajKwj(ti)

)
Kwj(ti).

Then the matrix Ĵn := [Ĵij : i, j ∈ Zdn ] is the Jacobian matrix of the
Newton iteration method for solving (2.6). Let

K̂ij := Kwj(ti), i, j ∈ Zdn .
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We call K̂n := [K̂ij : i, j ∈ Zdn ] the representation matrix of the
operator K with respect to {wj : j ∈ Zdn} and {ti : i ∈ Zdn}. We

remark that, although K̂n is not the representation matrix of K in the
classical sense, it is the matrix which corresponds to K with respect to
{wj : j ∈ Zdn} and {ti : i ∈ Zdn}. Therefore, in this paper, we abuse
the terminology to cite it. Note that

Ĵij = wj(ti)−Ψ′
(
f(ti) +

∑
j∈Zdn

ajK̂ij

)
K̂ij .

Therefore, once the representation matrix K̂n is established, the update
of the Jacobian matrix does not involve evaluating integrals, which
results in a significant reduction of computational efforts of the Newton
iteration method.

There are two time-consuming parts in the above numerical process.
One is creating the matrix K̂n, especially for the case of a singular
kernel. The other is inverting the current Jacobian matrix. Thanks
to the global property of integral operators, the representation matrix
K̂n is in general a full matrix, so is Ĵn. When the dimension of Xn is
large, solving a linear system with the coefficient matrix Ĵn is usually
difficult. In [8], a multiscale method for solving (2.5) is proposed, which
borrows the idea from [15] to avoid inverting matrices in the whole
discretization subspace. We briefly describe the algorithm below for
reference. Given a fixed k ∈ N0, for any integer n > k, let m := n− k.
Then we obtain an approximate solution zkm as follows. Let zk0 := zk
and, for l = 1, 2, . . . ,m, we solve zkl from

(2.7) zkl − PkΨ(Kk+lzkl + f) = (Pk+l − Pk)Ψ(Kk+lzk,l−1 + f).

Note that the subspace sequence {Xn : n ∈ N0} is nested, which allows
us to make a multiscale decomposition. Specifically, for any n ∈ N0,
we decompose Xn+1 into the direct sum of Xn and its orthogonal
complement Wn+1 in Xn+1, i.e., Xn+1 = Xn ⊕⊥ Wn+1. For any
k,m ∈ N0, we define

Wkm := Wk+1 ⊕⊥ Wk+2 ⊕⊥ · · · ⊕⊥ Wk+m.

It is shown that (cf. [15]) equation (2.7) is equivalent to solving
zHkl ∈Wkl from

(2.8) zHkl = (Pk+l − Pk)Ψ(Kk+lzk,l−1 + f),
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then solving zLkl ∈ Xk from

(2.9) Pk(z
L
kl + zHkl ) = PkΨ(Kk+l(z

L
kl + zHkl) + f),

and letting zkl = zLkl + zHkl . We observe that (2.8) is a linear equation,
while (2.9) is nonlinear. Therefore, the algorithm does not invert the
nonlinear operator in Xn, but only in its subspace Xk. If Xk is much
smaller than Xn, the computational cost will be remarkably cut down.
It is proved in [8] that the output zkm of the algorithm has the same
accuracy with the solution zk+m of (2.5).

2.2. Multilevel augmentation methods equipped with ma-
trix truncation. Although the algorithm from [8] avoids the com-
putational efforts of inverting matrices in the whole discretization sub-
space, we still need to create the full matrix K̂n, which requires much
computing time because of the evaluation of integrals. There are var-
ious ways to reduce the computational efforts of creating K̂n, one of
which is the use of multiscale bases (cf. [9, 13, 14, 17]). Multiscale
bases with special properties can lead to a numerically sparse repre-
sentation matrix of integral operators, i.e., a majority of the entries of
the matrix are quite small. By setting these entries to zero, numerically
sparse matrices can be truncated into sparse matrices. Since truncation
leads to numerical errors, truncation strategies are needed to determine
the positions of entries to be truncated, such that the truncation errors
are controllable.

In order to describe the truncation, we require the discretization
subspaces to have the following properties. Firstly, the sequence
{Xn : n ∈ N0} is nested. Moreover, let W r,∞(E) be the set of
all functions u on E, such that, for all α := (α0, α1, . . . , αd−1) with
|α| := ∑

i∈Zd
αi ≤ r, Dαu ∈ L∞(E), where

Dαu(x) :=
∂|α|u(x)

∂α0x0 · · · ∂αd−1xd−1

for any x := (x0, x1, . . . , xd−1) ∈ Rd. With the norm

‖u‖r,∞ := max{‖Dαu‖∞ : |α| ≤ r},
W r,∞(E) is a Banach space. We require that there exists a positive
integer μ > 1, such that for any u ∈ W r,∞(E),

(2.10) dist (u,Xn) ≤ cμ−rn/d‖u‖r,∞,
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where dist (A,B) denotes the distance between two point sets A and B.
Throughout the paper, we use c as a generic positive constant whose
value may change with the context. In practice, Xn are chosen as the
spaces of piecewise polynomials. The parameter r is then associated
with the order of the polynomials as well as the regularity of u. In [9] it
is shown how to construct the nested subspaces which meet the above
requirements.

For different types of integral kernels, the concrete truncation meth-
ods are different. For weakly singular integral operators, truncation
strategies based on discretization by collocation scheme with multiscale
bases have been discussed systematically in [9], and those for smooth
integral operators are given in [16]. However, we do not intend to give
the concrete truncation strategies in this section because of two consid-
erations. The first is that describing the strategies requires introducing
lots of symbols, such as the bases. The second is that we hope to
establish a uniform framework for the error estimate for various trun-
cation strategies. Therefore, we would like to postpone the description
of truncation strategies to the next section but only identify the er-
rors between the original integral operator and the truncated integral
operator. Specifically, let Kn := PnK|Xn be the approximate operator

of K on Xn, and denote by K̃n the operator resulting from truncating
Kn. Note that the operators and their representation matrices are in
a one-to-one correspondence. When we truncate a representation ma-
trix, we are also truncating the corresponding operator. We assume
the following condition on the error Kn − K̃n.

(H4) Let {βn : n ∈ N0} be a sequence of positive numbers with

βn −→ 0, n→∞.
For any n ∈ N0 and v ∈ Xn,

‖(Kn − K̃n)v‖∞ ≤ βn‖v‖∞.
Moreover, if z∗ ∈W r,∞(E) and there is a positive constant c′ such that
‖v − z∗‖∞ ≤ c′μ−rn/d‖z∗‖r,∞, then

(2.11) ‖(Kn − K̃n)v‖∞ ≤ c(n+ 1)μ−rn/d‖z∗‖r,∞.

In the next section, we will describe truncation strategies for two
types of integral kernels and verify that they both satisfy the above
hypothesis.
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Replacing the operator K in (2.5) by K̃n, we obtain the following
perturbed equation

(2.12) z̃n − PnΨ(f + K̃nz̃n) = 0.

The following lemma establishes the unique solvability and approxi-
mate property of the numerical solution of (2.12).

Lemma 2.2. Let z∗ be an isolated solution of (2.4). Suppose that the
assumptions (H1) (H4) hold and 1 is not an eigenvalue of the linear
operator Ψ′(f + Kz∗)K. Then there exists a neighborhood of z∗ and a
positive integer N such that, for all n > N , (2.12) has a unique solution
z̃n in the neighborhood. Moreover, there exists a positive constant c such
that

‖z∗ − z̃n‖∞ ≤ c(n+ 1)μ−rn/d‖z∗‖r,∞.

Proof. Note that K̃n is an approximate operator of Kn. With a
similar idea to proving the unique solvability of (2.5), we can prove
that (2.12) has a unique solution z̃n in the neighborhood of z∗. For the
estimate of the error z∗ − z̃n, we subtract (2.12) from (2.5) to obtain

zn − z̃n − Pn[Ψ(f +Knzn)−Ψ(f + K̃nz̃n)] = 0.

Define

R(zn, z̃n) := Ψ(f +Knzn)−Ψ(f + K̃nz̃n)−Ψ′(Knzn − K̃nz̃n).

Since
Knzn − K̃nz̃n = (Kn − K̃n)zn + K̃n(zn − z̃n),

we have

(I − PnΨ
′K̃n)(zn − z̃n) = Pn[Ψ

′(Kn − K̃n)zn +R(zn, z̃n)].

Note that (I − PnΨ
′K̃n)

−1 exist and are uniformly bounded for suffi-
ciently large n, and

‖R(zn, z̃n)‖∞ ≤ c′
(
‖(Kn − K̃n)zn‖2∞ + ‖K̃n(zn − z̃n)‖2∞

)
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for some positive constant c′. Thus,

‖zn − z̃n‖∞ ≤ c‖(Kn − K̃n)zn‖∞.

The lemma is then concluded with hypothesis (H4) and the estimate
from Theorem 2.1.

Equation (2.12) has a similar form to (2.5). Therefore, the solution of
(2.12) still encounters the difficulty of inverting the nonlinear operator
in the whole discretization subspace. In the following algorithm, we
utilize the idea of the algorithm from [8] to obtain an approximation
z̃km of the solution z̃k+m of (2.12).

Algorithm 1: Multilevel augmentation method equipped
with truncation strategy: the operator form. Let k be a fixed
positive integer. Given m ∈ N0, the algorithm outputs z̃km, which is
an approximation of the solution z̃k+m of (2.12).

Step 1: Find the solution z̃k of (2.12) with n := k. Set z̃k0 := z̃k
and l := 1.

Step 2: Compute z̃Hkl ∈Wkl by

(2.13) z̃Hkl = (Pk+l − Pk)Ψ(K̃k+lz̃k,l−1 + f).

Step 3: Solve z̃Lkl ∈ Xk from the nonlinear equation

(2.14) Pk(z̃
L
kl + z̃Hkl ) = PkΨ(K̃k+l(z̃

L
kl + z̃Hkl) + f).

Step 4: Let z̃kl = z̃Lkl+ z̃
H
kl . Set l ← l+1 and go back to Step 2 until

l = m.

Similar to [8], we can estimate the distance between z̃km and z̃k+m.
For the convenience of the reader, we provide a sketch of the proof for
the error estimate in the following theorem.

Theorem 2.3. Let z∗ be an isolated solution of (2.4). Suppose that
the assumptions (H1) (H4) hold and 1 is not an eigenvalue of the linear
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operator Ψ′(f + Kz∗)K. Then there exist a positive integer N and a
positive constant c such that, when k > N ,

‖z̃km − z̃k+m‖∞ ≤ c(k +m)μ−r(k+m)/d‖z∗‖r,∞.

Proof. Let L := Ψ′(f + Kz∗)K, and denote

R(u, v) := Ψ(f +Ku)−Ψ(f +Kv)− L(u − v).

Then, for m ∈ N0, we have

(I − PkL)(z̃km − z̃k+m) = PkR(z̃km, z̃k+m)

+ (Pk+m − Pk)[Ψ(K̃k+mz̃k,m−1 + f)

−Ψ(K̃k+mz̃k+m + f)].

Similar to the proof of Lemma 3.2 of [15], there exists an αk,m > 0
such that

‖z̃km − z̃k+m‖∞ ≤ αk,m‖z̃k,m−1 − z̃k+m‖∞.

Moreover, we have αk,m → 0, k →∞ uniformly form ∈ N0. Therefore,
when k is sufficiently large, we can take αk,m ≤ μ−r/d for all m ∈ N0.
Thus,

(2.15) ‖z̃km − z̃k+m‖∞
≤ μ−r/d (‖z̃k,m−1 − z̃k+m−1‖∞ + ‖z̃k+m−1 − z∗‖∞ + ‖z∗ − z̃k+m‖∞) .

Making use of (2.15), the theorem can be proved by induction with the
help of Lemma 2.2.

Combining Lemma 2.2 and Theorem 2.3, a simple application of
triangle inequality leads to the following error estimate for z̃km to the
true solution z∗.

Theorem 2.4. Let z∗ be an isolated solution of (2.4). Suppose that
the assumptions (H1) (H4) hold and 1 is not an eigenvalue of the linear
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operator Ψ′(f + Kz∗)K. Then there exist a positive integer N and a
positive constant c such that, when k > N ,

‖z̃km − z∗‖∞ ≤ c(k +m+ 1)μ−r(k+m)/d‖z∗‖r,∞.

It is shown by Theorem 2.4 that the output z̃km of Algorithm 1 has
nearly the same accuracy as z̃k+m.

3. Truncation strategies and estimation of computational
complexity. In this section we propose truncation strategies for the
representation matrix of the operator K. We prove that the truncated
operators resulting from the strategies satisfy Hypothesis (H4). More-
over, we give the discretization form of the algorithm and estimate the
total computational efforts involved in it.

3.1. Two types of truncation strategies. The shape of the rep-
resentation matrix of an operator is associated closely not only with the
properties of the operator, but also with those of the bases to discretize
the operator. Therefore, before stating the truncation strategies, we
have to describe the bases to discretize equation (2.12). Specifically,
we make use of the multiscale bases and collocation functionals which
are introduced in [9] to establish fast collocation methods for solving
linear integral equations of the second kind (see also [12, 14] for more
information on the bases). We don’t intend to describe the concrete
construction of the multiscale bases and collocation functionals but only
give the notations here. In the next section for numerical experiments,
the concrete expressions will be given. For n ∈ N0, let Ln be the space
of collocation functionals which corresponds to Xn. We require that
the sequence {Ln : n ∈ N0} also be nested; thus, we can make the de-
composition Ln+1 = Ln⊕Vn+1 for any n ∈ N0. Let w(0) := dim (X0)
and w(i) := dim (Wi) for i > 0. Suppose that

X0 = span {w0j : j ∈ Zw(0)}, L0 = span {�0j : j ∈ Zw(0)},
and, for i > 0,

Wi = span {wij : j ∈ Zw(i)}, Vi = span {�ij : j ∈ Zw(i)}.
By introducing the index set Jn := {(i, j) : i ∈ Zn+1, j ∈ Zw(i)}, we
have

Xn = span {wij : (i, j) ∈ Jn}, Ln = span {�ij : (i, j) ∈ Jn}, n ∈ N0.
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Define the matrix

En := [Ei′j′,ij : (i
′, j′), (i, j) ∈ Jn] with Ei′j′,ij := 〈�i′j′ , wij〉 ,

and

Kn := [Ki′j′,ij : (i
′, j′), (i, j) ∈ Jn] with Ki′j′,ij := 〈�i′j′ ,Kwij〉 .

Matrices En and Kn are representation matrices with respect to the
above multiscale bases and collocation functionals of the operators
I and K, respectively. Moreover, we make use of the index set
Jkl := Jk+l\Jk to define the matrix Ekl := [Ei′j′,ij : (i

′, j′), (i, j) ∈ Jkl].
In [9] the properties of {�ij : (i, j) ∈ Jn} and {wij : (i, j) ∈ Jn} are

described. We list below some of them for possible reference in the
proof of the theoretical analyses.

(I) For any (i, j) ∈ U := {(i, j) : i ∈ N0, j ∈ Zw(i)}, there
are at most (μ − 1)r − 1 number of wij′ , j

′ ∈ Zw(i), such that
meas (wij ∩ wij′ ) �= 0.

(II) For any i′, i ∈ N0 with i ≤ i′, there holds

〈�i′j′ , wij〉 = δi′iδj′j , j′ ∈ Zw(i′) j ∈ Zw(i),

where δi′i is the Kronecker delta.

(III) For any polynomial p of order r and i ≥ 1,

〈�ij , p〉 = 0, (wij , p) = 0, (i, j) ∈ U,

where (·, ·) denotes the inner product in L2(E).

(IV) There exists a positive constant θ0 such that ‖�ij‖ ≤ θ0 and
‖wij‖∞ ≤ θ0 for all (i, j) ∈ U.

(V) There exist positive constants c− and c+ such that, for any
i ∈ N0,

c−μi ≤ w(i) ≤ c+μi, c−μ−i ≤ max
j∈Zw(i)

|supp (wij)| ≤ c+μ−i.

(VI) For any v ∈ Xn, we have the unique expansion

v =
∑

(i,j)∈Jn

vijwij .
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There exist positive constants θ1 and θ2 such that

θ1‖v‖∞ ≤ ‖v‖∞ ≤ θ2(n+ 1)‖Env‖∞,

in which En := [〈�i′j′ , wij〉 : (i′, j′), (i, j) ∈ Jn].

The truncated operator K̃n is defined by its representation matrix,
which is denoted by K̃n, and K̃n is obtained by truncating the repre-
sentation matrix Kn of the operator Kn. In the following we describe
the truncation strategies for two cases, in which the kernel K is smooth
and weakly singular, respectively.

1. K is smooth. There exist a positive constant Λ and a sufficiently
large positive integer r, such that

(3.1) |Dα
sD

β
t K(s, t)| ≤ Λ

for any s, t ∈ E and |α| ≤ r, |β| ≤ r. The truncation strategy is as
follows.

(TM) For (i′, j′), (i, j) ∈ Jn, define

K̃i′j′,ij =

{
Ki′j′,ij i′ + i ≤ n,
0 otherwise.

Then the truncated matrix is defined by

K̃n := [K̃i′j′,ij : (i
′, j′), (i, j) ∈ Jn].

The above strategy has been proposed in [17] and used in [6] for
one-dimensional equations. The following lemma provides estimates
on Kn − K̃n. Since the one-dimensional case was proven in [6], we
don’t intend to provide all details in the proof of the lemma.

Lemma 3.1. Suppose that the kernel K is smooth in the sense
of (3.1) and the representation matrix of K is truncated with strategy
(TM). For a matrix A, we denote by N (A) the number of nonzero

entries of A. Then N (K̃n) = O(nμn). For any v ∈ Xn, the following
holds

(3.2) ‖(Kn − K̃n)v‖∞ ≤ c(n+ 1)2μ−rn/d‖v‖∞
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for all n ∈ N0. Moreover, if z∗ ∈ W r,∞(E) and v satisfies ‖v−z∗‖∞ ≤
cnμ−r(n−1)/d‖z∗‖r,∞, then

(3.3) ‖(Kn − K̃n)v‖∞ ≤ c(n+ 1)μ−rn/d‖z∗‖r,∞.

Proof. The estimate for N (K̃n) has been given in [17]. For i′, i ∈
Zn+1, we define

Ki′i := [Ki′j′,ij : j
′ ∈ Zw(i′), j ∈ Zw(i)]

and

K̃i′i := [K̃i′j′,ij : j
′ ∈ Zw(i′j) ∈ Zw(i).

According to the truncation strategy, when i′+ i ≤ n, Ki′i = K̃i′i, and
when i′ + i > n, Ki′i − K̃i′i = Ki′i. It follows from property (III) and
(3.1) that, for j′ ∈ Zw(i′) and j ∈ Zw(i),

|Ki′j′,ij | ≤ cμ−r(i′+i)/dΛ|Sij |.
We then make use of property (I) to obtain∑

j∈Zw(i)

|Ki′j′,ij | ≤ cμ−r(i′+i)Λ ≤ cμ−rn/dΛ,

when i′ + i > n. Therefore, for i′, i ∈ Zn, ‖Ki′i − K̃i′i‖∞ ≤ cμ−rn/dΛ.

Let h := E−1
n (Kn − K̃n)v. We expand (Kn − K̃n)v into

(Kn − K̃n)v =
∑

(i,j)∈Jn

hijwij .

Then property (VI) gives

(3.4) ‖(Kn − K̃n)v‖∞ ≤ θ2(n+ 1)‖(Kn − K̃n)v‖∞.
It is left to estimate ‖(Kn − K̃n)v‖∞. For the first case, note that
property (VI) leads to ‖v‖∞ ≤ θ−1

1 ‖v‖∞. On the other hand, there
exists a positive constant c such that, for all n ∈ N0,

‖Kn − K̃n‖∞ ≤ max
i′∈Zn+1

∑
i∈Zn+1

‖Ki′i − K̃i′i‖∞ ≤ c(n+ 1)μ−rn/d.
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For the second case, the proof is very similar to Lemma 4.2 of [6], the
idea of which originates from Lemma 4.2 in [9].

2. K is weakly singular. For s, t ∈ E with s �= t, the kernel has
continuous partial derivativesDα

sD
β
t K(s, t) for |α| ≤ r and |β| ≤ r, and

there exist positive constants θ and σ < d such that, for |α| = |β| = r,

|Dα
sD

β
t K(s, t)| ≤ θ|s− t|−(σ+2r).

For (i, j) ∈ Jn, let Sij := supp (wij), and define di := max{diam(Sij) :
j ∈ Zw(i)} for i ∈ N0. The truncation strategy for this case is

(TS) For (i′, j′), (i, j) ∈ Jn, define

K̃i′j′,ij =

{
Ki′j′,ij dist (Si′j′ , Sij) ≤ εni′i,
0 otherwise,

in which the truncation parameters εni′i are identified by

(3.5) εni′i := max{aμ[−n+b(n−i)+b′(n−i′)]/d, ρ(di + di′ )}
for some positive constants b′, b, a > 0 and ρ > 1. Then the truncated
matrix is defined by

K̃n := [K̃i′j′,ij : (i
′, j′), (i, j) ∈ Jn].

The strategy is established and analyzed in [9] and used in [6, 7, 10,
11, 14]. According to the analysis in [9], the following holds:

(3.6) ‖Ki′i − K̃i′i‖∞ ≤ c(εni′i)−(2r−σ′)μ−r(i′+i)/d, i′, i ∈ Zn+1.

Following a similar theme as the proof of Lemma 3.1, we conclude

Lemma 3.2. Let σ′ ∈ (0, d), η := 2r−σ′, and set b = 1, b′ ∈ (r/η, 1)

in (3.5). Then N (K̃n) = O(nμn). For any v ∈ Xn and n ∈ N0,

(3.7) ‖(Kn − K̃n)v‖∞ ≤ c(n+ 1)μ−σ′n/d‖v‖∞.
Moreover, if z∗ ∈ W r,∞(E) and v satisfies ‖v − z∗‖∞ ≤ cnμ−r(n−1)/d

‖z∗‖r,∞, then

(3.8) ‖(Kn − K̃n)v‖∞ ≤ c(n+ 1)μ−rn/d‖z∗‖r,∞.
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For the meaning and ranges of the parameters in Lemma 3.2, please
refer to [6, 9].

The results of Lemmas 3.1 and 3.2 confirm that Hypothesis (H4)
is satisfied if we use strategy (TM) to truncate the representation
matrices of smooth kernels and strategy (TS) to truncate those of
weakly singular kernels.

With the truncated matrix K̃n, the truncated operator K̃n is defined
as the linear operator from Xn onto Xn satisfying

K̃i′j′,ij =
〈
�i′j′ , K̃nwij

〉
, (i′, j′), (i, j) ∈ Jn.

It is easily seen that the operator is uniquely determined by the above
conditions.

3.2. Discrete form of multilevel augmentation methods
equipped with matrix truncation. We have shown above how
to establish the representation matrix K̃n of the truncated integral
operator K̃n. However, K̃n cannot be used in the algorithm. To see
this, we note that, with respect to the multiscale bases and collocation
functionals, (2.13) is equivalent to the nonlinear system

(3.9)
〈
�i′j′ , z̃

H
kl

〉
=

〈
�i′j′ ,Ψ(K̃k+l z̃k,l−1 + f)

〉
, (i′, j′) ∈ Jkl.

Suppose that

z̃k,l−1 =
∑

(i,j)∈Jk+l−1

(z̃k,l−1)ijwij ,

and define the representation vector z̃k,l−1 := [(z̃k,l−1)ij : (i, j) ∈
Jk+l−1]

T and the matrix K̃H
k,l−1 := [K̃i′j′,ij : (i′, j′) ∈ Jkl, (i, j) ∈

Jk+l−1]. Then

K̃H
k,l−1z̃k,l−1 =

[〈
�i′j′ , K̃k+lz̃k,l−1

〉
: (i′, j′) ∈ Jkl

]T
,

i.e., making use of the matrix K̃n, we have the values of the functionals
�i′j′ applied on K̃k+l z̃k,l−1. Note that, in general, �i′j′ is not a single
point evaluation, but a finite combination of point evaluations (see
[9] for the details). On the other hand, what we need in the right
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hand side of (3.9) is not the combination of point evaluations, but the
value of single point evaluation. To observe this, let � be a functional,
which is a combination of M point evaluations. We express it by
� :=

∑
j∈ZM

αjδtj . For j ∈ ZM , let

gj := (K̃k+l z̃k,l−1)(tj) + f(tj).

Then 〈
�,Ψ(K̃k+lz̃k,l−1 + f)

〉
=

∑
j∈ZM

αjψ(tj , gj).

Based on the above observations, we use the following computing
trick. For any functional � =

∑
j∈ZM

αjδtj , we denote by α(�) := [αj :
j ∈ ZM ] the vector of combination coefficients and by t(�) := [tj : j ∈
ZM ] the vector of the points emerging in �. For any (i′, j′), (i, j) ∈ Jn,
define the vector

Ki′j′,ij :=

{
(Kwij)(t(�i′j′)) K̃i′j′,ij �= 0,

0 K̃i′j′,ij = 0.

We remark that each Ki′j′,ij is a vector since t(�i′j′ ) is a vector. For
s := [sj : j ∈ ZM ] and t := [tj : j ∈ ZM ], we use the notation ψ(s, t)
to denote the vector [ψ(sj , tj) : j ∈ ZM ]. Compute the vector

g :=
∑

(i,j)∈Jk+l−1

Ki′j′,ij(z̃k,l−1)ij + f(t(�i′j′ )).

Then 〈
�i′j′ ,Ψ(K̃k+l z̃k,l−1 + f)

〉
= (α(�i′j′ ), ψ(t(�i′j′ ),g)) ,

in which (·, ·) denotes the �2 inner product. Therefore, we have the
following discrete form of multilevel augmentation method.

Algorithm 2: Multilevel augmentation method equipped
with truncation strategy: the discrete form. Let k be a fixed
positive integer. Given m ∈ N0, the algorithm gives the representation
vector z̃km of z̃km. Before carrying out the following steps, we assume
that the values of Ki′j′,ij , (i

′, j′), (i, j) ∈ Jk+m have been obtained.
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Step 1: For (i′, j′) ∈ Jk, define the vector

f i′j′ (z̃k) :=
∑

(i,j)∈Jk

Ki′j′,ij(z̃k)ij + f(t(�i′j′ )).

Then let

fk(z̃k) :=
[(
α(�i′j′), ψ(t(�i′j′), f i′j′(z̃k))

)
: (i′, j′) ∈ Jk

]T
.

Solve z̃k := [(z̃k)ij : (i, j) ∈ Jk] from the nonlinear system

Ekz̃k − fk(z̃k) = 0.

Let z̃k0 := z̃k, and set l := 1.

Step 2: For (i′, j′) ∈ Jkl, compute

f i′j′ :=
∑

(i,j)∈Jk+l−1

Ki′j′,ij(z̃k,l−1)ij + f(t(�i′j′ )).

Then we define

fkl :=
[(
α(�i′j′), ψ(t(�i′j′), f i′j′)

)
: (i′, j′) ∈ Jkl

]T
.

Solve the linear system

(3.10) Eklz̃
H
kl = fkl

to obtain the vector z̃Hkl := [(z̃kl)ij : (i, j) ∈ Jkl]T .
Step 3: For (i′, j′) ∈ Jk, compute

f̂i′j′ (z̃kl) :=
∑

(i,j)∈Jk+l

Ki′j′,ij(z̃kl)ij + f(t(�i′j′ )).

Then we define

f̂k(z̃kl) :=
[(

α(�i′j′ ), ψ(t(�i′j′ ), f̂i′j′ (z̃kl))
)
: (i′, j′) ∈ Jk

]T
.

Let ELH
kl := [Ei′j′,ij : (i′, j′) ∈ Jk, (i, j) ∈ Jkl]. Solve the nonlinear

system

(3.11) Ekz̃
L
kl +ELH

kl z̃Hkl = f̂k(z̃kl)
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to obtain z̃Lkl := [(z̃kl)ij : (i, j) ∈ Jk]
T . Note that, in the above

nonlinear system, (z̃kl)ij , (i, j) ∈ Jkl are known values.

Step 4: Concatenate z̃Lkl and z̃Hkl to form the vector z̃kl. Set l← l+1
and go back to Step 2 until l = m.

According to the description of the algorithm given above, we can
estimate the computational efforts. Since we do not state how to
numerically evaluate the integrals involved, we adopt the assumption
that each integral is approximately computed with a constant number
of multiplications and functional evaluations.

Theorem 3.3. The total numbers of multiplications and functional
evaluations in implementing Algorithm 2 are both of O((k+m)μk+m).

Proof. Since the initial level is fixed and Step 1 is only carried out
once, the numbers of multiplications and functional evaluations are
both constants. For l ≤ m and j = 2, 3, let Nl,j,1 and Nl,j,2 denote
the number of multiplications and functional evaluations in step j,
respectively. Throughout the proof, we use the fact that the numbers
of points involved in the collocation functionals �ij , (i, j) ∈ Jk+m are
uniformly bounded.

In Step 2, the number of multiplications for computing f i′j′ , (i
′, j′) ∈

Jkl is O(N (K̃H
k,l−1)), and that of functional evaluations is O(|Jkl|),

where |Jkl| is the cardinality of the index set Jkl. The number of
multiplications and functional evaluations for generating fkl are both
O(|Jkl|). The number of multiplications for solving the linear system

(3.10) is N (Ekl). Note that N (K̃H
k,l−1) ≤ N (K̃k+l−1) = O((k + l −

1)μk+l−1), |Jkl| < O(μk+l), and N (Ekl) < N (Ek+l) = O((k + l)μk+l).
See [9] for the estimate of the number of nonzero entries of the matrix
En. Therefore, we have

(3.12) Nl,2,1 = O((k + l + μ− 1)μk+l−1), Nl,2,2 = O(μk+l).

In Step 3 we use Newton iteration method to solve the nonlinear
system (3.11). Given z̃kl, computing f̂i′j′ (z̃kl), (i′, j′) ∈ Jk and

then forming the vector f̂k(z̃kl) requires O((k + l)μk+l) number of
multiplications and O(μk) number of functional evaluations. Since
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N (Ek) +N (ELH
kl ) ≤ N (Ek+l) = O((k + l)μk+l), computing

Ekz̃
L
kl +ELH

kl z̃Hkl − f̂k(z̃kl)

requires O((k + l)μk+l) number of multiplications and O(μk) number
of functional evaluations. On the other hand, establishing the Jacobian
matrix also requiresO((k+l)μk+l) number of multiplications andO(μk)
number of functional evaluations. The computational effort for one
iteration can be estimated by adding them up. Assuming the number
of iterations is uniformly bounded, we have

(3.13) Nl,3,1 = O((k + l)μk+l), Nl,3,2 = O(μk).

A direct calculation shows that

m∑
l=1

Nl,2,1 = O((k +m)μk+m),

m∑
l=1

Nl,3,1 = O(μk+m).

Moreover, before running the algorithm, we have to evaluate Ki′j′,ij ,
(i′, j′), (i, j) ∈ Jk+m, which requires O((k + m)μk+m) number of
multiplications and O((k+m)μk+m) number of functional evaluations.
The result of the theorem is concluded by summing up the above
estimates.

4. Numerical experiments. In this section we use four exper-
iments to compare the efficiency and accuracy of the fast algorithm
proposed in the paper with that from [8], the multilevel augmentation
methods without matrix compression. The four numerical examples
of equation (2.4) include two one-dimensional equations and two two-
dimensional equations. We also compare our algorithm with that in [6],
which applies multilevel augmentation methods for solving the Ham-
merstein equation, but not its reformulated form. The computer to run
the programs is equipped with a 2.66GHz CPU and 4G memory.

4.1. One-dimensional equations. Let E := [0, 1]. In the
following two experiments, we set μ = 2 and let Xn be the space of
piecewise linear polynomials with the knots at j/2n, j = 1, 2, . . . , 2n−1.
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Obviously dim (Xn) = 2n+1. The basis functions of X0 and W1 are
defined by

w00(t) := −3t+ 2, w01(t) := 3t− 1, t ∈ [0, 1]

and

w10(t) :=

{
1− (9/2)t t ∈ [0, 1/2),

(3/2)− 1 t ∈ [1/2, 1],

w11(t) :=

{
(1/2)− (3/2)t t ∈ [0, 1/2),

(9/2)− (7/2) t ∈ [1/2, 1].

The corresponding collocation functionals are

�00 = δ1/3, �01 = δ2/3,

�10 = δ1/6 − 3

2
δ1/3 +

1

2
δ2/3,

�11 =
1

2
δ1/3 − 3

2
δ2/3, + δ5/6.

The basis functions and collocation functionals for i > 1 are constructed
recursively from those for i = 1 through the family of contractive
mappings Φ := {φ0, φ1} with

φ0(t) :=
t

2
, φ1(t) :=

t+ 1

2
, t ∈ [0, 1].

For example, the basis functions w2j , j ∈ Z4 can be obtained by

w20(t) := w10(φ
−1
0 (t)), w21(t) := w11(φ

−1
0 (t)),

w22(t) := w10(φ
−1
1 (t)), w23(t) := w11(φ

−1
1 (t)).

It is easily seen that the supports of w20 and w21 are contained in
[0, 1/2], while those of w22 and w23 are contained in [1/2, 1]. The
functions w3j , j ∈ Z8 can be constructed from w2j , j ∈ Z4 in the above
way. The collocation functionals can also be constructed in the same
way. The general construction with the recursive process is established
in [9], and the above basis functions and collocation functionals are
described in [13] and have been used in numerical experiments in [6,
11, 15, 16]. To implement the fast multilevel augmentation methods,
we set the initial level at k = 4.
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1. Smooth kernel. Let the kernel K(s, t) := sin(π(s + t)), and
define ψ(s, u) := u2. Let

f(t) := sin(πt) − 4

3π
cos(πt),

so that z(t) = sin2(πt) is an isolated solution of (2.4).

Since the kernel K is smooth, we apply strategy (TM). The exper-
iment data are listed in Table 1. In the table the second column
lists the dimensions of the discretization subspaces, and the third and
fourth columns give the errors of numerical solutions resulting from
fast multilevel augmentation methods without and with truncation, re-
spectively. It is seen that for the same m, ‖z∗ − z̃4,m‖∞ is only a
little bit bigger than ‖z∗ − z4,m‖∞, i.e., truncation hardly brings any
new error to numerical solutions, and z4,m and z̃4,m converge at nearly
the same rate. The column with title, “Comp. Rate,” lists the com-
pression rate of the truncation, the value which is defined by the ratio
N (K̃4+m)/N (K4+m). According to Lemma 3.1,

N (K̃4+m)

N (K4+m)
= O((4 +m)μ−(4+m)).

Therefore, when m increases by 1, the above ratio decreases to about
half since μ = 2. In the last two columns, “TM” and “T̃M” are total
running time of the multilevel augmentation methods without and with
truncation, respectively. It is seen that TM grows much faster than
T̃M . For m = 9, TM is about 50 times that of T̃M . Correspondingly,
the compression rate of K̃13 is 0.0017, i.e., less than 1 percent of the
matrix entries needed to evaluate, which in part explains why the
running time is shortened so much. We also observe that, when the
discretization dimension doubles, T̃M is a little bit more than doubled.
This is consistent with the result of Theorem 3.3.

2. Singular kernel. Let the kernel

K(s, t) := log

(
1

16
| cos(πs)− cos(πt)|

)
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TABLE 1. Numerical results for one-dimensional equation with smooth kernel.

m d4+m ‖z∗ − z4,m‖∞ ‖z∗ − z̃4,m‖∞ Comp. Rate TM T̃M

0 32 9.113e-3 9.113e-3 0.3125 0.06 0.03

1 64 2.216e-3 2.297e-3 0.1875 0.13 0.07

2 128 5.642e-4 5.708e-4 0.1094 0.32 0.14

3 256 1.400e-4 1.427e-4 0.0625 0.74 0.26

4 512 3.470e-5 3.578e-5 0.0352 1.96 0.50

5 1024 8.616e-6 8.922e-6 0.0195 5.03 1.00

6 2048 2.102e-6 2.241e-6 0.0107 15.0 2.00

7 4096 5.547e-7 5.601e-7 0.0059 47.2 3.81

8 8192 1.373e-7 1.398e-7 0.0032 187 7.89

9 16384 3.478e-8 3.486e-8 0.0017 749 15.9

TABLE 2. Numerical results for one-dimensional equation with singular kernel.

m d4+m ‖z∗ − z4,m‖∞ ‖z∗ − z̃4,m‖∞ Comp. Rate TM T̃M

0 32 4.111e-3 4.111e-3 0.8910 0.03 0.03

1 64 1.043e-3 1.043e-3 0.7148 0.07 0.07

2 128 2.595e-4 2.595e-4 0.4863 0.21 0.14

3 256 6.429e-5 6.429e-5 0.3137 0.63 0.36

4 512 1.612e-5 1.612e-5 0.1938 2.16 0.94

5 1024 4.015e-6 4.014e-6 0.1159 7.80 2.46

6 2048 1.008e-6 1.008e-6 0.0676 29.4 6.39

7 4096 2.512e-7 2.510e-7 0.0387 112 18.0

8 8192 6.234e-8 6.564e-8 0.0218 450 39.4

9 16384 1.797e-8 1.838e-8 0.0121 1812 81.5

and ψ(s, u) := 2u2 − 1. Moreover, let

f(t) := cos

(
π

2
(
1

2
− t)

)
+

1

16π
[2− (1− cos(πt)) log(1 − cos(πt))

− (1 + cos(πt)) log(1 + cos(πt))].

Then z(t) = cos2((π/2)((1/2)− t))− 1 is an isolated solution of (2.4).

Note that, in this example, the kernel is weakly singular. Thus, strat-
egy (TS) is applied. The numerical results are reported in Table 2. The



538 XIANGLING CHEN, ZHONGYING CHEN AND BIN WU

data in Table 2 give us a similar conclusion with the case of a smooth
kernel. The solutions z4,m and z̃4,m have nearly the same accuracy.
The compression rate decreases to nearly half when m increases by 1.
T̃M is a little more than doubled when the discretization dimension is
doubled, and much less than TM for large m. As Lemmas 3.1 and 3.2
claim, N (K̃n) has the same growth rate for smooth and singular cases.
However, it is worth noting that, for the same discretization dimension,
the compression rates for representation matrices of singular kernel are
much more than those of smooth kernel. For m = 9, the compression
rate is larger than 1 percent. Correspondingly, TM is about 22.5 times
that of T̃M .

4.2. Two-dimensional equations. In the following two numerical
experiments we consider solving two-dimensional equations. To this
end, we let the domain E := {(x, y) : 0 ≤ x ≤ y ≤ 1}, which is a
triangle. To discretize (2.4), we set μ = 4 and define the family of
contractive mappings Φ := {φe : e ∈ Z4} with

φ0(x, y) :=

(
x

2
,
y

2

)
, φ1(x, y) :=

(
x

2
,
y + 1

2

)
,

φ2(x, y) :=

(
1− x
2

,
1− y
2

)
, φ3(x, y) :=

(
1 + x

2
,
y + 1

2

)
.

Denote Zn
4 := Z4 × Z4 × · · · × Z4 (n times) and, for any e :=

(e0, e1, . . . , en−1) ∈ Zn
4 , we define the composite mapping φe :=

φe0 ◦ · · · ◦ φen−1 . Then

En := {φe(E) : e ∈ Zn
4}

is a uniform partition of E. Let Xn be the space of piecewise linear
polynomials with respect to the partition En. It is not difficult to
obtain that dim (Xn) = 3 × 4n. For e ∈ Z4, denote Se := φe(E). The
basis functions of X0 are chosen as

w00(x, y) := −3x+ 2y,

w01(x, y) := x− 3y + 2,

w02(x, y) := 2x+ y − 1,

(x, y) ∈ E.
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The corresponding collocation functionals are

�00 = δ((2/7),(3/7)), �01 = δ((1/7),(5/7)), �02 = δ((4/7),(6/7)).

Moreover, the basis functions for W1 are chosen to be

w10(x, y) :=

{−(11/8)− (15/8)x+ (41/8)y (x, y) ∈ S0,

(5/8) + (1/8)x− (7/8)y (x, y) ∈ S \ S0,

w11(x, y) :=

{
1− (15/4)x− (7/8)y (x, y) ∈ S0,

−1 + (1/4)x+ (9/8)y, (x, y) ∈ S \ S0,

w12(x, y) :=

{
(9/8) + (15/8)x− (29/8)y, (x, y) ∈ S0,

−(15/8)− (1/8)x+ (19/8)y, (x, y) ∈ S \ S0,

w13(x, y) :=

{−(15/8)− (41/8)x+ (13/4)y, (x, y) ∈ S1,

(1/8) + (7/8)x− (3/4)y, (x, y) ∈ S \ S1,

w14(x, y) :=

{
(29/8) + (7/8)x− (37/8)y, (x, y) ∈ S1,

−(3/8)− (9/8)x+ (11/8)y, (x, y) ∈ S \ S1,

w15(x, y) :=

{−(5/8)− (29/8)x+ (7/4)y, (x, y) ∈ S1,

(3/8) + (19/8)x− (9/4)y, (x, y) ∈ S \ S1,

w16(x, y) :=

{
(15/4)− (13/8)x− (15/8)y, (x, y) ∈ S3,

−(1/4) + (3/4)x+ (1/8)y, (x, y) ∈ S \ S3,

w17(x, y) :=

{−(1/8)− (37/8)x+ (15/4)y, (x, y) ∈ S3,

−(1/8) + (11/8)x− (1/4)y, (x, y) ∈ S \ S3,

w18(x, y) :=

{−(5/2) + (7/4)x+ (15/8)y, (x, y) ∈ S3,

(1/2)− (9/4)x− (1/8)y, (x, y) ∈ S \ S3,

and the corresponding collocation functionals are chosen as

�10 = δ((1/14),(5/14)) − δ((1/7),(3/14)) + δ((2/7),(3/7)) − δ((3/14),(4/7)),
�11 = δ((1/14),(5/14)) − δ((2/7)),(3/7)) + δ((3/7),(9/14)) − δ((3/14),(4/7)),
�12 = δ((5/14),(11/14)) − δ((3/7),(9/14)) + δ((2/7),(3/7)) − δ((3/14),(4/7)),
�13 = δ((1/14),(6/7)) − δ((1/7),(5/7)) + δ((5/14),(11/14)) − δ((2/7),(13/14)),
�14 = δ((1/7),(5/7)) − δ((2/7),(13/14)) + δ((5/14),(11/14)) − δ((3/14),(4/7)),
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�15 = δ((3/7),(9/14)) − δ((5/14),(11/14)) + δ((1/7),(5/7)) − δ((3/14),(4/7)),
�16 = δ((4/7),(6/7)) − δ((11/14),(13/14)) + δ((9/14),(5/7)) − δ((3/7),(9/14)),
�17 = δ((4/7),(6/7)) − δ((9/14),(5/7)) + δ((3/7),(9/14)) − δ((5/14),(11/14)),
�18 = δ((3/14),(4/7)) − δ((3/7),(9/14)) + δ((4/7),(6/7)) − δ((5/14),(11/14)).

The basis functions and collocation functionals for i > 1 are constructed
recursively from those for i = 1 with the help of the contractive
mapping family Φ. It is described how to carry out the construction in
the general case in [9], and the above basis was constructed and used
in [14]. We set the initial level k = 3 to implement the fast multilevel
augmentation methods in the following two numerical examples.

1. Smooth kernel. Let the kernel K(s, t) := sin(s1s2 + t1t2) with
s = (s1, s2) and t = (t1, t2). The function f is properly chosen so that
z(s) = (s21 + s22)

2 is an isolated solution of the equation. We see from
Table 3 that z3,m and z̃3,m have nearly the same accuracy. For any m,

T̃M (m+1) is about 4 times of T̃M (m), which confirms the conclusion of
Theorem 3.3. The compression rate decreases like O((3 +m)4−(3+m))
according to Lemma 3.1, i.e., when m increases by 1, the rate decreases
to a little bigger than quarter, which is confirmed by the data in Table 3.

TABLE 3. Numerical results for two-dimensional equation with smooth kernel.

m d3+m ‖z∗ − z3,m‖∞ ‖z∗ − z̃3,m‖∞ Comp. Rate TM T̃M

0 48 1.077e-1 1.107e-1 0.4380 6.70 4.4

1 192 2.775e-2 2.780e-2 0.1563 43.07 19

2 768 7.612e-3 7.612e-3 0.0508 274.8 77

3 3072 2.157e-3 2.157e-3 0.0156 1955 311

4 12288 5.710e-4 0.0046 1255

TABLE 4. Numerical results for two-dimensional equation with singular kernel.

m d3+m ‖z∗ − z3,m‖∞ ‖z∗ − z̃3,m‖∞ Comp. Rate TM T̃M

0 48 1.094e-1 1.094e-1 0.789 7.3 4.4

1 192 2.834e-2 2.834e-2 0.499 43 37.6

2 768 7.679e-3 7.679e-3 0.254 278 197

3 3072 2.188e-3 2.188e-3 0.106 1982 963

4 12288 5.850e-4 0.039 4461
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TABLE 5. Numerical results for solving one-dimensional equation with smooth

kernel with the algorithm from [6].

m d4+m ‖z∗ − ẑ4,m‖∞ Comp. Time

0 32 9.984e-3 2.06

1 64 2.452e-3 2.53

2 128 6.224e-4 3.01

3 256 1.551e-5 3.70

4 512 3.866e-5 4.60

5 1024 9.686e-6 6.30

6 2048 2.326e-6 7.80

7 4096 5.956e-7 11.3

8 8192 1.486e-8 17.0

9 16384 3.675e-8 35.1

2. Singular kernel. Let the kernel

K(s, t) :=
1

|s− t| =
1√

(s1 − t1)2 + (s2 − t2)2
.

It is easily seen that the kernel is weakly singular. Function f is
properly chosen so that z(s) = (s21 + s22)

2 is an isolated solution of
the equation. Table 4 gives data which also support the theoretical
results from Lemma 3.2 and Theorem 3.3.

4.3. Comparison with fast multilevel augmentation methods
for solving Hammerstein equations. In [15], multilevel augmen-
tation methods are established for Hammerstein equations. Recently,
[6] introduced approximation to modify the algorithm of [15], so as
to make use of truncation techniques to remarkably improve compu-
tational efficiency. We use the first example of this section, which is
a one-dimensional equation with smooth kernel, to compare our algo-
rithm with that from [6]. Since the experimental data of our algorithm
have been given in Table 1, we only need to report those for the algo-
rithm from [6], which are listed in Table 5.

In the experiment we use the same multiscale bases and collocation
functionals as those used by our algorithm. The initial level is also set to



542 XIANGLING CHEN, ZHONGYING CHEN AND BIN WU

−4 −2 0 2 4 6 8
−18

−16

−14

−12

−10

−8

−6

−4

logarithm of computing time 

lo
ga

rit
hm

 o
f n

um
er

ic
al

 e
rr

or
s 

 

 
MAM with Trun.
MAM without Trun.
Algorithm from [6]

FIGURE 1. Comparison of the three algorithms with numerical errors vs. comput-
ing time.

be 4. The output of the algorithm is denoted by u4,m and we compute
ẑ4,m := Ψ(u4,m). Column 3 of the table gives the errors of the numerical
solutions ẑ4,m, which can be seen to be nearly the same as the output
of our algorithm. For example, ‖z∗ − z̃4,9‖∞ = 3.486e-8 in Table 1,
while ‖z − ẑ4,9‖∞ = 3.675e-8 in Table 5. The last column of Table 5
reports the running time of the program. We observe that, for m = 9,
the running time of the two algorithms is 15.9 and 35.1, respectively,
our algorithm being less than half of the one being compared.

As a conclusion, we would like to compare the computational effi-
ciency of the three algorithms, i.e., the one proposed in this paper,
the multilevel augmentation methods without matrix truncation which
was described in [8], and the fast multilevel augmentation methods
from [6] for Hammerstein equations. We still use the first example of
this section, and collect data from Tables 1 and 5 to plot Figure 1. We
intend to use Figure 1 to illustrate the efficiency of the algorithms. To
this end, the x-axis of the figure represents the logarithm of computing
time, while the y-axis represents the logarithm of numerical errors. We
observe from the figure that, to reach the same accuracy, the algorithm
proposed in this paper (“MAM with Trun”) is always the fastest among
the three algorithms. In small scale, the algorithm from [8] (“MAM
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without Trun”) is faster than that from [6]. However, since its com-
puting time grows rapidly, it becomes the slowest algorithm when the
discretization scale is large. The algorithm from [6] also makes use of
matrix truncation to improve efficiency, and its computational com-
plexity is also nearly linear order. However, in the same discretization
scale, its computing time is at least twice of our algorithm.
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