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CONVERGENCE OF
ADAPTIVE BOUNDARY ELEMENT METHODS

CARSTEN CARSTENSEN AND DIRK PRAETORIUS

Communicated by Kendall Atkinson

ABSTRACT. In many applications, adaptive mesh-
refinement is observed to be an efficient tool for the numerical
solution of partial differential equations and integral equa-
tions. Convergence of adaptive schemes to the correct solu-
tion, however, is so far only understood for certain kind of
differential equations. In general, it cannot be excluded that
the adaptive algorithm computes a convergent sequence of dis-
crete approximations with a limit which is not the correct
solution. This work proposes a feedback loop which guaran-
tees the convergence of the computed discrete approximations
to the correct solution. Although stated for Symm’s integral
equation of the first kind, the main part of this work is writ-
ten for a general audience in the context of weak forms as
Riesz representations in Hilbert spaces. Numerical examples
illustrate the adaptive strategies.

1. Symm’s integral equation, introduction, and outline.

1.1. Symm’s integral equation of the first kind with the
single-layer potential operator. Let 2 be a bounded domain in
R¢, d = 2,3, with Lipschitz boundary 09, and let I' C 99 be an open
or closed surface. Suppose we are given the right-hand side f and an
approximation ¢, for the unknown exact solution ¢ of Symm’s integral
equation of the first kind

(1.1) Vo =f in HY*(T)
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2 CARSTEN CARSTENSEN AND DIRK PRAETORIUS

for the single-layer potential (ds, denotes surface integration on I' C R¢
with respect to the variable y) defined by

(1.2) (Vo)(z) = /Fd)(y)n(a: —y)dsy, forzel

and interpreted in a weak sense for the kernel

[ —(1/2m)log|z| for d =2,
(1.3) K(z) := { e ol frds

It is well established that (provided d = 3 or d = 2 and Q is compactly
included in a unit ball) V' defines a scalar product

(1.4) (6,0)m = / (V) (@)(x) ds.

on the dual space H := H 1/2(T") of the trace space HY/2(T') defined
in subsection 1.2, and the induced Hilbert norm ||-||g is an equivalent
norm on H.

1.2. Fractional-order Sobolev spaces on submanifolds. For
any (relatively) open set w C 9 and 0 < a < 1, we define Sobolev
spaces of fractional order by

(1.5)  HYw) = [LPW);Hy(@)la and HYw) = [L*(w); H' (W)l

as complex interpolation [Xg; X1], of X and X; C X, cf. [1, 28]
for details. The norm || - [|g1(,) is given by the surface gradient V
as ||u\|%11(w) = ||u\|%2(w) + IVul[72(,y- The spaces H'(w) and H}(w)

are defined as the respective completions of Lip (w) and {v € Lip (w) :
v|sw = 0}. Sobolev spaces with negative index are defined by duality,

(1.6) H %) :=H*I)* and H *(I):= H*()*

with corresponding norms and duality brackets (which extend the
L?(T) scalar product)

(1.7) (-,-) in H=*(T') x H*(T).
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1.3. A posteriori BEM error control. A posteriori error
estimators n = n(¢n, f,T) are computable quantities in terms of the
right-hand side f, a computed approximate solution ¢, and the given
underlying mesh 7 = {Ty,... ,Tn} which bound the exact error from
below or above (so-called efficiency or reliability of 7]), see [5] for
examples and some history of boundary element error control and [7,
19, 21, 24] for some updates and the state of the art for Symm’s
integral equation.

The non-local character of the involved pseudodifferential operator
V and the non-local Sobolev spaces (of functions on I') cause severe
difficulties in the mathematical derivation of computable lower and
upper error bounds for a discrete (known) approximation ¢, to the
(unknown) exact solution ¢. In particular, the discrete local efficiency
of the error estimator is one key argument in the adaptive finite element
convergence analysis [2, 17, 29, 30, 35, 36], which still remains open
for boundary element methods.

The adaptation of the analysis of [12] to adaptive BEM required
certain local properties of the involved integral operators to prove the
crucial estimator reduction. Although observed experimentally, the
mathematics of those properties is not understood.

For wavelet Galerkin BEM convergence and optimality of some adap-
tive schemes have recently been proved [16, 25], where optimality is
based on monitoring dominant coefficients and a certain coarsening
step. This paper is devoted towards some alternative efficient adaptive
BEM algorithms with a first step of ensured convergence.

1.4. Convergence of adaptive algorithms to some function.
This paper studies adaptive mesh-refining strategies for the numerical
solution of differential and integral equations stated in the framework
of the Riesz theorem: for any linear and continuous functional ® € H*
on a real Hilbert space H, there is a unique ¢ € H such that

(1.8) (¢.%)s = ®(¥) for all Y € H,
and the following holds

9
(19) [0l = |2l 1= sup )

wer |[Yla’
W0
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In practical applications, H is an infinite-dimensional space, and the
unique solution ¢ of (1.8) is unknown. Instead, one considers a
sequence X, for £ =0,1,2,..., of finite-dimensional (and hence closed)
subspaces. These spaces are usually obtained from certain mesh-
refinements and hence nested, i.e.,

(1.10) X, C Xppq for£=0,1,2,....

The application of the Riesz theorem to the spaces X, provides unique
Galerkin solutions ¢y € X, characterized by

(1]_].) (gf)g,’(/}g)H = (I>(’(/1g) for all ’g[)g e Xy.

We thus have the Galerkin orthogonality

(112) (¢7—¢g,’(/1g)H =0 forall lﬁg e Xy.

Said differently, ¢, = ¢, where II, : H — X, denotes the orthogonal
projection onto X,.

Lemma 1.1. The limit ¢oo := limy_, oo ¢y exists in H and belongs to
a subspace X, defined as the closure of U3 (X, in H.

Proof. Note that X, is a closed subspace of H and hence a Hilbert
space. Moreover, X, is separable. By Zorn’s lemma, we thus find a
(countable) orthonormal basis ¥ as well as a partition of which into
countably many finite sets X, such that U;ZOEJ- is an orthonormal
basis of Xy. Let ¢ := ¢ € X, with the orthogonal projection
I : H— X. Note that elementary functional analysis proves

V4
=3 (¢ ¥)u¢
J=09ex;

for all £ € Ny and even in Case ¢ = co. In other words,

6w — el = 3 3 160 0)ul? =5 0.

J=L+19yED;

This concludes the proof. a
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The lemma allows the following interpretation: for uniform mesh-
refinement, it usually holds that X,, = H and thus ¢ = ¢, i.e., we
have convergence of the sequence of discrete solutions ¢, from (1.11)
towards the unique solution ¢ of (1.8). However, adaptive mesh-
refinement may lead to X, g H. In other words, the remaining
question is whether the adaptive algorithm yields convergence with

¢ = ¢ OF ¢ # Po.

1.5. Adaptive mesh-refining algorithm. The proposed solution
procedure consists of the four steps

SOLVE —> UNIFORM REFINEMENT —> ESTIMATE — ADAPTIVE COARSENING.

In this context, we provide abstract algorithms which are proven to
guarantee ¢ = ¢,,. The assumptions made are very weak in the sense
that we essentially only assume that there is a uniform refinement op-
eration unif for discrete subspaces of H with the following properties.

e Momnotonicity: For any discrete subspaces X and Y of H with
X CY holds X C unif (X) C unif (Y).

e Density: For a certain discrete subspace Hy of H and any discrete
subspace Xy of H with Hy C Xy, ¢ = limy_, o ¢¢ holds whenever
X, :=unif (X, 1) for the Galerkin solution ¢, of (1.11).

Clearly, the mathematical proofs of optimality of the adaptive strate-
gies, for instance, with respect to the dimensions dim X, are beyond the
scope of this paper and can certainly not be proven in such a general
framework.

Compared to the finite element method, the coarsening algorithm of
[2] has been the first with proven optimal complexity before [36] proved
the optimality for the standard AFEM. Moreover, in the context of
wavelet methods, optimal adaptive algorithms are based on monitoring
dominant coefficients, and results for linear [13] and nonlinear [14, 15]
differential equations as well as recently for boundary integral equations
[16, 25] have been achieved.

1.6. Outlook. Section 2 discusses the convergence of Galerkin
schemes in Hilbert spaces as well as a first and second version of ABEM
and its convergence. Section 3 gives details for the first-kind integral
equation (1.1) with weakly-singular integral kernel associated with the
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Laplace equation. Numerical experiments for two benchmark examples
conclude this paper.

2. Some abstract analytical observations.

2.1. Two-level error estimator and error reduction property.
In the context of finite element methods, the first convergence results
[17, 29] were based on the error reduction property

(21) ||¢7¢€+1||H < Gerr ||¢7¢Z||H

with some constant 0 < ge,r < 1. We first recall that (2.1) is equivalent
to the reliability

(2.2) Cotllp — deller < 10 := ||bes1 — dellzr

of the two-level error estimator 7, with some constant Ce; > 0.

Lemma 2.1. (i) Efficiency holds in the sense of 1o < ||¢ — d¢llH,
whence Cepry > 1;

(il) Corr = 1 is equivalent to ¢ = Pyy1;
(iii) Reliability (2.2) with Cerr = (1 — ¢2,)~Y? > 1 is equivalent to
the error reduction property (2.1) with ge.e = (1 — C,2)Y/2.

err

Proof. (i) and (ii). Let II;4; denote the orthogonal projection onto
Xy¢4+1- Note that

We1(p — pe) = pes1 — du

so that 7 < ||¢ — ¢¢||g. In particular, this implies Ce;y > 1. Moreover,
Corr = 11s equivalent to 0= (l - HZ+1)(¢ - ¢€) = ¢ - ¢2+1-
(iii) Since Xy C X1, the Galerkin orthogonality reads

¢ — bellFr = |6 — berrlltr + be1 — dellF = |6 — el 7 + 77

Therefore, reliability of 7, implies error reduction

16 = Gerallir = 16 — ellzy — 78 < (1= CG) 16 — el
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Conversely, the error reduction yields

6 — dellZr = ¢ — esalltr + 77 < Crlld — GellTr + 77,

and whence reliability of 7, with Cerr = (1 — ¢2,) /2. O

Note that the error reduction property with a uniform constant
Gerr < 1 implies linear convergence of ¢, towards ¢ = ¢, with respect
to the level £. In the context of the finite element method, the error
reduction property is obtained by use of a reliable error estimator

(2.3) C.t I — dellar < me,

and the discrete efficiency estimate

(2.4) Cot e < || o1 — bellm = 70

proven locally with the help of some inner node property [17, 29]. Here,
the reliability constant Cpe > 0 and the efficiency constant Ceg > 0
may depend on the right-hand side ® € H™*, but not on ¢, ¢ or ¢,.
The error estimator 7, is a computable quantity that depends upon @
and ¢, but has to be independent of ¢. The combination of the latter
two estimates (2.3)—(2.4) yields reliability of the two-level estimator
7¢ and hence linear error reduction. For the sake of clarity, we have
omitted the so-called oscillation terms, which usually arise in efficiency
estimates for finite element methods.

In many applications, the discrete efficiency estimate (2.4) and even
the usual efficiency estimate

(2.5) Co e < |6 — dellu

remains as an open question. This includes, for instance, a posteriori
error estimates for boundary element methods, where estimators are
usually either only proven to be efficient [8, 9, 19-21, 24, 26, 27,
31] or to be reliable [4, 6, 7, 10, 11]. The error estimators from
[22, 23] and [33, 34] are, so far, the only a posteriori BEM error
estimators which are proven to be reliable and efficient. The discrete
efficiency estimate (2.4) is, however, open. A more detailed overview
on a posteriori error estimation for the boundary element method can
be found, e.g., in [5].
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2.2. (h — h/2)-Error estimator and saturation assumption.
In usual adaptive algorithms, the space Xy is obtained from X, by
certain refinements. Consequently, the two-level error estimator from
(2.2) cannot be used to obtain X,;1. One remedy might be to compute
the (h—h/2)-error estimator which is one standard strategy, e.g., in the
context of ordinary differential equations. With the Galerkin solution
¢¢ € Xy :=unif (X,), one considers

(2.6) 70 = ||pe — dellmr-

With the same arguments as in Lemma 2.1, one proves that reliability
of ?g

(27) ||¢7¢€||H S Csat?f

with some constant Cg,; > 0 is equivalent to the so-called saturation
assumption

(2.8) 6 — beller < Gsas |16 — bellr

with some contraction constant 0 < ggas < 1.

Lemma 2.2. (i) Efficiency holds in the sense of 7o < ||¢ — d¢llH,
whence Csay > 1;

(ii) Csat = 1 is equivalent to ¢ = bo;

(iil) Reliability (2.7) with Csae = (1 — ¢2,,)~Y2 > 1 is equivalent to
the saturation assumption (2.8) with gsay = (1 — CL2)Y /2.

For the finite element method, the saturation assumption holds for
model problems up to data oscillations [18]. In the context of the
boundary element method, the saturation assumption still remains
open. Numerical experiments from [24], however, indicate that (2.8)
holds as well.

2.3. Convergence control. This section contains the main
observation for a feedback control to guarantee convergence of an
adaptive algorithm. Note that, by definition of the Galerkin scheme,
¢ = ¢y implies ¢ = ¢y = Py4i for all £ > 0. One may therefore define

(2.9) [Le 1= {T€/||¢ — ¢¢|lz provided ¢ # ¢y,

1 else,
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with the two-level estimator v = ||¢p+1 — dellg < ||¢ — d¢l|lm. The

following lemma characterizes convergence of ¢, towards ¢ by means
of pg.

Lemma 2.3. ¢ = ¢, holds if and only if [T;oo(1 — p3) = 0.

Proof. Fix £ € N. According to the Pythagoras theorem, the
following holds:

16— dell% = (¢ — es1) + (o1 — o) %

= |6 = desallfy + 77

By definition of py, the last equation becomes

16— ¢ellzr = ¢ — beiallir + 1 16 — el

By induction, this yields

£
16 = Sesrllt = (L= uD)lld = ellir = 6 — dollr [T (1 -4

=0

Note that 0 < p; < 1 so that the product on the right-hand side is
decreasing and bounded from below as £ — oo. In particular, the limit
[1;2(1 — p3) exists. Moreover, we thus infer that convergence ¢ = ¢

is equivalent to 0 = [[,2,(1 — 7). O

Remark 1. The algorithms of the subsequent sections aim to ensure
the reliability (2.2) of the two-level error estimator 7,. To be more
precise: in each step, the algorithms check whether (2.2) can be
guaranteed. Otherwise, the algorithms enforce one step of uniform
mesh-refinement. o

2.4. Adaptive strategy based on reliable error estimator.
Given a Galerkin solution ¢y, we assume we can compute an error
estimator 7, which is reliable in the sense

(210) ||¢ - ¢€||H S CVrel Me-
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The adaptive algorithm then reads as follows. We stress that the
precise adaptivity is hidden in step (d) below, which corresponds to
some adaptive coarsening to construct Xy;;. For Symm’s integral
equation (1.1), we provide some possible realizations in subsection 3.1.

Algorithm 2.4 (Main loop, first version). Fiz constants 0 < p < 1,
ko >0 and set £ :=0, Xy := Hy. For any £=0,1,2,..., do (a)—(d):

(a) Compute Galerkin solution ¢ € Xy and corresponding error
estimator ny.

(b) Compute Galerkin solution (Eg € X@ := unif (Xy), and set
70 = ||pe — dell -

(¢) If To < Keme, set Xpqq 1= )?g, and

& . Ke Zf ’/r\e = 07
41 =4 A
+ Te/ne  else.

(d) If 7o > Keme, choose Xyyq with X, C Xpp1 C X and 74 =
[e+1 — @eller > 0T and set Koty = k.

Remark 2. We stress that the reliability constant Ce; > 0 is often
unknown in practice. Moreover, the (h — h/2)-error estimator satisfies
Te < ||¢ — dellg < Crame. Therefore, £y > Cre excludes step (d) and
leads to uniform mesh-refinement in step (c). Since uniform mesh-
refinement is expected to be suboptimal, we decrease kor1 = T¢/ne < K¢
in case (¢) and 7, > 0. o

Remark 3. Since 0 < ¢ < 1, the estimate 7, > o7, in (d) holds for
the choice of X411 := X ¢. However, uniform mesh-refinement usually
leads to a suboptimal order of convergence with respect to the number
of degrees of freedom N, := dim X,. In practice, one aims to choose
the space Xyy1, therefore, with as low a dimension as possible. We
stress that Algorithm 2.4 does not include a precise statement of how
to choose Xyy1. Possible constructions are the topic of subsequent
sections. ]
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Remark 4. The essential idea of Algorithm 2.4 is that step (d) ensures
(2.11) 16 — ¢eller < Crarie < Crartiy ' 70 < Crariy Lo ' 70,

which provides the reliability (2.2) of the two-level error estimator 7, on
level £ with Ce,r = reme_lg_l. Note that step (d) does, in particular,
provide the reliability

(2.12) 16 — ¢ellar < Crary* 7

of the (h — h/2)-error estimator on level ¢, whence the saturation
assumption (2.8). For the numerical experiments below, we choose
0=0.75and kg = 1. i

Theorem 2.5. The sequence ¢y of Galerkin solutions generated by
Algorithm 2.4 converges to the unique solution ¢ of (1.8).

Proof. Without loss of generality, we may assume that ¢ # ¢, for all
¢ € N, since otherwise ¢ = ¢y, for some ¢y € N implies ¢ = ¢y, = ¢
for all £ > ¢.

First, we consider the case that there are infinitely many ¢ such that
Te < Keng leads to step (c¢) in Algorithm 2.4. Choose the corresponding
sequence () of indices such that Xy, 11 = unif (X, ). Note that the
monotonicity assumption on unif and Hy = Xy imply the inclusion
Hy C Xy, with Hy :=unif (Hy_1). Therefore, the best approximation
property of ¢y, together with the density assumption on unif yield
¢u, — ¢ as k — oo. Since the entire sequence ¢, converges to ¢, we
then conclude ¢ = ¢

Second, we assume that there are only finitely many ¢ such that
Te < ke leads to step (c) in Algorithm 2.4. Assume that (d) holds for
all £ > £y, i.e., (c) holds at most for £ =1,...,0p — 1. For £ > £y, we
have 7, > k¢ne. Equation 2.11 and ¢ # ¢, then imply

Te

2.13 =———~ _ >Clki0>0,
(2.13) B = 5= el = Crel e

where k¢ = Ty, /ne, > 0 is constant for £ > ¢y. From 0 < puy < 1, we
therefore infer [];2 (1—p7) = 0, and Lemma 2.3 concludes the proof. o
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2.5. Adaptive strategy without reliable error estimator.
Under some circumstances, one may not want to use Algorithm 2.4.
One of the reasons may be the following:

e There is no reliable error estimator 7, at hand.
e The reliable error estimator 7, is implementationally demanding.

e The reliable error estimator 7, is certainly not efficient so that
Algorithm 2.4 will lead to a suboptimal order of convergence caused by
the overestimation of ||¢ — ¢¢||n and hence of 7.

In those cases, one wants to use variants of the (h—h/2)-error estimator
T = \|$g — ¢¢||g with the Galerkin solution qug € X, = unif (Xo).
As has been noted above, 7; is always an efficient error estimator,
but reliability (2.7) is equivalent to the saturation assumption (2.8).
Moreover, the decision whether 7, can be guaranteed to be reliable is
the essential criterion in Algorithm 2.4. Consequently, 1y := 7, cannot
be used to steer Algorithm 2.4 reliably. One remedy might be the
following variant of Algorithm 2.4, where we replace kg1, by a positive
and monotonously decreasing sequence (\¢) & 2.

Algorithm 2.6 (Main loop, second version). Fiz constants0 < p < 1
and 0 < g < 1 as well as a positive and monotonously decreasing
sequence (o) ¢ (2. Set £ := 0, Xo := Hy, Ao := 09. For any
£=0,1,2,..., do (a)—(d):

(a) Compute Galerkin solution ¢, € X,.
(b) Compute Galerkin solution $@ € )?g := unif (Xy), and set
7= [|6e — el
(c) If 7o < Ag, set Xpyq := )?g,
Ness = {qmin{aeH, X} ifTe=0,

gmin{opy1,7¢} else.

(d) If ¢ > A¢, choose Xpqpq with Xy C Xpp1 C )?g and T, =
lpes1 — dellr > pTe and set Apy1 := min{opy1, Ae}.

Remark 5. In case of 7, < Ay, we decrease Ag11 < gA¢ in step (c).
For sufficiently small 0 < g < 1, we may then expect Tp4+1 > Apy; for
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the next level £+ 1, i.e., one uniform mesh-refinement on level ¢ causes
at least one adaptive mesh-refinement on level £ + 1. In the numerical
experiments below, p = 0.75, o, = £~/? and ¢ = 0.2. o

Theorem 2.7. The sequence ¢y of Galerkin solutions generated by
Algorithm 2.6 converges to the unique solution ¢ of (1.8).

Proof. Arguing as in the proof of Theorem 2.5, we may assume that
¢ # ¢ for all £ € N and that there are only finitely many ¢ with
Ty < A¢. In particular, we have 0 < py < 1 for all £ € N.

Assume that (d) holds for all £ > £y. For £ > ¢y, + 1, 7, > Ay holds,

whence

Ty oAe 0
— > > As.
HE= 16— elle = 16— della = 16— dollz "

Since the sequence (o) decreases monotonically, mathematical induc-
tion proves

(2.14)

A¢ = min{oy, \p—1} = min{oy, Ag, }

for £ > £y. Consequently, (0y) ¢ €2 and Ay, > 0 yield (\;) ¢ €2, whence
> oo M7 = oo by (2.14). In particular, 0 < p7 < 1 shows

log (H(l - u?)) = log(l—pf) < = pi=—oo.
=0 £=0

£=0

This yields [[,2,(1—43) = 0 and Lemma 2.3 concludes the proof. o

Remark 6. Recall that Algorithm 2.4 as well as Algorithm 2.6 aim
to provide an error reduction ||¢p — ¢i1|lr < ql|d — del|r With some
0 < g < 1, whence convergence of the adaptive scheme. If this
error reduction is obtained for k steps, we thus see ||¢ — dpikllng <
q*||¢ — desr|lm- As the geometric sequence (¢¥) belongs to £2, its
decrease is much faster than that of (\;) ¢ ¢2. Consequently, To4p <
¢ — ekl < q||¢ — dellr < Aesx holds for some k. Said differently,
after a finite number of adaptive steps (d) for which the error reduction
holds, Algorithm 2.6 will certainly lead to a uniform refinement in
step (c). If Algorithm 2.6 performs in this sense, it will nevertheless
lead to infinitely many uniform refinements. |
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3. Application to Symm’s integral equation. As a model
problem serves Symm’s integral equation of the first kind,

(3.1) V(x) = —%/Flog lz —y|p(y)dsy = f(z) forxzel,

on an open boundary piece I' C 09 of a bounded Lipschitz domain
Q in R? with diam () < 1. With the scalar product from (1.4), the
integral equation (3.1) is equivalently stated in the form (1.8) with
®(1) := (f,®). For the given right-hand side f € H'/?(I'), we aim
to approximate the (in general unknown) solution ¢ € H := H1/2(T')
numerically. The lowest-order Galerkin scheme (1.1) with 7-piecewise
constant Ansatz and test functions Xj := P°(T) reads: Seek ¢; €
PO(T) with

(3.2) / Vonds = / fds forall T; € T.
T; T;

Here and throughout this paper, T = {T1,...,Tn} is a partition of
I’ into affine boundary pieces T; with positive length diam (7j) > 0.
For this discretization, the optimal order of convergence is O(h/?)
with respect to the maximal mesh-width A := max{diam (') : T € T}
[32]. However, to observe this order of convergence numerically, the
exact solution must satisfy ¢ € H*(7). This regularity is not met in
general for domains with re-entrant corners, which lead to singularities
of ¢. Therefore, there is a need for a posteriori error control and
related adaptive mesh-refinement which may lead to an optimal order
of convergence O(N~3/2) with respect to the number N = #7 of
elements.

However, both topics, a posteriori error estimation as well as adaptive
mesh-refinement, are more involved for the boundary element method
than for the finite element method. Whereas a certain number of error
estimators has been introduced, e.g. in [4-7, 10, 11, 22, 23, 33,
34|, most of them are only proven to be reliable. Efficiency, also
usually observed in practice, is only proven for quasi-uniform meshes
[3]. On the contrary, the error estimators of [8, 9, 20, 21, 24, 26, 27,
31] are always efficient, whereas reliability of which crucially depends
upon the saturation assumption. Although the saturation assumption
is experimentally observed in model examples, it is (to the best of
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the authors’ knowledge) not guaranteed in the current literature on
boundary element methods.

Unlike the finite element method, the known a posteriori error estima-
tors are not proven to satisfy a discrete efficiency estimate. This makes
it impossible to prove the convergence of adaptive mesh-refining algo-
rithms with the techniques developed in [17, 29, 30] for finite element
schemes. However, the mathematical framework introduced allows us
to guarantee convergence of certain adaptive mesh-refining strategies.

In our setting, we have X, = P°(7;), and refinement of an element
T; € 7Ty just means to split 7 into two disjoint boundary pieces of
half length. Here and below, T]-(l),Tj@) € Te41 denote the (unique) el-
ements obtained by refinement of an element T; € 7;. The uniformly
refined space X; = unif (X;) reads X; = P°(7;), where the corre-
sponding mesh 7; = {Tl(l), T1(2), ... ,TJ(VI), TI(VZ)} is obtained by uniform
refinement of 7.

3.1. Adaptive mesh-refinement for Symm’s integral equa-
tion. This subsection discusses two possible strategies to compute a
mesh T;y1 and hence Xy, = P°(7y41) out of T; and 7, which guar-
antee

(3.3) X G Xew1 C Xo

as well as the criterion from step (d) of Algorithm 2.4, respectively
Algorithm 2.6.

(3.4) 07e < Toq1-
Usually, adaptive mesh-refining strategies for 7, = {T1,...,Tn} are
based upon refinement indicators 7y 1,... ,m,nx > 0 which are (some-

how) related to a global error estimator 7, e.g.,

N 1/2
(3.5) ne = (Zm%j) -
j=1

The heuristic is to refine T; with relatively large associated quantity
n¢,j. In the numerical experiments below, we either use the local
contributions

(3.6) nej = diam (T)2||(f = Vo) |l L2z
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of the weighted-residual error estimator from [4] or the local contribu-
tions of the (h — h/2)-based error estimator

(3.7) ne; = diam (T})"/2||¢¢ — el z2(ry)

proposed in [24]. In the case of (3.6), ()’ denotes the arclength
derivative, and we assume f € H'(T'). Then, the error estimator 7
from (3.5) is reliable [4], whereas efficiency remains open. Contrary
to that, the error estimator 7, based upon the local quantities (3.7) is
equivalent to the (h — h/2)-error estimator 7, cf. [24]. In this case, 7,
is therefore efficient, whereas reliability is equivalent to the saturation
assumption(2.8).

Algorithm 3.1 (Construction of Tp41 by iterated space-enrichment).
In step (d) of Algorithm 2.4, respectively Algorithm 2.6, the mesh Tyi1
is built from Ty = {T1,... ,Tn} as follows.

(d.1) Compute refinement indicators ng,1,--- ,Me,N -

(d.2) Find a permutation © of {1,... , N} such that ¢ (1) > Ne,r(2) >
S 2 Nem(N) -

(d.3) Choose minimal k =1,... ,N such that the mesh

) @ (1) (@)
Terr = A{To(y Toityr- - » Taiys oty Tetks1ys - > Te(a }o

and the corresponding Galerkin solution ¢p+1 € Xpy1 satisfies (3.4).

According to Algorithm 3.1, we obtain 7yy1 by refinement of the k
elements T} € 7, with the largest refinement indicators 7, ;. Note that
step (d.3) corresponds to a while-loop which is rather costly due to the
iterated computation of Galerkin solutions.

To decrease the computational cost, we proceed as follows. For Xy,
we fix a numbering 7, = {T4,...,Tn} and use the basis {X1,... ,Xn}
of characteristic functions of the elements T; € 7;. By reordering the
indices, we may assume that the permutation 7 from Algorithm 3.1

satisfies 7(j) = j. For each Tj, let Xg-l) denote the characteristic
function of the first child T]-(l) € 7A2. For the spaces

k k
X = PUT),
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where

E(k) = {T1(1)7 T1(2)7 v 7Tk(;1)7 Tk(;2)7 Tk+17 v 7TN}7

we use the two-level bases {X1,... ,XN,Xgl), e ,X,(cl)}. We then only

need to compute the Galerkin matrix A € R2NX2N and its Cholesky

sym
factorization A = LLT with respect to the basis {X1,... , X, Xgl), cee
X%)} of X;. Note that the (N + k)th minor Ay of A is the Galerkin

matrix with respect to X ék), and its Cholesky factorization satisfies
Anik = LN+kL% e Therefore, the expensive computation of the
Galerkin matrix and the Cholesky factorization has only to be done
once.

The first approach stated in Algorithm 3.1 somehow leads to a
minimal increase of elements to ensure (3.4). Alternatively, we may
try to use the usual h-refinement strategy. However, we enforce (3.4)
to hold: In a correction step, we choose T4 as the uniform refinement
of 7, if indicator-based refinement did not lead to sufficiently large
T = ||¢pe+1 — ¢¢|lmr. The following realization of step (d) can thus be
understood as a feedback-loop for h-adaptive algorithms.

Algorithm 3.2 (Bulk-criterion based construction of Tp_,). Given
0 <6 <1 in step (d) of Algorithm 2.4, respectively Algorithm 2.6, the
mesh Toi1 1s built from Tp = {T4,... ,Tn} as follows.

(d.1) Compute refinement indicators ng1,... ,Me,N-

(d.2) Mark an element T; € Ty for refinement provided m; >
Hmax{m,k k= 1,... ,N}.

(d.3) Generate the mesh Tgr1 from Ty by refinement of the marked

elements.

(d.4) If (3.4) fails, set Toypy :=Ts.

We stress that the choice of § = 0 in step (d.2) yields uniform mesh-
refinement, whereas 6 > 0 yields an adaptive mesh-refinement. For the
numerical experiments below, we choose # = 0.5 in case of adaptive
mesh-refinement. Finally, note that the bulk criterion in (d.2) can be
replaced by any other marking strategy such as the ¢2-criterion due to
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Dérfler [17] with the minimal set M, C 7, such that

(3.8) (L=0%)mf=(1-6%) > mi; < > ni

T,E'Tz TjeMl

In the numerical experiments below, we compare the following six mesh-
refining strategies.

e Uniform mesh-refinement, which is guaranteed to converge. Through-
out, we observe, however, poor convergence rates which are due to
generic singularities of the exact solution.

e Standard adaptive mesh-refinement, where we use the Dorfler
marking (3.8) with § = 0.5 for the weighted-residual estimator (3.6)
and where we neglect the feedback control. This corresponds formally
to the choice of K9 = 0 = p in Algorithm 2.4. Note that, so far, this
algorithm is not proven to converge mathematically.

e Adaptive mesh-refinement based on Algorithm 2.4 and Algorithm
3.1 for the weighted-residual error estimator (3.6) with o = 0.75,
R = 1.

e Adaptive mesh-refinement based on Algorithm 2.4 and Algorithm
3.2 for the weighted-residual error estimator (3.6) with o = 0.75,
ko =1,60=0.5.

e Adaptive mesh-refinement based on Algorithm 2.6 and Algorithm
3.1 for the (h — h/2)-based indicators (3.7) with o = 0.75, oy = £71/2,
q=0.2.

e Adaptive mesh-refinement based on Algorithm 2.6 and Algorithm
3.2 for the (h — h/2)-based indicators (3.7) with ¢ = 0.75, op = £~ 1/2,
g=0.2,6=0.5.

3.2. Symm’s integral equation on a slit. Symm’s integral
equation on a slit,

V=1 onT =(-1,1) x {0},
allows the exact solution ¢ € H¢(I') \ L?(T") for any ¢ > 0,

(3.9) P(x,0) = —2(1 — 2?72 forall —1 <z <1,
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FIGURE 3.2.1. Convergence history of error ||¢ — ¢¢||g in Slit problem 3.2 for six
different mesh-refining strategies of subsection 3.1.

with singularities at the tip # = £1. The error with respect to the
energy norm is computed with help of the Galerkin orthogonality

(3.10) 16— ellz = 0l — Nbellir =7 — llgellz

with the continuous energy ||¢[|% = 7.

Figure 3.2.1 plots the experimental errors ||¢ — ¢¢|| g for the six mesh-
refining strategies described in subsection 3.1 above. As predicted
by theory, uniform mesh-refinement leads to a poor convergence rate
¢ — del|lzr = O(h'/?) with respect to the uniform mesh-size h. In some
sense, this is cured by the proposed adaptive strategies. Figure 3.2.1
shows that the standard adaptive strategy leads to the optimal order
of convergence O(N3/2) with respect to the number of elements.
Moreover, we empirically observe 7,/7p > 0.7. Almost the same
convergence behavior is obtained for adaptive mesh-refinement steered
by Algorithm 2.4 and Algorithm 3.1.
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FIGURE 3.3.1. Convergence history of error ||¢ — ¢¢||g in Dirichlet problem 3.3
for six different mesh-refining strategies of subsection 3.1.

The combination of Algorithm 2.4 and Algorithm 3.2 leads to a
sequence with 74/7; > 0.7, where these quotients turn out to satisfy
T¢/Te < 0.75 = p for certain steps £. In these steps, the feedback loop of
Algorithm 3.2 enforces uniform mesh-refinement visible in the behavior
of the corresponding error curve. We found that a lower choice ¢ = 0.5
leads to the same behavior as for the standard adaptive algorithm since
the critical criterion (3.4) is always satisfied (not displayed here).

For the (h — h/2)-steered Algorithm 2.6, we essentially observe the
same behavior as for Algorithm 2.4. We recall, however, that we have
to expect certain uniform mesh-refinements after a fixed number of
adaptive mesh-refinement steps. This is in fact deducible in the sense
that step (c) of Algorithm 2.6 empirically leads to one step of uniform
mesh-refinement after four to five steps of adaptive mesh-refinement.
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3.3. Symm’s integral equation for the Dirichlet problem.
Symm’s integral equation

(3.11) Vo= (K +1/2)g

with g(z) = r%/3cos(2¢/3) on the L-shaped domain Q C R? with
diameter diam (2) = 1/2 and a re-entrant corner at (0,0) € R? with
polar coordinates (7, ¢) of z € T" involves the double-layer potential

1 )
12 Kg(z) = —— ¢ ——1 - f r.
(3.12) 9() or I om, oglz —ylg(y)ds, forze

The unique solution of (3.11) is the normal derivative ¢ = du/On of
the solution u(z) = r2/3 cos(2¢/3) of the Dirichlet problem

(3.13) —Au=0in Q with w=gonT =099Q.

The numerical results for the error ||¢ — ¢¢||g are displayed in Fig-
ure 3.3.1, and we observe the same behavior as in Slit problem 3.2
except, of course, the convergence speed N~2/3 for uniform mesh-
refinement.
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