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ABSTRACT. Direct scattering problems for partially coated
obstacles in linear elasticity lead to interior and exterior
mixed impedance boundary value problems for the equations
of steady-state elastic oscillations. We employ the potential
method and reduce the mixed impedance problems to equiv-
alent boundary pseudodifferential equations for arbitrary val-
ues of the oscillation parameter. We give a detailed analysis
of the corresponding pseudodifferential equations which live
on a proper submanifold of the boundary of the elastic body
and establish uniqueness and existence results for the original
mixed impedance problems for arbitrary values of the oscilla-
tion parameter; this is crucial in the study of inverse elastic
scattering problems for partially coated obstacles. We also
investigate regularity properties of solutions near the curves
where the boundary conditions change and establish almost
best Holder smoothness results.

1. Introduction. In this paper we investigate the three-dimensional
mixed impedance interior and exterior boundary value problems (BVPs)
for the equations of steady-state elastic oscillations. We consider an
elastic body occupying either an interior bounded domain or its comple-
ment. We assume that the simply connected boundary of this domain is
divided into two parts, a Dirichlet (rigid) one and a Robin (impedance)
one. On the Dirichlet part of the boundary, the displacement vector is
given, while on the Robin part, a specific combination—physically ex-
pressing the proportionality relation between the displacement and the
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stress vector—is given. The latter part is due to a coating on the Robin
part of the boundary with a material of constant surface impedance.
As usual, impedance expresses (intensity x stiffness) in relation to wave
reflection, diffraction, etc., and measures the contrast between two me-
dia. A complete discussion about the notion of impedance in elasticity
can be found, e.g., in [32]. Obstacles characterized by boundary condi-
tions of the aforementioned type are often called partially coated, and
there is very active current research on inverse problems for such me-
dia, mainly in acoustics and electromagnetics. Applications regarding
coated obstacles include, e.g., the detection of an object in the earth
from measurements of the total electric and magnetic field, the prob-
lem of a coated cable or pipe which is partially coated by a dielectric,
and many others (see [4]). Clearly, such boundary value problems de-
scribe (from a mathematical point of view) scattering problems. For the
study of the solvability of these mixed problems in elasticity we employ
a boundary integral equations approach. The basic three-dimensional
Dirichlet and Neumann type boundary value problems of the theory of
elasticity are well investigated by Kupradze with the potential method
(see [22] and the references therein). In particular, he formulated the
radiation conditions in the elasticity theory (now called in literature the
Sommerfeld-Kupradze radiation conditions), and proved the uniqueness
theorems for steady state oscillation problems in infinite domains with
compact boundaries. To establish the existence of classical solutions
for smooth domains he constructed the fundamental matrix satisfying
the Sommerfeld-Kupradze radiation conditions explicitly in terms of el-
ementary functions, investigated properties of the corresponding single
and double layer potentials for Holder continuous functions, and re-
duced the Dirichlet and Neumann type BVPs to normally solvable sin-
gular integral equations on the boundary of the domain under consider-
ation. Unfortunately these equations have a countable spectrum with
respect to the oscillation frequency parameter. Therefore the boundary
integral equations obtained are not equivalent to the original BVPs and
are not solvable unconditionally for all values of the oscillation parame-
ter. Such a situation always appears when the direct boundary integral
equations method is employed in oscillation problems, i.e., when the
solutions are sought in the form of either a single- or a double-layer
potential. To investigate the solvability of the above integral equations
one needs to find all eigenvalues and eigenfunctions (eigenvectors) of
the corresponding homogeneous integral equations and their adjoint



MIXED IMPEDANCE PROBLEMS IN ELASTICITY 185

ones. Similar two dimensional problems are considered in [3, 16, 17]
(see also the references therein).

Here we give a very naturally modified approach to remove the above
handicap, and reduce the mixed impedance exterior and interior BVPs
to equivalent uniquely solvable boundary pseudodifferential equations
for smooth and Lipschitz domains, for arbitrary values of the oscillation
frequency parameter. Moreover, for smooth domains we show unique-
ness and existence in Bessel-potential (H;) and Besov (B; ;) spaces,
and obtain almost best regularity results. For the displacement vector
we establish C'“-smoothness with a € (0,1/2). Notice that, in gen-
eral, solutions to mixed BVPs, even for given C*°-regular data, are not
in C* with @ > 1/2 at the collision curves, while they are infinitely
differentiable elsewhere (see, e.g., [11, 19, 28]).

The results of the present work will be used in the study of inverse
problems for partially coated obstacles. This study is in progress, and
will be communicated separately.

The paper is organized as follows. In Section 2, we first formu-
late the interior and exterior mixed impedance problems in Sobolev-
Slobodetski, Bessel potential and Besov spaces, and derive integral rep-
resentations of solutions. Further, we introduce the boundary operators
generated by single and double layer potentials, and describe the basic
mapping and jump properties of these potentials. In Section 3, we prove
the invertibility of the corresponding pseudodifferential operators for
arbitrary values of the oscillation parameter and establish basic unique-
ness, existence and regularity results for the original mixed impedance
problems. Although the present paper treats 3D problems, the whole
theory “passes” without any difficulty whatsoever to the 2D case; the
form of the fundamental matrices and the Sommerfeld-Kupradze radi-
ation condition for two dimensions are given in Section 3.6. Finally, for
the reader’s convenience, we include a brief appendix containing some
results from the theory of strongly elliptic pseudodifferential equations
on manifolds with boundary in Bessel potential and Besov spaces, which
are the main tools for proving existence theorems for mixed boundary,
boundary-transmission and crack problems by the potential methods.

2. Preliminary material.

2.1. Formulation of the mixed impedance problems. We
study the three-dimensional mixed impedance interior and exterior
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boundary value problems for equations of steady state elastic oscilla-
tions when an elastic body occupies either an interior bounded domain
Qt or its complement Q- = R3\ QF, QF = QT U S. For simplic-
ity we assume that S = Q1 = 90~ is simply connected. Moreover,
we assume that the surface S is divided into two simply connected
sub-manifolds, the so called Dirichlet part Sp and the partially coated
(impedance) part Sy: S = Sp U S7. Throughout the paper n = n(z)
denotes the outward unit normal vector at the point = € S.

We make here the following remark concerning the smoothness of
the manifold S and the curve ¢ := 0Sp N 0S;. To demonstrate our
approach, for simplicity, mainly we will consider two cases: either the
manifold S and the curve £ are C'°°-smooth or they are Lipschitz. Note
that for Lipschitz surfaces the components of the normal vector belong
to the space of essentially bounded functions L. (S). It should be
mentioned that the results obtained in this paper remain valid with
evident reformulation also for surfaces with finite smoothness (cf., e.g.,
[9, 11]).

The mixed impedance interior and exterior boundary value problems
(MIP)* read as follows: Find a vector u = (uy,us,us)’ satisfying

(i) the differential equation

(2.1)
A0, w)u(z) := p Au(z) + (A + p)grad divu(z) + ow? u(z) =0
in OF,
(i) the boundary conditions
(2.2) rsp{u}t = f on Sp,
(2.3) re, [{Tu}* +iwec{u}t]=h on Sy,

(iii) in the case of the exterior problem for the domain 2~ the vector u
satisfies the Sommerfeld- Kupradze type radiation conditions at infinity,
i.€., u is representable as a sum of metaharmonic vectors, the so-called
longitudinal u") = u(P) and transverse parts u(® = u(*) [22]

(24) u=u® +u®  with Au® + k2 u® =0, Au® +kZu® =0,

4 0
k Ek = k Eks: )
L= =9 ey ™ ”\/;
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and for sufficiently large r = |z

(2.5)
(1) (2)
&ta—r(:p) —ikiuV(z) =0 (rY), %Tr'(x) —ikyu®(z) =0 (rY);

here ¢ > 0 is a positive constant, A and p are the Lamé constants, o is
the density of the elastic material and w € R is the so-called frequency
parameter; further, A(0,w) stands for the matrix elastic oscillation
operator

(2.6) A0, w) := A(9) + ow? I,

' A(0) := [0k A+ (A + )0k Oj]3xs, I3 = [Oks]3xs,
while T'(0,n) and T(0,n)u denote the stress operator and the stress
vector

(2.7)
T(0,n) := [Tr;j(0,n)]3x3, Trj(0,n) = Ang Oz, + pun; Op, + ptx;j On,
(28) {T(a, n)u}k = OkjNj, Okj = P\ (5kj divu + 2 M€k (u)] n;,

€kj = 21 (8ku]' + (9juk,),

where A is the Laplace operator, dy; is the Kronecker delta, 8; = 0,, =
0/0z}, denotes partial differentiation with respect to the variable xy,
n is the unit normal vector and 0, = 0/0n stands for the normal
derivative, ex; = eg;(u) and op; = oy;(u) denote the strain and stress
tensors, respectively.

Here and in what follows the summation over repeated indices is
meant from 1 to 3, unless stated otherwise, and the symbol U " denotes
the transpose of U. The symbols {-}* and {-}  denote the interior and
exterior one-sided limits on S = 9QF from QF respectively. We will
use also the notation {}§ for the trace operators on S. The symbol
r pm denotes the restriction operator onto M.

Note that the radiation conditions (2.5) automatically yield the
following decay conditions at infinity (for details see [34])

pg W@ =00T 0@ —ik T @) = 06,
1=1,2, j=1,2,3.
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Since solutions to mixed BVPs do not possess C'*(Q)-smoothness, in
general, we look for solutions of the problems (MIP)* in the Sobolev-
Slobodetski, Bessel potential and Besov spaces in order to establish
almost bets regularity results.

To this end let us introduce some notation.

By L,, Wy, Hy and By, (with » > 0, s € R, 1 < p < oo,
1 < ¢ < 0) we denote the well-known Lebesgue, Sobolev-Slobodetski,
Bessel potential, and Besov function spaces, respectively (see, e.g., [23,
33]). Recall that Hy = Wy = Bj,, HS = B$,, W} = B}, and
HI’f = Wlf, for any r > 0, for any s € R, for any positive and non-
integer t, and for any non-negative integer k.

Let My be a Lipschitz surface without boundary. For a Lipschitz sub-
manifold M C My we denote by Hy(M) and B, ,(M) the subspaces
of Hy(My) and B, (M), respectively,

H3(M) ={g:g € H5(Mo), supp g C M},
By (M) ={g:g€ B; (My), suppg C M},

while H;(M) and B, ,(M) denote the spaces of restrictions on M of
functions from Hy(Moy) and By (M), respectively,

Hy(M) ={rmf: feH; (Mo}, By ,(M)={rmf:feB,, (Mo}

We look for solutions of the above formulated mixed impedance
interior problem in the space W, (Q%), while solutions of the exterior
problem are sought in the space W, ,.(27) N SK(Q~), where 1 <
p < +oo and SK(Q ) denotes the set of functions satisfying the
Sommerfeld-Kupradze radiation conditions at infinity (2.5). In the
case of such a formulation, the equation (2.1) is understood in the
distributional or in the weak sense, the Dirichlet type condition (2.2) is
understood in the trace sense, and finally the Neumann type condition
(2.3) is understood in the functional-generalized trace sense defined
with the help of Green’s identities.

Recall that for sufficiently regular vector functions u,v € [Ca(Q+)]?
and C'®-smooth domains we have the following Green’s formula [22]

/S{Tu}+-{v}+dsz/m A(@,w)u-vdm—i—/{ﬁ[E(u,i)fgw2u-v]dac,
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where the central dot denotes the scalar product in C* and
(2.10)

3A+2
E(u,v) = % divu dive + % Z(ﬁjuk + Oruy) (05K + Okvj)
ki

+ % Z(@kuk — 0juj) (Opvr — 0jv5), p© >0, 3X+2u>0.
k,j

It is evident that E(u,w) > 0, with the equality holding only for rigid
displacement vectors, i.e., for vectors X(z) = [a X x] + b, where a and
b are some constant three-dimensional complex valued vectors and x
denotes the cross product (see, e.g., [22]).

Note that the above Green’s formula can be generalized, by a stan-
dard limiting procedure, to Lipschitz domains and to vector-functions
from the corresponding Sobolev-Slobodetski, Bessel potential and
Besov spaces. In particular, we can generalize this formula for vector
functions w € [W; (Q7)]* with A(d)u € [Ly(Q1)]* and v € W (Q1)]?
with 1/p+1/p' =1,1 < p < +oo0,

(2.11)
{Tu}t, {7} )s :/ A(@,w)u-vda:—i—/ [B(u,) — ow?u-v] da,
Q-+

Q-+
where the symbol (-,-)s denotes duality brackets between the adjoint
spaces [B;,,l,/p(S)]s and [3;421(5)]3‘ Note that due to the embedding
{v}t € [B;,/’I;,(S)]?’, this relation defines the generalized stress trace
functional {Tu}* € [By /P (S)].
For the vector u € [W) 1, (27)]* with A(9)u € [Lp, 10c(27)]* the
functional {Tu}~ is determined quite similarly by formula
(2.12)

{Tu} ™, {0} )s = - /

Q).

A(0,w)u - vdx 7/ [E(u,?) — ow?u - v] dz,

with v € [I/I/pll7

comp

Since v has a compact support and {v}g € [B;,/;, (9)]3, the right
hand side of (2.12) is well defined and defines the functional {Tu}~ €

[Bps'"(S)]2.

The Neumann condition (2.3) is understood in the functional sense
just described.
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We note that due to the strong ellipticity of the operator A(9), every
solution of the equation (2.1) is actually C*°—regular in QF, in view
of the interior regularity property (see, e.g., [13]).

2.2. General integral representations and properties of
potentials. Denote by I'(z,w) and I'(z) the matrices of fundamental
solutions of the differential operators A(9,w) and its principal part
A(9), A(0,w)'(z,w) = Isé(xz) and A(O)(xz) = I3(z), where §(z)
is the Dirac delta function. These matrices read as follows (see [22,
Chapter 2, Section 1], [24, Chapter VIII, Section 130])

[(z,w) = [[gj(z,w)]3x3,

2 ik ||
e
Tij(w,w) =Y (Skjcu + Bi Ok 9;) N
=1
62[ (_1)l+1
o= — ) 1=
4T u dTmow
O N Ty
P(e) = My @axa, Diyle) = S0 + =
, A+3p , A4

T 8mu(A+2p) M__Sﬂp()\-i-?u)'
We have the following relations:

(2.13)
[(z,w) =T(~2,w) = [[(z,w)]",  T(z)=T(-z)=[T(2)]",
ID(z,w)| < [z[7Pe(Np),  [P(z,w) —I(2)| < |wleX, p),

|0;T(z,w) = 0;T(2)| < |w]* (X, ),

10;0T (z,w) — 0;0,T (z)| < |z|™" (A, p,w),
showing that the matrix of statics I'(z) is the principal singular homo-
geneous part of the matrix of oscillations I'(z,w). It is evident that the
entries of I'(x,w) and ['(z) are real analytic functions in R?® \ {0} and,
moreover, I'(z,w) satisfies the Sommerfeld-Kupradze radiation condi-
tion at infinity.

By standard arguments, applying the corresponding Green’s formu-
lae, we can derive the following integral representation of solutions to
the equation (2.1)

(2.14) W({u}")(z) = V({Tu}")(2) = { g(x) 12 gt



MIXED IMPEDANCE PROBLEMS IN ELASTICITY 191

where V' and W are the single and double layer potentials

V(o)) = /5 Iz —y,w)g(y)dS,, z€R\S,

W) = [ 10, nw)Pe =) h)dS,. o eR\S,

g = (91,92,93)" and h = (hi,hy, h3)" being the densities of the
corresponding potentials.

Quite similarly, for a radiating solution of the equation (2.1) we have
the representation (see [22, 27])

_ _ 0 in QF,
(2.15) “W{u}") (@) + V({Tu}")(2) = { o
u(z) in Q.
These representations remain valid for solutions of the class W, (Q%)
and W, 1,.(27) N SK(Q"). From these representation formulae it is
evident that any solution to the equation (2.1) is actually an analytic
vector function of the real variable z € QF in the corresponding
domains. Further, if u € W, (QF) N W, |, .(27) N SK(Q7) solves the
equation (2.1) in Q% and Q~, then by adding of formulae (2.14) and
(2.15) we get

u(@) = W({u}" = {u} ) (2) - V({Tu}" - {Tu}")(x)

inQtuQ,

which shows that if on some open part S; C S of the common boundary
S of the adjacent domains Q7 and Q= the jumps of the Cauchy data
equal to zero, i.e., 75 [{u}" —{u}~] = 0 and rg, [{Tu}" — {Tu}~] =0,
then the vector function u defined by the equality

u(z) forz e QT
(2.16) u:=1q u(z) forxe,
{u}t forze Sy,

is a Leal analytic vector in the connected domain R3? \5_2 with Sy =
S\ S1. Therefore if @ vanishes either in Q7 or in 7, then it vanishes
in R3.
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Further we introduce the boundary operators generated by the single
and double layer potentials. For the boundary integral (pseudodiffer-
ential) operators generated by the layer potentials we will employ the
following notation:

(2.17)
(o)) = [ T p.0)a)dS, €5
(2.18)
(Ko)a) = [ [T@0rn@)T (e~ 1.0)] o) S, 2 €5,
(2.19)
(" )@= [ 1O Te - y.)] hw)dS,, @ e
(2.20)

(Lh)(x) := {T (D, n(z))W(h)()}", zeS8.

The boundary operators H and L are pseudodifferential operators of
order —1 and 1, respectively, while the operators K and K£* are mutually
adjoint singular integral operators—pseudodifferential operators of order
0 (for details see [1, 2, 7, 17, 18, 19, 22]).

We will denote the potentials constructed by the matrix I'(z —y), and
the corresponding boundary operators, by the same symbols as above
but equipped with the subscript 0, e.g., Vo(g) Wo(h), (Hog), - - , (Loh).

Now we describe the basic mapping and jump properties of the
above introduced layer potentials. They can be found in [9, 10, 17,
18, 19]. Note that the main ideas for generalization to the scale
of Bessel potential and Besov spaces are based on the duality and
interpolation technique, and are described in [30] using the theory of
pseudodifferential operators on smooth manifolds without boundary,
while in [1, 2, 6, 14, 25, 26], for general Lipschitz boundaries.

Theorem 2.1. Let S be C*®—smooth and 1 < p < o0, 1 <t < o0,
and s € R. The operators
S 3 S 3
Vi [B:,(9)] [HET /P (Q1)]

b,p

_>
[B; () — [ @) nsk @),

p, loc
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[B(9)° — (B @)

(B8] — Byt @) n sk @),
W (B, (5)) — [H; @b

[[B; ()" —[H; @) nsk(@)7],

[B5(9)]” —[By7(@h)]’

[B;.(9)]) —[B; R @) nsk@)],

are continuous. If S is Lipschitz, then the operators

v [H,V2(9)] —[H) Q)]
[[#;2(8)) " [H} we@) N SE(@7)]°],
W [H2(9)] —[H@h)]
(129" — [H] o(@7) nSE @]

are continuous.

Theorem 2.2. Let S be C*®—smooth and 1 < p < oo, 1 <t < o0,
s €R and

ge [B/")],  he B MS)].
Then
Vig)} ={Ve)} =Hg onS,
{T (0,n)V (g )}i = [:F 2_1I3+IC] g, onS,
{W } [:l: 2711, +IC*] h onS.
Moreover,

{T@nW(h)} = {T@,n)W(h)} =Lh onS.

The same relations hold for a Lipschitz boundary S and p =t = 2.
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Theorem 2.3. (i) Let S be C®°—smooth and1 < p < o0, 1 <t < o0,
s € R. The operators

He[Hy(S)] —[H(S)
[[Bs.(8)]” — (B3 (8))°),
27 I, 227 + K0 [HY(S))]D —[HE(S)]
[B3(S)]” — (B3]
c: [H(9)] — ()
|[B; (9] —[B;.(9)°],
are continuous and Fredholm with zero index.
(ii) If S is Lipschitz, then the operators
H: [Hy ' 2(8)) —[Hy?(9)]°,
+27 15 + K 1 [Hy 2 (9)]°— [Hy Y2(5)]°,
+27 1+ K [HyY2(9)]) —[Hy*(9)]7,
c:[H*(9)] —[HV(5))°,

are continuous and Fredholm with zero index, and moreover, there are
positive constants Cy and Co such that

<£ga g)S > Cl ||gH[2H21/2(S)]3 - 02 Hg||[2Hg(S)]3
for all g € [Hy"*(S)P?,
where the symbol {-,-)s denotes duality brackets between the adjoint
spaces [HZ_I/Q(S)]?’ and [HQI/Z(S)]?’.

(iii) The following operator equalities hold in appropriate function
spaces:

K*H=HK,

LK =KL,
LH=—4""T;+ [K],
HL= 4"+ [K°]%

(2.21)
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The above theorems hold true for the potentials V{ and W}, and for
the operators Ho, Ky, K and L.

2.3. Auxiliary problems. Here we study the following auxiliary
impedance (Robin type) interior and exterior boundary value problems.

Problem (I)*: Find a vector u = (u1,uz,us)’ € [W)(QM)]?, 1 <p<
400, satisfying

(i) the differential equation
(2.22) A(Q,w)u(r) =0 in QF,

(ii) the boundary condition

(2.23) {Tu}" +iwc{u}™=h onS, he [B;;/p(S)]g'.
Problem (I)™: Find a vector u = (u1,uz,uz)’ € [W, 1,.(Q7)]P N
SK(Q27), 1< p < +oo, satisfying
(i) the differential equation
(2.24) A(Q,w)u(z) =0 inQ~,
(ii) the boundary condition
(2.25) {Tu}” +iwc{u}” =h onS, he[B,LP(S)P.

We start with a uniqueness theorem.

Theorem 2.4. Let S be Lipschitz. For p = 2 the homogeneous
problems (I)* have only the trivial solution.

Proof. Let u € [W3(27)]® be a solution to the homogeneous problem
(I)*. Since A(9)u € [L2(27)]® we can apply Green’s formula (2.11)
with v = u, which in view of the homogeneous impedance condition
(2.23) leads to the relation

/ [E(u,ﬂ)fgw2|u|2]d$+iwc/|{u}+\2dS:0.
Q+ S
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Separating the imaginary part we get {u}*™ = 0 on S and, consequently,
{Tu}*t =0 on S due to the homogeneous impedance condition (2.23).
Then by (2.14) we conclude u =0 in Q7.

Now, let u € [W1(Q27)]>NSK(Q7) be a solution to the homogeneous
problem (I)~. Further, let R be a sufficiently large number, such
that O C B(0,R) := {y € R® : |y| < R}. We use the notation
Qp == Q@ NB(0,R) and Lp := 0B(0,R). We can write Green’s
formula (2.11) in Qp with v = u, as

/[E(u,ﬂ)—gw2|u|2]dac—iwc fuy12dS— [ T(0,n)u-udsg = 0.
Q. S

R 2

Again, by separating the imaginary part we get

(2.26) we / Hu} " ?dS + S / T(0,n)u-udXg =0.
s Sk
With the help of (2.9) we can rewrite (2.26) as
(2.27)
2
we / Hu} [PdS+S / Z ik T(Z,2)uY D dSp + O(R™Y) = 0,
s b

Rl,q=1

where ¥ = z/|z| and Z = n(x) is the exterior unit normal vector at the
point z € Xg.

Note that due to (2.6) and (2.7), we have T'(z,7) = A(Z) = [ dr; +
(A+p) Z Tj]3x3. On the other hand, the matrix A(Z) is positive definite
and for sufficiently large |z|

etk

u) = ] uld (@) + 02| 2),

where uEQ (Z) is the so-called far field pattern of the metaharmonic

vector function u") (see, e.g., [5, 34]). Therefore from (2.27) it follows
wc/ Hu}~|?dS
s
2 el (ki—kq) R
43 /E > ik A@) ul (@) u@(@) Ty —
R l7q:1

+ O(R_l) =Y
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and, consequently,
wc/|{u}7|2d5'
S
+ [ (MA@ @) D@ + kA@ P @) 2(@)) d
P}

+8 [ N ik A@) ul (@) - ulD (@) et B s + O(RTY) = 0.
21 12q

Take into consideration that ki # ko and integrate the last equality
from ¢ to 2¢ with respect to R and divide the result by ¢ to obtain

we /S Hu}~|?dS

+ / <k1 A@) uQ (@) - uld) (@) + ke A@) uld) (%) Ug)(@\)) ¥,
P
ei (k[—kq) 2t _ ei (k[—kq) t

I ’L(kl — kq)t

/ ik A@) v (@) - ul?(7) dzl} +o(t) =0.
P}

Since the last two summands tend to zero as t — +00, we arrive at the
equation

we /S {u} 2 dS
+ / 1 (s A@) uD (@) - uD (@) + k2 A@) u@ (@) - 02 (@) d51 = 0.

Now, since ¢ > 0, signw = signk;, [ = 1,2, and the matrix A(Z) is
positive definite, we get

(2.28) {u}7=0 onS,
(2.29) uD(@) =0, 1=1,2, forall Z € %.

The equality (2.28) implies {T'u}~ = 0 on S due to the homogeneous
impedance condition (2.25). Therefore, by the representation formula
(2.15) we finally obtain u =0 in Q.
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Note that the same result for u = u( + u( follows also from the
equalities (2.29) since they yield u)(z) = 0,1 = 1,2, in Q~ due to the
well known Rellich-Vekua theorem for metaharmonic functions (see,
e.g., [5, 34]). O

To study the existence of solutions of the above formulated auxiliary
boundary value problems we proceed as follows. We look for a solution
of the BVP problem (I)~ in the form

(2.30) u(z) =W(g)(z)+ixV(g)(xz), =€,

where s is a nonzero real number and g € (g1, 92,93)" € [B;;,“P(S)]?’
is an unknown density.

We assume that 1 < p < 4+o0 if S is a smooth surface, and that p = 2
if S is a Lipschitz manifold.

Clearly, u € W, 1,.(27) N SK(Q~) by Theorem 2.1 and solves the
equation (2.24). In view of Theorem 2.2, the boundary condition (2.25)
leads to the equation

Lg+in2 'L +Klg+iwe[-2'+K*+ixH]g=h onS,
where £, K, K* and A are given by equalities (2.17)—(2.20). Let
(231) P=LA4ix2 ' L+K|+iwe[-27 L+ K" +ixH].

By Theorem 2.3, when S is a C°°—regular surface, we have the
following mapping property for the pseudodifferential (singular integro-
differential) operator (2.31)

P [HFH(S)P — [Hy ()P |[Byi ()P — [B;(S)P],

seR, 1<p<+4oo, 1<t<+o0.

(2.32)

In the case when S is Lipschitz, we have to take s = —1/2andp =t =2
in (2.32). It can easily be seen that, for both smooth and Lipschitz
cases, the principal singular part of the operator P is the first summand
L since the operators

P—L:[Hy P (S — [Hy(S) [[35?1(5)]3 — [B; 4 (S)
for S € C*°,
P—-L: [H21/2(S)]3 — [H;l/z(S)]?’ for Lipschitz S,
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are compact for all s € R, 1 < p < 400, 1 <t < 400 due to the
mapping properties described in Theorem 2.2 and the compactness of
the embeddings H,*(S) C Hy2(S) and B,(S) C Bp3(S) with 51 > s3
for smooth S, and Ha/?(S) C H; '/*(S) for Lipschitz S.

Theorem 2.5. Let S be C*°—smooth and 1 < p < 00, 1 <t < o0,
s € R. Then the operator (2.32) is invertible.

Proof. By Theorem 2.3 the operator (2.32) is Fredholm with zero
index. Therefore, in order to establish the invertibility of the operator,
we have to prove that it has the trivial kernel.

First, we assume that s = —1/2 and p = 2, and let g € [HQI/Z(S)]?’
be a solution of the homogeneous equation Pg = 0. Construct
the vector function u by the formula (2.30). It is easy to see that
u € [Hy 1,.(27)]? N SK(Q) and satisfies the homogenous boundary
condition (2.25), i.e., u solves the BVP (I)~. Consequently, v = 0 in
Q" in view of Theorem 2.4. Further, it is clear that u € [Hji(QT)]?
and solves the equation (2.22) in Q*. Taking into account the jump
relations of single and double layer potentials described in Theorem 2.2,
we easily derive that {Tu}t — {Tu}~ = —ixg and {u}" —{u}~ =g
on S, ie.,

{Tu}t +isx{u}t =0 onS.

From Green’s equality (2.11) with v = u by separating the imaginary
part we get {u}*t = 0on S, whence {Tu}* = 0 on S follows. Therefore
u =0 in Q7 due to the general integral representation formula (2.14),
which implies g = {u}™ — {u}~ = 0. Thus the operator

P HY*(S) — H;Y*(S)

has the trivial kernel and is invertible. Taking into account that
H;/Z(S) = B;,/QZ(S) and H;l/z(S) = B;;D(S), we conclude that the
operators (2.32) are invertible as well, since they have the same kernels
forallse R, 1< p< +o0and 1 <t < +oo due to the general theory
of pseudodifferential equations on manifolds without boundary. ]

Theorem 2.6. Let S be Lipschitz. Then the operator
(2.33) P HY*(S) — H, Y2(9)

1s invertible.
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Proof. By Theorem 2.3 (ii) and in view of the compactness of the
embedding H21/2(S) C HZ_I/Z(S) we see that (2.33) is a Fredholm
operator with zero index. By the word for word arguments applied
in the proof of Theorem 2.5 we show that the kernel of the operator
(2.33) is trivial, which completes the proof. o

In the sequel, when dealing with the operator P we shall assume that
it is the mapping defined either by (2.32) for smooth S, or by (2.33)
for Lipschitz S. Now we can formulate the following basic assertion.

Theorem 2.7. Let S be smooth. If u € [W) 1,.(27)]* N SK(Q7),
1 < p < +4oo, solves the homogeneous equation (2.24), then it is
uniquely representable in the form

(2.34) u(z) = W(P'h)(z) + i V(P h)(z), z€Q,
where P~ is the inverse to the operator P and

(2.35) hi={Tu}" +iwc{u}™ € [B;}/7(9)°.

p,p

In the case of a Lipschitz S the same assertion holds with p = 2.

Proof. 1t follows from Theorems 2.1-2.6. Indeed, it is easy to verify
that the vector h defined by (2.35) is correctly defined in view of
Theorem 2.1. On the other hand, with the help of Theorems 2.2, 2.3,
2.5 and 2.6, we see that the vector

(2.36) v(z) = W(P *h)(z) +isx V(P *h)(z), z€Q

solves the BVP (I)~ (see (2.24), (2.25)) with h defined by (2.35).
Further, we note that if the vector (2.36) vanishes in Q~, then h = 0,
which follows again from Theorems 2.1 and 2.2 leading to (2.35). To
complete the proof we have to show that u(z) = v(z) in Q~. To this
end let us note that both vectors u and v solve the same BVP (I)".
Therefore it remains to prove that the homogeneous BVP (I)~ has only
the trivial solution. Until now we have the uniqueness result only for
p = 2 due to Theorem 2.4, which covers the Lipschitz case. In the
case when S is smooth, for arbitrary p € (1,4+00), we can write the
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general integral representation formula (2.15) for a solution w := u —v
to the homogenous BVP (I)~, (2.24)—(2.25) with ~ = 0. Due to the
homogeneous boundary condition (2.25) we arrive at the formula

w(z) = W(g)(z) +iwcV(g)(z) nQ7,

where g := —{w}~ € [BL,"P(S)]. Since {Tw}~™ +iwc{w}~ =0 on
S, we get the following pseudodifferential equation with respect to g

Pg=0 onlS,

where P is defined by (2.31) with s = wec # 0. Therefore by
Theorem 2.5 we conclude that g = 0 on S, and consequently w = 0 in
Q. O

Corollary 2.8. The problem (1)~ is uniquely solvable and its solution
is representable in the form (2.34).

Quite analogously we can prove similar results for the problem (I)*
(see (2.22), (2.23)). Instead, let us look for a solution to the problem
()" in the form

u(@) =V(g)(z), =eQr,

where ¢ is an unknown density. The boundary condition (2.23) leads
then to the following boundary integral equation

[-27' 3+ K+iwcH]g=h onS.

Let
Q:=-2'L+K+iwcH.

For a C'*°-regular surface S, by Theorem 2.3 we have the following
mapping property

s QHEF = H )P {[BLO) — [B;(9)F],
s€R, 1<p<+oo, 1<t< o0
For a Lipschitz S we have to take s = —1/2 and p = ¢t = 2 in

(2.37). It can easily be seen that for both (smooth and Lipschitz)
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cases the principal singular part of the operator Q is the first summand
—2-1 I;+ K.

Theorem 2.9. Let S be C*®—smooth and 1 < p < o0, 1 <t < 00,
s € R. Then the operator (2.37) is invertible.

Proof. Due to Theorem 2.3 the operator (2.37) is Fredholm with
zero index. Let us show that its kernel is trivial. With the help of
the uniqueness Theorem 2.4 and the jump relations for the single layer
potential, it can easily be shown that the homogeneous equation Qg = 0
has only the trivial solution for p = 2 and s = —1/2. Consequently,
due to the general theory of pseudodifferential equations on manifolds
without boundary, the same is valid for all 1 < p < 00, 1 <t < o0,
s € R, which completes the proof. u]

Theorem 2.10. Let S be Lipschitz. Then the operator
(2:38) Q: [Hy ()P — [Hy (S)P?

is invertible.
Proof. It immediately follows from Theorems 2.3 and 2.4. o

As in the case of the operator P, when dealing with the operator Q,
in the sequel, we shall assume that it is the mapping defined either by
(2.37) for smooth S, or by (2.38) for Lipschitz S.

Theorem 2.11. Let S be smooth. If u € [W) 1,.(QF), 1 <

p < +00, solves the homogeneous equation (2.22), then it is uniquely
representable in the form

(2.39) u(z) = V(Q *h)(z), =eQ,
where Q™! is the inverse to the operator Q and
(2.40) h={Tu}" +iwc{u} € [B,}P(S)].

In the case of a Lipschitz S, the same assertion holds with p = 2.

Proof. 1t is word for word the proof of Theorem 2.7. ]

Corollary 2.12. The problem (I)" is uniquely solvable and its
solution is representable in the form (2.39).
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Remark 2.13. Note that if we apply the approach based on the single
layer representation of solutions in the case of the exterior problem
(I)~, then it leads to the integral equation which is not unconditionally
solvable for arbitrary values of the oscillation parameter w. The case is
that if a single layer potential vanishes in the exterior domain 27, then
the corresponding density is not zero, in general, since the homogeneous
interior Dirichlet problem for the steady state oscillation equation may
possess a nontrivial solution for the so-called exceptional values of the
oscillation parameter w. As we have seen, the representation (2.30)
reduces the exterior problem (I)~ to a pseudodifferential equation
which is unconditionally solvable for arbitrary values of the oscillation
parameter w. Similar approaches have been applied to the Helmholtz
equation by several authors (see, e.g., [5, 27] and the references
therein).

3. Basic uniqueness, existence and regularity results.

3.1. Uniqueness results. Let us return to the mixed impedance
problem formulated in Section 2.1 and prove the following uniqueness
result.

Theorem 3.1. Let S be Lipschitz. The homogeneous problems
(MIP)* have only the trivial solution for p = 2.

Proof. The proof is quite similar to the proof of Theorem 2.4. Indeed,
let u € [W3(£21)]2 be a solution to the homogeneous problem (MIP)*.
Since A(d)u € [La(Q7)]® we can apply Green’s formula (2.11) with
v = u, which leads to the relation

/m [B(u, @) — ow? [ul2]de + iwe / {u}H2dS = 0.

St

Separating the imaginary part we get Ts, {u}* = 0 and, consequently,
Ts, {Tu}* = 0 due to the homogeneous impedance condition (2.3).
Thus the Cauchy data for u vanish on Sy C S. Then by (2.14) we
conclude that the left hand side expression is real analytic in R3 \ S
since the integration surfaces in the layer potentials coincide with Sp.
Therefore, since the left hand side expression vanishes in 2, it vanishes
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in Q% as well (see the remark concerning the function @ defined by
(2.16)). Whence v = 0 in QF follows.
Now, let u € [Wy 1,.(Q27)]> N SK(27) be a solution to the homoge-

neous problem (MIP)~. We apply the notation introduced in the proof
of Theorem 2.4 to obtain

/ [E(u,@) — ow? |[u|*]de —iwc
R
{u}~|?dS - T(0,n)u-udXg = 0.
S[ ER
With the help of word for word arguments we easily derive the equalities

(one needs only substitute Sy for S in the formulae appearing in the
proof of Theorem 2.4):

rs,{u}” =0 on Sy,

3.1
(51) uD(@) =0, 1=1,2, forallZe .

Therefore u = u™) +u(?) = 0 follows from the equalities (3.1) since they
yield u® (z) = 0,1 = 1,2, in Q~ due to the well known Rellich-Vekua
theorem for metaharmonic functions. o

The uniqueness result for p # 2 will be shown later.

3.2. Existence results. First we consider the exterior problem
in the case of C*°-smooth boundary. Let hy be some fixed extension
of the vector function h from S; onto the whole of S preserving the
function space, i.e., hy € [B_l/p(S')F’ and 7g, hg = h on S;. Then an
arbitrary extens10n of the vector function h is representable as hg + ¢,
where ¢ € [Bp 2P (Sp)?.

In accordance with Theorem 2.7, we look for a solution to (MIP)~ in
the form

(3.2) u(z) = W(P tho + o)) (x) + iV (P tho + ¢))(z), €,

where hy is the above mentioned fixed extension and ¢ € [B 1/‘D(SD)]

is an unknown vector function. We see that u € [W) 1,.(© )] NSKQ™)
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and the impedance boundary condition (2.3) on S; is automatically
satisfied since {Tu}~ +iwe{u}™ = hy + ¢. The Dirichlet condition
(2.2) leads to the pseudodifferential equation on Sp with respect to the
unknown vector function ¢

s, (27 '3+ K* +iweH] P (ho+¢) = f on Sp,
which can be rewritten as
(3.3) rs, No=F on Sp,

where

N:=2'-K—iwcH] P!,
F:=—f—rs, Nho€[BL?(Sp)P.

Due to Theorems 2.3 and 2.5 we have the following mapping property
N« [Hy(S)P — [Hy 1 (9)]° (B} () — [By 1 (S)I),
seR, 1<p<+4oo, 1<t<+o0.

Applying Theorems 2.3, 2.5 and A.1 (see the Appendix) we can estab-
lish the following property of the operator rs, N.

Theorem 3.2. Letsce R, 1 <p< oo, 1<t < o0, and let

1 3 1 1
Then the operators
(3.7) rsp Nt [H3(Sp)]P — [H3(Sp))?
(3.8) (B «(Sp)I* — B, (Sp)]?

are invertible.

Proof. We prove the theorem in three steps.
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Step 1. First we show that the principal homogeneous symbol matrix
o(N)(&,z) of the operator N is positive definite for all ¢ € R?2,
€] = 1 and z € S. Note that due to the relations (2.13) the
principal homogeneous symbol matrices of the oscillation operators H,
K, K*, L, P and N coincide with the principal homogeneous symbol
matrices of the corresponding operators Ho, Ko, K§, Lo, Po and N,
constructed with the help of the fundamental matrix of statics I'(-).
Therefore, taking into consideration only the principal singular parts
of the operators in (3.4) and (2.31) we get

(3.9) o(N)=0(2 '3 =K} [0(Po)] P = (2 '3 — K}) [0(Lo)] .

It is well known that the principal homogeneous symbol matrices of
the operators Hg, 27113 £ Ko, 27113 £ K} and Ly are elliptic, i.e.,
the matrices o(Ho), (2713 + Ko), o(27 3 + K) and o(Ly) are
non-degenerate for all ¢ € R?, [§] = 1 and z € S . Moreover,
the operator Ho : [Bj,(S)]® — [B;II(S)]?’ is invertible and the
principal homogeneous symbol matrices o(—Ho) and o(Lp), as well
as the principal homogeneous symbol matrices of the Steklov-Poincaré
operators o([—27 I3 £ Ko] Hy '), are positive definite (for details see,
e.g., [10, 18, 22, 28]). Further, due to the last equality in (2.21) we
have
0'(7‘[0) 0'(,60) = 0'(271.[3 + ’CS) 0'(7271]3 + ’CS),

whence

(275 — K§) [o(Lo)]* = [o(—27 15 — K§)] ™ o(Ho)
={lo(Ho)] "t o(-27" 13 — K5} 1.

From the first equality in (2.21) it follows that
[0(Ho)] " o(—27"Is — K§) = o(—27" 15 — Ko) [o(Ha)] .
Therefore we finally get from (3.9) that
o) ={o(-27"15 — Ko) [o(Ho)] '},
i.e., o(N) is the inverse of the principal homogeneous symbol matrix of

the Steklov-Poincaré operator, which is positive definite. Consequently,
o(N) is positive definite.
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Step 2. Here we show that the claim of the theorem holds for p = ¢ = 2
and s = —1/2. Note that in this case both operators (3.7) and (3.8)
coincide. Since the chosen values of the parameters p, t and s satisfy
the inequalities (3.6), by Theorem A.1 the corresponding operator

(3.10) rey Nt [Hy Y2(Sp)]P — [Hy*(Sp))?

is Fredholm with zero index.

Let us show that the null space of the operator (3.10) is trivial. To this

end let ¢ € [ﬁ;l/p(SD)]s be a solution to the homogeneous equation
rsp, N ¢ =0 on Sp. Construct the vector

u(z) = W(P L) (z) +in V(P le)(z), ze€Q .

It can easily be seen that u € [Wy 1,.(27)] N SK(Q7) and solves the
homogeneous mixed impedance problem, since {Tu}™ +iwc{u}™ =
@=0on S and {u}” = —N ¢ =0 on Sp. Therefore by Theorem 3.1
we conclude v = 0 in 7, whence ¢ = 0 follows. Thus the kernel of
the operator (3.10) is trivial and consequently it is invertible.

Step 3. Now we treat the general case and assume that the parameters
p and s satisfy the inequality (3.6), and 1 < ¢ < +oo. Then by the
results of Step 1 and Theorem A.1 the operators (3.7) and (3.8) are
Fredholm with zero index. Moreover, by the final part of Theorem A.1
and in view of the results obtained in Step 2, we conclude that these
operators have trivial null spaces. Therefore they are invertible. a

In accordance with Theorem 3.2 the nonhomogeneous equation (3.3)
is uniquely solvable for the arbitrary right hand side. Note that the
solution ¢ depends on the vector function hg, which extends the given
impedance boundary vector function h from S; onto S i.e., ¢ depends
on the extension operator. However, with the help of the injectivity
property of the operators (3.7) and (3.8), it can easily be shown that
the sum hgy + ¢ does not depend on the extension operator.

Now we are in position to formulate the basic existence result for the
exterior mixed impedance problem.

Theorem 3.3. Let 4/3 <p < 4 and
(3.11) fFeBYP(Sp)P, helB, PSP
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Then Problem (MIP)™ has a unique solution u € [W!, (7)) N

SK(Q2™) which is representable in the form of (3.2) p’wl;)zcere ho €
[B;,l,/p(S)]?’ is some fized extension of the vector function h € [B;,Il,/p
(S1)]® from S; onto S preserving the functional space and ¢ €
[EIZ;/F(S’D)]Z)’ is defined by the uniquely solvable pseudodifferential equa-

tion (3.3) with the right hand side given by (3.5).

Proof. 1t is evident that the vector function (3.2), with densities
assumed as above, solves the (MIP)~ (see (2.1)—(2.4)). Therefore it
remains to prove the uniqueness of solutions for p # 2.

Let u € [W) 1,.(27)]> N .SK(27) be a solution to the homogeneous
mixed boundary value problem. Due to Theorem 2.7, u is representable
in the form

u(z) = WP y)(a) +ix V(P 1Y) (x), zeQ,
where B
Y i={Tu}” +iwc{u}” € [B;;,/p(SD)]S

in view of the homogeneous impedance condition on S;. Then the
homogeneous Dirichlet condition on Sp gives

rsy, {u}” = —rs, Ny =0.

Whence ¢ = 0 follows by Theorem 3.2 if condition (3.6) is fulfilled with
s=—1/p, ie., if 4/3 < p < 4. Therefore u =01in Q. O

3.3. Regularity results. Here we present almost best regularity
results for solutions to exterior mixed impedance problems.

Theorem 3.4. Let the conditions (3.11) and the inequalities
(3.12)
4/3<p<4, 1<t<oo, 1<g<oo, 1/t-1/2<s<1/t+1/2,

be fulfilled, and let u € [W) 1,.(Q7 )P NSK(Q) be the unique solution
to the mized problem (MIP)~. In addition to (3.11),

(i) of
felB(Sp)P,  helBi'(SnP,
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then §
we [H, ()P NSK(Q);
(ii) if
felBi,(Sp)?,  he[Bi,'(Sn,
then
(3.13) we [BlIh ()P NSKQ);
(iii) if

(3.14) fe [Ca(SD)]S, h € [Bgofolo(SI)]S, a >0,
then

ue [CPQ)PNSK(Q™) with any 8 € (0,7), v := min{e, 1/2}.

Proof. Parts (i) and (ii) can be shown by the word for word arguments
applied in the proof of Theorem 3.3. To prove (iii) we need the following
chain embeddings (see, e.g., [33])

(3.15)
07 (8)=BS, o (8) C B (8) C B (8) C By *(8) cCo = H/1(s),

where ¢ is an arbitrary small positive number, S C R? is a compact
k-dimensional (kK = 2,3) smooth manifold with smooth boundary,
1<g¢g< o0, 1<t<oo,a—e—k/t >0, aand o —e — k/t are
not integers. From (3.14) and the embeddings (3.15) the condition
(3.13) follows with any s < o —e.

Bearing in mind (3.12) and taking ¢ sufficiently large and ¢ sufficiently
small, we may put s = a — ¢ if

(3.16) 1t 1/2<a—e<1/t+1/2,
and s € (1/t —1/2,1/t +1/2) if

(3.17) 1/t+1/2<a—e.
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By (3.13) the solution u belongs then to [B::(kl)ét)(ﬁ )] with s+ 1/t =

a—e+1/tif (3.16) holds, and with s+1/¢ € (2/t—1/2,2/t+1/2) if (3.17)
holds. In the last case we can take s+ 1/t = 2/t + 1/2 — e. Therefore,
we have either u € [Bff;aﬂl/t) (Q7)]3, or u € [31{12+(2/t)— (Q7)]? in

,Jloc loc
accordance with the inequalities (3.16) and (3.17). The last embedding
n (3.15) (with & = 3) yields that either v € [C* ¢~ 2/Y(Q)]?, or

u € [C1/275-1/*(Q~)]® which lead to the inclusion
(3.18) u € [CTEH A,

where v := min{a, 1/2}. Since ¢ is sufficiently large and ¢ is sufficiently
small, the embedding (3.18) completes the proof. O

3.4. Interior mixed impedance problem. We can develop the
same approach in the case of the interior problem (MIP)" on the basis
of the representation formula (2.39)—(2.40), see Theorem 2.11. Indeed,
let ho € [B_l/p(S)] and ¢ € [B _l/p(SD)]?’ be defined as in Section 3.2.
We look for a solution to the problem (MIP)* in the form

(3.19) u(z) = V(Q ho + o)) (z), zeQ.

We see that u € [W(Q1)]* and the interior impedance boundary con-
dition (2.3) on S} is automatically satisfied since {Tu}™ +iwc{u}t =
ho+ due to Theorem 2.11. The interior Dirichlet condition (2.2) leads

to the pseudodifferential equation on Sp with respect to the unknown
vector function ¢

rsp, HQ ' (ho+¢)=f onSp,

which can be rewritten as

(3.20) rs, R¢=F on Sp,
where
(3.21) R:=HQ 1,

(3.22) F:=f—rs,Rho€[B '?(Sp)]°.
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Due to Theorems 2.3 and 2.5 we have the following mapping property

R:HAS) — HS)P (B8P — [BiM6)],

seR, 1<p<+4oo, 1<t<+o0.

(3.23)

Applying Theorems 2.3, 2.5 and A.1 (see the Appendix) we can estab-
lish the following property of the operator rg, Q.

Theorem 3.5. Let se R, 1 <p < oo, 1<t < oo, and let

1.3 _,.1_1

p 2 °Sp 2
Then the operators
(3.24) rsp R : [H3(Sp)]P — [HH (Sp))?
(3.25) : [E;),t(SD)P — [By1H(Sp))?

are invertible.

Proof. 1t is word for word of the proof of Theorem 3.2. One needs
only to show that the principal homogeneous symbol matrix o(R)(&, )
of the operator R is positive definite for all £ € R?, |{| =1 and x € S.
This follows from the equality

a(R) = o(Ho) [0(Qo)] "
= 0’(7‘[0) [0’(—2_1.[3 + ’Co)]_l
={o(-27"I3+ Ko) [o(Ho)] '}

and from the positive definiteness of the principal homogeneous symbol
matrices of the Steklov-Poincaré operators o ([ —2~ 1 I3+K] Hy '). Now,
the proof follows from Theorems 3.1 and A.1. a

In accordance with Theorem 3.5 the nonhomogeneous equation (3.20)
is uniquely solvable for arbitrary right hand side. As above let us
remark that the solution ¢ depends on the vector function hg, which
extends the given impedance boundary vector function A from S; onto
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S, i.e., ¢ depends on the extension operator. However, with the help
of the injectivity property of the operators (3.24) and (3.25), it can
easily be shown that the sum hy + ¢ does not depend on the extension
operator.

Now we can formulate the basic existence result for the interior mixed
impedance problem.

Theorem 3.6. Let 4/3 <p <4 and
fe[BLYP(Sp),  he[BEP(SHP

Then Problem (MIP)" has a unique solution u € [W)(QT)]* which is

representable in the form of (3.19) where hy € [B;,l,/p(S)]?’ is some
fized extension of the vector function h € [Bp_Jl)/p(SI)]S from St onto S

preserving the functional space and ¢ € [Bp_,ll;/p(SD)]s is defined by the
uniquely solvable pseudodifferential equation (3.20) with the right hand
side given by (3.21).

Proof. 1t is word for word of the proof of Theorem 2.3. u]

Note that the counterpart of the smoothness Theorem 3.4 holds in
the case of the problem (MIP)* as well.

3.5. The Lipschitz case. All the results obtained in subsections
3.1 and 3.2 for Bessel potential spaces are valid also in the case of
Lipschitz boundaries provided p = 2 and s = —1/2. To prove this let
us show that N can be represented as (see (3.4))

(3.26) N=N+N,

where
N =P Pyt
Py =271 I3 — K — i s Ho,
Po := Ly +i%[2_1 I3 + ’Co],

and

(3.27) N =N =Ny : [HY2(9)P — [HyY2(9))?
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is a compact operator (for details see, e.g., [1, 2]). As before, the
subscript “0” denotes that the corresponding operators are constructed
with the help of the fundamental solution of statics I'(-).

First we formulate some technical lemmata.

Lemma 3.7. Let S be a Lipschitz boundary. The operators

Po = Lo+isx[27 I + Ko: [HY*(S)]® — [Hy 2(9)P,
Pr=2'I—Ki—ixHe :[H)*(S)? — [HY*(9)P,

are invertible.

Proof. Since, due to Theorem 2.3, these operators are Fredholm with
zero index, we need only to prove their injectivity, which follows from
Green’s formulae for the equations of statics and the corresponding
uniqueness results for the appropriate BVPs.

First, let us show that the kernel of the operator Py is trivial. Let

Y€ [HZI/Q(S)]P’ be a solution to the homogeneous equation Py = 0 on
S and construct the linear combination of the layer potentials of statics

(3.28) u(z) = Wo(¥)(x) + i 2 Vo(¢) ().

Evidently, the vector u belongs to the class [W3(QT)]2N[Wy ,.(27)]3,
solves the homogeneous equilibrium equations of statics A(é)) u(z) =0
in QF, and decays at infinity as O(|z|~!). The first order partial
derivatives of u decay as O(|z|=2). Moreover, Po¢p = {Tu}~ = 0.
With the help of Green’s formulae ([7, 27])

(3.29) - E(u,@) dez = + ({Tu}*, {u}F)s

where (-,-); denotes the duality brackets between the adjoint spaces
[HQ_I/Q(S)]3 and [H21/2(S)]3, we get E(u,u) = 0. Therefore w is a rigid
displacement vector (see the remark after formula (2.10)) and since u
decays at infinity we easily derive that u(z) = Wy(v) + i V() =0
in Q7. Due to the properties of the layer potentials this relation yields
{Tu}* +isx{u}™ =0o0n S. Applying again Green’s formula (3.29) we
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get v = 0 in Q7 and consequently, 1) = 0 on S. Thus the operator P
has the trivial kernel.

Now, let ¢ € [H;/Z(S)]?’ be a solution to the homogeneous equation
P19 = 0on S and construct again the vector function (3.28). As above,
we see that the vector u belongs to the class [W3 (QT)]*N[Wy3 1,.(Q7)]?,
solves the homogeneous equilibrium equations of statics A(é)) u(z) =0
in QF, and decays at infinity as O(|z|~!). The first order partial
derivatives of u decay as O(|z|~?). Moreover, P; ¢ = —{u}~ = 0. By
the uniqueness theorem for the exterior Dirichlet problem of statics,
which can be proved by Green’s formula (3.29), we deduce v = 0 in
Q™. This in turn implies u = 0 in Q7 and finally we get ¢» = 0 on S.
Thus the operator P; has the trivial kernel. u]

Corollary 3.8. Let S be a Lipschitz boundary. The operator
Nz [Hy 2 (S)]P — [H*(S)P
is invertible. Consequently, for arbitrary g € [H;l/Z(S)]?’
1all 25y < €I 0l
where ¢ is some positive constant independent of g.
Next we prove the following coercivity property of the operator Nj.

Lemma 3.9. Let S be a Lipschitz boundary. The sesquilinear form
(g9, N1g)s is nonnegative, and there exists a positive constant C' such
that

<g) Nl g>5 Z C||g‘|[2H;1/2(S)]3

for all g € [H, Y*(9)]3.

Proof. Let g € [H, 1/ ?(8)]3, and consider the linear combination of
the layer potentials

(3.30) u(@) = =Wo(Pg 'g)(z) — i Vo(Py 'g)().
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Due to Lemma 3.7 and the mapping properties of the layer potentials,
it is evident that the vector u belongs to the class [W}(QF)]?
(W3 16(27)]%, solves the homogeneous equilibrium equations of statics
A(0) u(z) = 01in QF, and decays at infinity as O(|z|~!). The first order
partial derivatives of u decay as O(|z| 2). Actually, the vector (3.30)
belongs to the Beppo-Levi type space (see [8, Ch. XIJ)

BL(Q7) :={v € Wy 1,.(Q7)]° :
(14 [f*) 20, € La(Q7), Ojur € La(Q7), k,j =1,2,3},

where the norm is defined as

3
(3.31) ol =11+ |22 0l3,0-) + D 11050ll3,0-)-
k,j=1

Moreover, {u}~ = Nig and {Tu}~ = —g on S. Therefore from
Green’s identity (3.29) we have the following equality

(3.32) o E(u,u)dz = —({Tu}", Wﬁ = (g, N19)s.

It is known (see [22, Chapter 3]) that E(u,@) > ¢; ex;(u) ex;(T), where
ex;(u) = 271(0juy + Oku;) and ¢; > 0 is a constant depending only on
the material parameters A and p. Therefore from (3.32) we have

(3.33) (9, Nig)s > 01/ Z | exj(u)|? dz.

k,j=1

Further, due to Korn’s inequality in unbounded domains (see [29], [20,
Section 3, Theorem 3]) we have

(3.34) /Q Z lexs (w)? da:>c2/ Z 10;ur?,

k,j=1 k,j=1

where cs is a positive constant independent of u. On the other hand,
the right hand side expression in (3.34) is equivalent to the norm (3.31)
in Beppo-Levi space BL(2~). Therefore we get from (3.33)

(3.35) (9, N1g)s > c3 \|U||2BL(Q—)
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with some positive constant c3. By the well known trace theorem
(3.36) K}l sy < 8 lullmngan:
Taking into account that {u}~ = N; g from (3.35) and (3.36) we deduce

(9, Nig)s 2> ea N1 glI?

[H,/2(9)12)"
Now Corollary 3.8 completes the proof. a
Corollary 3.10. Let S be a Lipschitz boundary. The operator
rsp N+ [Hy " (Sp))* — [Hy(Sp)P?

1s invertible.

Proof. 1t follows immediately from Lemma 3.9. Indeed, we have the
inequality

(337) <ga Nl g>s = <ga TSp Nl g>SD Z OHg”?H,;l/Z(S)P

for all g € [H. _I/Q(SD)] where the symbol (-,-)s,, denotes the duality

brackets between the adjoint spaces [ﬁ;l/z (Sp)]? and [HQI/Z(SD)]?’. As
is well known the coercivity property (3.37) implies the invertibility of
the corresponding operator (see, e.g., [25, Chapter 2, Lemma 2.32]). O

Now we prove the basic invertibility result for the operator rg, N.

Theorem 3.11. Let S be a Lipschitz boundary. The operator
(3.38) rop N i [Hy *(Sp)* — [Hy*(Sp))?

is invertible.

Proof. In view of the representation (3.26), the compactness of the
operator (3.27) and Corollary 3.10 we see that the operator (3.38) is
Fredholm with zero index, since it is a compact perturbation of the
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invertible operator. So we need only to show the injectivity of the
operator (3.38). We proceed as follows. Let ¢ € [flgl/z(SD)]?’ be a
solution of the homogeneous equation rs, N ¢ = 0 on Sp and construct
the vector

u(z) = W(P~'9)(z) +ix V(P! ¢)(2).
It can easily be seen that u € [W5(Q)]* N [W; 1,.(Q27)]> N SK(Q7)
and solves the homogeneous mixed impedance problem (MIP)~, since
{Tu}™ +iwc{u}” =¥ = 0on Sr and {u} = —N¢ = 0 on
Sp. Therefore by Theorem 3.1 we conclude u = 0 in 7, whence
¢ = 0 follows. Thus the kernel of the operator (3.38) is trivial and
consequently it is invertible. ]

Finally we have the following existence result for the mixed impedance
problem (MIP)~ which directly follows from Theorem 3.11.

Theorem 3.12. Let S be a Lipschitz boundary and
feHy*(Sp)P, helHy (s,

Then Problem (MIP)~ has a unique solution u € [Wy,,.(Q27)]* N
SK(Q~) which is representable in the form of (3.2) where hy €
[H;1/2(S)]3 is some fized extension of the vector function he [H;l/2 X
(S1)]* from S; onto S preserving the functional space and ¢ €
[I;TZ_I/Q (Sp)]? is defined by the uniquely solvable boundary integral equa-
tion (3.3) where the right hand side is given by (3.5) with p = 2.

A similar existence result holds also for the mixed impedance problem
(MIP)+.

Theorem 3.13. Let S be a Lipschitz boundary and
felm*(So)P, he [Hy (S0P

Then Problem (MIP)T has a unique solution u € [W3(Q1)]® which is
representable in the form of (3.19) where hy € [HZ_I/Q(S)]3 is some

fized extension of the vector function h € [H2—1/2(SI)]3 from St onto
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S preserving the functional space and ¢ € [}NIZ_I/Q(SD)]?’ is defined by
the uniquely solvable boundary integral equation (3.20) where the right
hand side is given by (3.22) with p = 2.

3.6. The two-dimensional case. Exactly the same results, with
verbatim statements and proofs, hold in the two-dimensional case.
For the sake of brevity we only mention here the definition of the
2 x 2 fundamental matrix, and the Sommerfeld-Kupradze radiation
conditions for the two-dimensional case. The elastic oscillation 2 x 2
operator A(9,w), its principal part A(0) and the stress operator 7'(9, n)
(necessary for the formulation of the boundary conditions), are defined
exactly as the corresponding operators of the three-dimensional case.

Denote by G(z,w) and G(z) the matrices of fundamental solutions of
the operators A(9,w) and its principal part A(9). These matrices are
defined (see, e.g., [3, 21], [24, Chapter IX, Sectionl48]) as

G(I, w) = [ij(xv w)]2><2’

where

2

Guj(e,w) =i (6501 + B 0 05) HS (ky |2]), = € R?\ {0},
=1

Hél)(z) being the Hankel function of first kind and zero order, with

Oy =~ (=pHt
Q) = 4'u7 ﬂl_ 4Qw2 ) l_1727
and
G(z) = [Grj(®)]2x2,
where
RO S 5 N Tj Tk 2
6uile) = i3 (6kJ<A+3u> Infol (0 745 ) » € R2\{0}.

The matrix G(z) corresponds to the equilibrium equations of statics
and represents the principal singular part of the matrix G(z,w). It
is evident that G(z,w) satisfies the Sommerfeld-Kupradze radiation
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conditions at infinity. Note that for two-dimensional exterior problems,
the vector u is said to satisfy the Sommerfeld-Kupradze type radiation
conditions at infinity if and only if u is representable as a sum of
two metaharmonic vectors (the so called longitudinal u(!) = u(?) and
transverse parts u® = ) of u), i.e.,

w=uM +u® with Au® + k20 =0, Au® +E2u® =0,

— 7 _ 0 =L — e
kl_kp—w )\—‘,-2,11,, ko = ks w\/;a

and for sufficiently large r = |z|

ou™ ()
or

ou® ()

—ikyuV () = O(r/2), ik u®(z) = O(2).

APPENDIX

A. Some results from the theory of pseudodifferential equa-
tions on manifolds with boundary.

Here we recall some results from the theory of strongly elliptic
pseudodifferential equations on manifolds with boundary in Bessel
potential and Besov spaces which are the main tools for proving
existence theorems for mixed boundary, boundary-transmission and
crack problems by the potential methods. They can be found in [12,
15, 31].

Let M € C*® be a compact, n-dimensional, nonselfintersecting
manifold with boundary OM € C, and let A be a strongly elliptic
N x N matrix pseudodifferential operator of order v € R on M. Denote
by o(z, &) the principal homogeneous symbol matrix of the operator .4
in some local coordinate system (z € M, ¢ € R™\ {0}).

Let A1(z),...,An(z) be the eigenvalues of the matrix
[o(z,0,...,0,+1)] " o(z,0,...,0,-1)], =€ IM,
and introduce the notation

§j(z) =R[(2ri) ' InX;(x)], j=1,...,N.
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Here the branch in the logarithmic function In ¢ is chosen with regard
to the inequality —7 < arg ( < 7. Due to the strong ellipticity of A we
have the strong inequality —1/2 < §;(z) < 1/2 for z € M, j = 1, N.
Note that the numbers ¢;(z) do not depend on the choice of the local
coordinate system. In the particular case, when o(z,§) is a positive
definite matrix for every z € M and ¢ € R™ \ {0}, we have §;(z) =0
for j =1,..., N, since all the eigenvalues \;(z) (j = 1, N) are positive
numbers for any = € M.

The Fredholm properties of strongly elliptic pseudo-differential oper-
ators on manifolds with boundary are characterized by the following
theorem.

Theorem A.1. Lets e R, 1 <p<oo,1 <t < o0, and let A be
a strongly elliptic pseudodifferential operator of order v € R, that is,
there is a positive constant cy such that

Ro(z,&)n-n = colnl®
for x € M, £ € R™ with || = 1, and n € CN. Then the operators
(A.1)

A [T MY — (7 (M)

[(B3m)] — Bz ()],

are Fredholm with zero index if

1 1
(A.2) ——14 sup dj(z)<s— Yo inf 0 ().
P z€OM 2 p  zeoMm
1<j<N 1<j<N

Moreover, the null-spaces and indices of the operators (A.l) are the
same (for all values of the parameter t € [1,+00]) provided p and s
satisfy the inequality (A.2).

REFERENCES

1. M.S. Agranovich, Spectral properties of potential type operators for a class of
strongly elliptic systems on smooth and Lipschitz surfaces, Trans. Moscow Math.
Soc. 62 (2001), 1-47.

2. , Spectral problems for second-order strongly elliptic systems in smooth
and non-smooth domains, Russian Math. Surv. 57 (2002), 847-920.

3. J.F. Ahner and G.C. Hsiao, On the two-dimensional exterior boundary value
problems of elasticity, SIAM J. Appl. Math. 31 (1976), 677—685.




MIXED IMPEDANCE PROBLEMS IN ELASTICITY 221

4. C. Baum, Detection and tdentification of visually obscured targets, Taylor and
Francis, London, 1999.

5. D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory,
2nd ed., Springer Verlag, Berlin, 1998.

6. M. Costabel, Boundary integral operators on Lipschitz domains: Elementary
results, SIAM J. Math. Anal. 19 (1988), 613-626.

7. M. Costabel and W.L. Wendland, Strong ellipticity of boundary integral
operators, J. Reine angew. Math. 372 (1986), 34-63.

8. R. Dautray and J.-L. Lions, Mathematical analysis and numerical methods for
science and technology, vol. 4: Integral equations and numerical methods, Springer
Verlag, Berlin, 1990.

9. R. Duduchava, The Green formula and layer potentials, Integral Equations
Operator Theory 41 (2001), 127-178.

10. R. Duduchava, D. Natroshvili and E. Shargorodsky, Boundary value problems
of the mathematical theory of cracks, Proc. I. Vekua Inst. Appl. Math. Thilisi State
University, 39 (1990), 68-84.

11. , Basic boundary value problems of thermoelasticity for anisotropic
bodies with cuts I & II, Georgian Math. J. 2 (1995), 123-140, 259-276.

12. G. Eskin, Boundary value problems for elliptic pseudodifferential equations,
Transl. Math. Monographs, Amer. Math. Soc., vol. 52, Providence, Rhode Island,
1981.

13. G. Fichera, Existence theorems in elasticity, in “Handbuch der Physik”, vol.
VlIa/2: Mechanics of Solids II (Truesdell, C., editor), Springer Verlag, Berlin, 1972.

14. W. Gao, Layer potentials and boundary value problems for elliptic systems
in Lipschitz domains, Journal of Functional Analysis, 95 (1991), 377-399.

15. G. Grubb, Pseudodifferential boundary problems in L, spaces, Comm.
P.D.sE., 15 (1990), 289-340.

16. G.C. Hsiao and W.L. Wendland, On the low frequency asymptotics of the
exterior 2-D Dirichlet problem in dynamic elasticity, in “Inverse and ill-posed
problems,” H. W. Engl and C.W. Groetsch, editors), Academic Press, New York,
461-482 (1987).

17.
Berlin, 2008.

18. L. Jentsch, D. Natroshvili and W.L. Wendland, General transmission prob-
lems in the theory of elastic oscillations of anisotropic bodies (Basic interface
problems), J. Math. Anal. Appl. 220 (1998), 397-433. 19. L. Jentsch, D. Natroshvili,
and W.L. Wendland, General transmission problems in the theory of elastic oscil-
lations of anisotropic bodies (Mized interface problems), J. Math. Anal. Appl., 235
(1999), 418-434.

20. V.A. Kondratiev and O.A. Oleinik, Boundary value problems for the system
of elasticity theory in unbounded domains. Korn’s inequalities, Uspekhi Mat. Nauk.
43 (1988), 55-98 (in Russian).

21. R. Kress, Inverse elastic scattering from a crack, Inverse Problems 12 (1996),
667-684.

, Boundary integral equations, Appl. Math. Sci. 164, Springer Verlag,



222  ATHANASIADIS, NATROSHVILI, SEVROGLOU AND STRATIS

22, V.D. Kupradze, T.G. Gegelia, M.O. Basheleishvili and T.V. Burchuladze,
Three dimensional problems of the mathematical theory of elasticity and thermoe-
lasticity, North Holland Ser. Appl. Math. Mech. 25, North Holland Publishing Com-
pany, Amsterdam, 1979.

23. J.-L. Lions and E. Magenes, Problémes aux limites non homogeénes et
applications, vol. 1, Dunod, Paris, 1968.

24. A.E.H. Love, The mathematical theory of elasticity, 4th ed., Cambridge
University Press, Cambridge, 1927.

25. W. McLean, Strongly elliptic systems and boundary integral equations, Cam-
bridge University Press, Cambridge, 2000.

26. D. Mitrea, M. Mitrea and J. Pipher, Vector potential theory on non-smooth
domains in R® and applications to electromagnetic scattering, J. Fourier Anal.

Appl. 3 (1997), 1419-1448.

27. D. Natroshvili, Boundary integral equation method in the steady state oscilla-
tion problems for anisotropic bodies, Math. Methods Appl. Sci. 20 (1997), 95-119.

28. D. Natroshvili, O. Chkadua and E. Shargorodsky, Mized boundary value
problems of the anisotropic elasticity, Proc. I. Vekua Inst. Appl. Math. Thilisi State
University, 39 (1990), 133-181 (in Russian).

29. J. Necas, Méthodes Directes en Théorie des E'quations E'lliptiques, Masson
Editeur, Paris, 1967.

30. R.T. Seeley, Singular integrals and boundary value problems, Amer. J. Math.
88 (1966), 781-809.

31. E. Shargorodsky, An Ly-analogue of the Vishik-Eskin theory, Mem. Differ-
ential Equations Math. Phys. 2 (1994), 41-148.

32. K. Tanuma, Stroh formalism and Rayleigh waves, J. Elasticity 89 (2007),
5-154.

33. H. Triebel, Interpolation theory, function spaces, differential operators, North
Holland, Amsterdam, 1978.

34. L.N. Vekua, On metaharmonic functions, Trudy Tbil. Matem. Instit. 12
(1943), 105-174 (in Russian).

DEPARTMENT OF MATHEMATICS, NATIONAL AND KAPODISTRIAN UNIVERSITY OF
ATHENS, PANEPISTIMIOPOLIS, GR 157 84 ZOGRAPHOU, ATHENS, GREECE
Email address: cathan@math.uoa.gr

DEPARTMENT OF MATHEMATICS, GEORGIAN TECHNICAL UNIVERSITY, 77 KOSTAVA
STR., TBILISI 0175, GEORGIA
Email address: natrosh@hotmail.com

DEPARTMENT OF STATISTICS & INSURANCE SCIENCE, UNIVERSITY OF PIRAEUS,
GR 185 34 PirRAEUS, GREECE
Email address: bsevroQunipi.gr

DEPARTMENT OF MATHEMATICS, NATIONAL AND KAPODISTRIAN UNIVERSITY OF
ATHENS, PANEPIsSTIMIOPOLIS, GR 157 84 ZOGRAPHOU, ATHENS, GREECE
Email address: istratis@math.uoa.gr




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


