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ANALYSIS OF
DIRECT BOUNDARY-DOMAIN INTEGRAL EQUATIONS
FOR A MIXED BVP WITH VARIABLE COEFFICIENT,
I: EQUIVALENCE AND INVERTIBILITY
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ABSTRACT. A mixed (Dirichlet-Neumann) boundary val-
ue problem (BVP) for the “stationary heat transfer” par-
tial differential equation with variable coefficient is reduced
to some systems of nonstandard segregated direct paramet-
rix-based boundary-domain integral equations (BDIEs). The
BDIE systems contain integral operators defined on the do-
main under consideration as well as potential-type and pseudo-
differential operators defined on open submanifolds of the
boundary. It is shown that the BDIE systems are equivalent
to the original mixed BVP, and the operators of the BDIE
systems are invertible in appropriate Sobolev spaces.

1. Introduction. The boundary integral equation (BIE) method
has been intensively developed over recent decades both in theory and
in engineering applications. Its popularity is due to the possibility of
reducing a boundary value problem (BVP) for a partial differential
equation in a domain to an integral equation on the boundary of
the domain. This approach diminishes the problem dimensionality
by one which is very important for construction of various numerical
algorithms requiring small computer resources. The main ingredient
necessary for reduction of a BVP to a boundary integral equation (BIE)
is a fundamental solution to the original partial differential equation,
available in an analytical form and/or cheaply calculated. After the
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fundamental solution is used in the corresponding Green formulae, as a
first step, one can reduce the BVP to a BIE. The next essential step is
to establish the equivalence of the original BVP and the corresponding
BIE, and to show the invertibility of the BIE operator which is a crucial
moment for further numerical analysis.

However, such a fundamental solution is generally not available if the
coeflicients of the original partial differential equation are not constant.
One can use, in this case, a parametrix (Levi function), which is usually
available, instead of the fundamental solution in the Green formulae.
This allows a reduction of a boundary value problem not to Boundary
Integral Equations (BIEs) but to Boundary-Domain Integral Equations
(BDIEs) (cf. [26, 30, 35] and the references therein).

In spite of the fact that mixed BVPs with variable coefficients, on
the one hand, and boundary integral equations for BVPs with constant
coeflicients on the other hand, are well studied nowadays, this is not the
case for the boundary-domain integral equations associated with BVPs
with variable coefficients. For example, the classical works [16, 19, 30],
formulating the parametrix-based integral identities, deal with only
the so-called indirect BDIEs for Dirichlet and Neumann BVPs. The
indirect BDIE method has been essentially developed in the reference
[35]. Particularly, a general algorithm for the construction of Levi
functions of arbitrary degree has been obtained for elliptic systems in
the sense of Douglis-Nirenberg, which has been applied then to the
Dirichlet problem arising in the shell theory.

On the other hand, the direct integral equation method is very
popular in computational engineering applications since the unknowns
involved in the integral equations have clear physical and mechanical
meanings in contrast to the indirect approach (see, e.g., [1] and the
discussion in [6]). However, to the best knowledge of the authors
the parametrix-based direct boundary-domain integral equations for
basic and, especially, mixed BVPs with variable coeflicients have not
been rigorously analyzed, and the questions about the equivalence of
BDIEs to the original BVPs as well as about the invertibility of the
corresponding operators in appropriate function spaces remained open.

In this paper, an explicit parametrix and the parametrix-based third
Green’s identity is used to reduce the mixed (Dirichlet-Neumann)
boundary value problem for the “heat transfer” partial differential
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equation with a variable coeflicient (heat conductivity) to four differ-
ent versions of direct segregated Boundary-Domain Integral Equation
Systems (BDIES). The original BVP is relevant to modeling electro-
statics, ani-plane elasticity, stationary flow in porous media, and diffu-
sion phenomena, in inhomogeneous media. The BDIES are segregated
in the sense that the unknown boundary functions are considered as
formally unrelated to the unknown function inside the domain (while
their connection is revealed when they solve the system). The BDIES
represent nonstandard systems of equations containing integral oper-
ators defined on the domain under consideration and potential type
and pseudo-differential operators defined on open submanifolds of the
boundary. The domain integral equation of each of the BDIE system is
of the second kind, while the remaining (boundary) integral equations
are formally of the first or the second or the third kind. We give in
the present part of the paper a rigorous analysis of BDIESs and show
that the mixed BVP and the corresponding BDIES are equivalent and
the boundary domain integral operators obtained are invertible in ap-
propriate Sobolev-Slobodetski (Bessel-potential) spaces. Depending on
the data of the mixed BVP (geometry of the domain, the division of
the boundary into the Dirichlet and Neumann parts, special analyti-
cal and structural properties of the variable coefficients and the given
boundary functions) it may occur that one of the four different types
of BDIES mentioned above proves to be more efficient in comparison
with others. Along with the pure theoretical interest, this is a basic
motivation for reducing the mixed BVP to the different type BDIES
described and analyzed in this paper.

The BDIES solution regularity and asymptotics are analyzed in the
second part of the paper, [4], using the Bessel-potential and Besov
spaces.

2. Formulation of the boundary value problem. Let = QF
be a bounded open three-dimensional region of R3, 9~ = R? \§+. For
simplicity, we assume that the boundary S := 90 is a simply connected,
closed, infinitely smooth surface. Moreover, S = Sp U Sy where
Sp and Sy are nonempty, nonintersecting (Sp N Sy = &), simply
connected submanifolds of S with infinitely smooth boundary curve
0Sp = 0Sy € C™. Let a € C*®(R3), a(x) > 0 for = € R®. Let also
aj = 8zj = 8/837], =123, 0 = (azuamzaaz;;)-
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We consider the following scalar elliptic differential equation
(2.1)

Lu(z) := L(z, 8,) ia( ($)>:f(x), z€Q,

P ox; ox;

where v is an unknown function and f is a given function in 2. When
a = 1, the operator L becomes the Laplace operator A.

In what follows W) (Q*) denotes the Sobolev-Slobodetski spaces;
H*(S) = H$(S) the Bessel potential spaces; Hf (Q) = H3 . Q)
consist of the distributions that belong to Hj(w ) for every compact

w C Q—; here, r > 0 and s € R are arbitrary real numbers, see e.g.,
[20, 34, 40]. We recall that H" = W3 for r > 0.

For the operator L from (2.1), following [7, 15], we will use the space
(2.2) HYY(Q;L):={ge€ H'(Q): Lg € Ly(Q)}

with the norm [|gll%1.0(q,1y = 9/l () + 1 L9117, (0)-

For §; C S, we will use the subspace H*(S;) = {g : g €
H*(S),suppg C S1} of H*(S), while H*(S,) = {rs,g : g € H*(S)}
denotes the space of restriction on S of functions from H*(S), where
rg, denotes the restriction operator on Sj.

From the trace theorem, see [20, 23, 34, 40], for u € H*(Q)
(u € HE . (Q7)), s > 1/2, it follows that u|$ := v& u € H*~ %(S), where
fyf is the trace operator on S from Q*F. We will use also notations u™®

or [u]* for the traces u|<, when this will cause no confusion.

For u € H*(Q), s > 3/2, we can denote by TF the corresponding
conormal derivative operator on S understood in the trace sense,
(2.3)

T*(z,n(z),0 ia <6gil)>i za(m)<gzgg>i,

i=1

where n(z) is the exterior (to ) unit normal vector at the point € S.
For u € H'O(Q; L) (u € HY O(Q ;L)) we can correctly define the

loc

(canonical) conormal derivative T*u € H~'/2(S) with the help of
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Green’s formula, cf. [7, 23],

<Tiu, w>s = :i:/Qi [(y-1w)Lu + E(u,y-1w)] dz,

for all w € HY?(8S),

(2.4)

where v_; : HY/2(S) — H}, .. (R®) is a continuous right inverse to the
trace operator,

Blue) = Y afe) o) 2,

i=1

and (-,-)s denote the duality brackets between the spaces H /2(S)
and H'/2(S) which extend the usual Ly(S) scalar product.

We will derive and investigate boundary-domain integral equation
systems for the following mized boundary value problem.

Find a function u € H'(Q) satisfying the conditions

(2.5) Lu=finQ",
(2.6) rsp ut = @p on Sp,
TSN T u =1y on Sy,

where o € HY/2(Sp), o € H '/2(Sy) and f € La(9).

Equation (2.5) is understood in the distributional sense, condition
(2.6) is understood in the trace sense, while equality (2.7) is understood
in the functional sense, cf. (2.4).

By [7, Lemma 3.4], the first Green identity holds for any uw €
HY(QF L), ve HY(QY),

(2.8) (T*u, ), = /Q [Lu+ B(u,v)] da.

We have the following well-known uniqueness theorem.

Theorem 2.1. The homogeneous version of BVP (2.5)-(2.7), i.e.,
with f =0, pg =0, Yo =0, has only the trivial solution.
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Proof. The proof immediately follows from Green’s formula (2.8)
with v = u as a solution of the homogeneous mixed boundary value
problem. O

Clearly, nonhomogeneous problems (2.5)—(2.7) may possess at most
one solution due to the problem linearity.

3. Parametrix and potential type operators.

3.1. Parametrix. We will say that a function P(z,y) of two
variables x,y €  is a parametrix for the operator L(z,d,) in R?® if
(cf., e.g., [30])
where §(-) is the Dirac distribution and R(z,y) possesses a weak
(integrable) singularity at @ = y, i.e., R(z,y) = O(|z — y|~*) with
7 < 3.

It is easy to see that, for the operator L(z,d,) given by (2.1), the
function

-1

(3.2) P(z,y) = tra@) |z 4l

) m7y€R37

is a parametrix (Levi function), while the remainder R in (3.1) is

3
T — Yi da(x
i=1 ¢

and thus is weakly singular, O (|z — y|~2), due to the smoothness of
the function a(x).

We evidently have that the parametrix P(z,y) given by (3.2) is
a fundamental solution to the operator L(y,0,) := a(y)A(9;) with
“frozen” coefficient a(z) = a(y), i.e.,

L(y,0.) P(z,y) = é(z — y).

Note that parametrix (3.2) used further in this paper does not belong
to the class discussed in [23] since the reminder (3.3) does not belong
to C°(R3 x R3).
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3.2. Surface potentials. Let us introduce the single and the double
layer surface potential operators, corresponding to the parametrix (3.2),

(34)  Vgly)i=— /5 P(x,y) g() dSa, y £ 5.
(3.5) www:—éﬁmmmmwmwwmwm
y s,

where g is some scalar density function.

Let us introduce also the following boundary integral (pseudo-
differential) operators:

B9 Ve = - [ Pay)ge)ds.,

B0 W)= - [ [T@n(e).0.) Pla.)] a(@)as..
B8 W)= - [ [T.00).0,) P.v)] o(e) dS..
(3.9) LFg(y) :== T*Wy(y),

where y € S.

From definitions (3.2), (3.4)—(3.9), one can obtain representations
of the parametrix-based surface potential operators in terms of their
counterparts for a = 1, i.e., associated with the Laplace operator A,

1 1
(3.10) Vg=_Vag, Wg=_Wal(ag),
1 1
(3.11) Vg =-Vag, Wg=-Walag),
o (1
(3.12) W'g=Whrg+ [a% (EHVA%
o (1
+ I +
(3.13) L*g = La(ag) + {“an <a>] WX (ag)

where the subscript A means that the corresponding surface potentials
are constructed by means of the harmonic fundamental solution Py =
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—(4m |z — y|) L. It is taken into account that a and its derivatives are
continuous in R® and £, (ag) := L} (ag) = L4 (ag) by the Liapunov-
Tauber theorem.

The mapping and jump properties of the potentials of type (3.4)—(3.9)
are well studied nowadays (see, e.g., [2, 11-14, 17, 18, 21, 23, 30, 33,
34, 36, 41]; see also [7, 9, 10, 31, 32, 37], where the coerciveness
properties of the boundary operators and also the case of Lipschitz
domains are considered).

We provide below in this section some results on jump and mapping
properties and invertibility of the parametrix-based potentials in the
Sobolev spaces H?, while the corresponding results (and references) for
the Bessel-potential (H;) and Besov spaces are left to the second part
of the paper, [4].

Theorems 3.1-3.3 below are well known (see, e.g., the above refer-
ences) for the case a = const. Taking into account (3.10)—(3.13), one
can easily prove they hold true also for the variable positive coefficient

a € C*(R).
Theorem 3.1. Let s € R. The following operators are continuous
Vi H(S) — HHH@Y),  [HY(S) — HilF (@),

loc

Wi HY(S) — HHH@h), [H(5) — H'E @)].

Theorem 3.2. Let s € R. The following pseudo-differential
operators are continuous

V: H*(S) — H*TY(S),
W, W' : H5(S) — H*(S),
L£E: H*(S) — H*™Y(S).

Theorem 3.3. Let gy € H™'/%(S), and go € H'/?(S). Then the
following jump relations hold on S:
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(3.14) Va1 ()" = Va1(y)

(3.15) Wow)]* = T3 92(0) + Was (),
(3.16) T*Vgi(y) = i% 91(y) + W g1(y),
where y € S.

Theorem 3.4. Let s € R. Let S1 and Sy with 051,052 € C* be
nonempty open submanifolds of S. The operators

(3.17) ro, Vi H*(S1) — H*(Ss),
(3.18) rs,W : H*(Sy) — H*(Sa),
(3.19) rs, W'+ H*(S1) — H*(S,)

are compact.

Proof. Theorem 3.2 implies that the operators V, W and W' have
the following mapping properties:

rs,V i H3(Sy) — H*FY(S,),
rs,W: H*(Sy) — H*1(S,),
rs, W' : H*(S1) — H*t1(Sy).
C

Since the embedding H*t1(S3)
follows. O

H?*(S3), is compact, the proof

Theorem 3.5. Let S be a nonempty, simply connected submanifold
of S with infinitely smooth boundary curve, and 0 < s < 1. Then the
operator

(3.20) rs, V: HSY(Sy) — H*(Sy)

1s invertible.

Proof. The lemma claim for operator Va is well known, (see [38,
Theorem 2.7 (i)] for s = 1/2; for the other s € (0,1) it can be
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proved as in [8, Theorem 2.4] for the single layer potential of elasticity).
Therefore, by the first equality of (3.11) the operator (3.20) is invertible
too. See also [4, Theorem 3.5]. o

Theorem 3.6. Let S; and S\S: be nonempty, open, simply con-
nected submanifolds of S with an infinitely smooth boundary curve, and
0<s<1. Then

1 1
(3.21) £++%<—§I+W>=£—+%<§I+W> on S.

Moreover, the pseudo-differential operator

(3.22)
T51£ : HS(Sl) — Hsil(Sl)
where
(3.23)
Lg:= Ei—i—% qilI—Q—W g=LL(ag) onS
) on 2 A ’

1s 1nvertible, while the operators

(3.24) rs,(LF = L) : H*(S;) — H*(S))
are bounded and the operators

(3.25) r,(LF — L) : H*(Sy) — H*(Sy)

are compact.
Proof. By (3.13) and (3.15), we have
Oda 1
LEg=1L — = .
9= La(ag) (')n<:F 29+W9>
Thus

Oa 1 Oa (1
_ rt 7 _ = — L 7 =
(3.26) La(ag) =L g+an< 2I+W>g L g+8n<2I+W> g.
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The operator rg,La : H*(S;) — H*1(Sy) is invertible, see [38,
Theorem 2.7 (ii)] for s = 1/2; for the other s € (0,1), it can be proved
as in [8, Theorem 2.4] for the corresponding potential of elasticity,
which proves the invertibility of operator (3.22). See also [4, Theorem
3.6].

Since 5 .
~ Oa
L¥—L=—(+-T1-
8n< 2 W>’
the operator (3.24) is bounded due to Theorem 3.2. To prove the
compactness of £* — L, we remark that the imbedding H'/?(S;) C
H~'/2(8,) is compact, which completes the proof. ]

Remark 3.7. The analog of Theorem 3.5 for the whole surface S holds
true as well, i.e., V : H*~}(S) — H?®(S) are invertible for all s € R due
to, e.g., [11, Chapter XI, Part B, Section 2, Remark 1], and the first
equality of (3.11).

Generalizations of invertibility results from Theorems 3.5, 3.6 and
Remark 3.7 to some ranges of the Bessel-potential (H,) and Besov
spaces are available in the second part of this paper, [4].

3.3. Volume potentials. Let us introduce the parametrix-based
Newtonian and remainder volume potential operators,

(3.27) Pg(y) = /Q+ P(z,y) g(z) dz,
(3.25) Roly) = [ R(w.9)ale)do.
Expressions (3.2) and (3.3) imply that

13
(3.30) Rg=—= Z 9; [PA (g aja)] :
where
(3.31) Pa h(y) := 1 1 h(z) dz

dr o+ lz—yl
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is the Newtonian potential corresponding to the fundamental solution
of the Laplace operator A.

Theorem 3.8. Let QT be a bounded, open three-dimensional region
of R® with a simply connected, closed, infinitely smooth boundary
S = 0Q". The following operators are continuous

(3.32) P H(QY) — HT2(QF), seR,
(3.33) H*(QF) — HP(QF), s> _%;
(3.34) R:H*(QF) — HPHQY), seR,
(3.35) H*(QT) — H*TH(QY), s> —%;
(3.36) P HH(QT) — H¥T3(9), s> —g,
(3.37) HAQF) — H4(S), s> —%;
(3.38) RY L HY(Q) — H™H(S), s> —%,
(3-39) PHY(QY) — HP3(S), §> _%;
(3.40) TP : H Q1) — H*t3(9), 5> —%,
(3.41) L H3(QF) — H*V3(9), 5> —%;
(3.42) TR : H*(Qt) — H*"3(S), 5> %
(3.43) L HS(QF) — H* 2(S), 5> %

Proof. Since S € C*°, the Newtonian potential Pa is a pseudodif-
ferential operator of order —2 from “tilde” spaces. Therefore, the con-
tinuity of the operators (3.32), (3.34), (3.36), (3.38), (3.40) and (3.42)
follows due to the mapping properties of pseudodifferential operators
on R™ (see, e.g., [14, 29]) and the trace theorems (see, e.g., [40]) along
with the formulae (3.29), (3.30) and (3.31).
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To prove the remaining items of the theorem we first assume that
—1/2 < s < 1/2. In this case H*(Q") = H*(Q2"), and the continuity
of operator (3.33) is evident due to (3.32).

Now let g € H*(Q") with 1/2 < s < 3/2. Clearly, 9,9 € H*~'(Q")
and gt € H*"2(S), due to the continuity of the operator 0;
H*(Q") — H*1(QT) and the trace theorem. Then, integrating by
parts, we have the representation

(3.44)  0;Pag(y) =Pa (9;9) () + Va (njgh) (y) fory € QF,

where nj, j = 1,2,3, are the components of the outward unit normal
vector to S. Due to (3.44) and the mapping properties of the single
layer potential (cf., Theorem 3.1) we conclude that 8; Pa : H5(Q1) —
H*TH(QT) is continuous for j = 1,2, 3, which along with formulae (3.29)
and (3.31) implies the continuity of operator (3.33) for 1/2 < s < 3/2.

Further, with the help of these results and the representation (3.44),
we can easily verify by induction that the operator (3.33) is continuous
for k—1/2 < s < k+1/2, where k is an arbitrary nonnegative integer.
For the values s = k +1/2 (with £ = 0,1,2,...) the continuity of the
operator (3.33) then follows due to the complex interpolation property
of Bessel potential spaces, see e.g., [40, Chapter 4].

It is evident that (3.37) and (3.41) are then the direct consequences
of the trace theorem.

The word for word arguments show that the claims of the theorem
concerning the operator R hold as well, which completes the proof. O

From Theorem 3.8 and Rellich compact imbedding theorem we have
the following assertion.

Corollary 3.9. The operators

(3.45) R : H¥(Q1) — H*(Q1),
(3.46) re, RY « HS () — H* 2(8)),
(3.47) re, TR : H¥(Q") — H* 2(9y),

are compact for any s > 1/2 and any nonempty, open submanifold Sy
of S with an infinitely smooth boundary curve.
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4. Green identities and integral relations. Subtracting from
(2.8) its counterpart with exchanged roles of u and v, we arrive at the
second Green identity for the operator L(z,ds),

(4.1) / [v L(z, 0:)u—u L(x, 8, )v] de = (T u, v*) g — (T, u™)

where u,v € H"°(QT; L) are real functions.

For v(z) := P(z,y) and u € HY°(QT; L), we obtain from (4.1) and
(3.1) by the standard limiting procedures (cf., [30]) the third Green
identity,

(4.2) ut+Ru—VTTu+Wut =PLu  inQF.

If ue HYO(Q*; L) is a solution of equation (2.1), then (4.2) gives

(4.3) u+Ru—VTTu+Wut =Pf inQF,
(4.4) Gu = %u* + R u —VTtu+Wut =[Pf]" on S,
(4.5

1
Tu:= §T+u +TT"Ru —WTV u+ LTut =TTPf on S.

For some functions f, ¥ and ®, let us consider a more general
“indirect” integral relation, associated with (4.3),

(4.6) u(y) + Ru— VI +We=Pf inQ*.

Lemma 4.1. Let u € HY(QY), f € Ly(Q1), ¥ € H /3(S),
® € HY2(S) satisfy (4.6). Then u belongs to HY*(Q; L) and is a
solution of PDE (2.5) in Q*, and

(47) V(¥ -Tru)(y) - W@ —u')(y) =0, ye .

Proof. First of all, let us prove that v € HY?(QF; L). Indeed, since

Lu = A(au) — Z 0i(u0;a),
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and the last term belongs to Lo(27), we need only to show that
A(au) € Lo(Q"). Further, from (4.6) due to (3.11) and (3.29) we
have,

au=aPf—aRu+aV¥ — aW® =Ppf —aRu+ VAV — Wa(a®).

Note that the last two terms in the righthand side are harmonic
functions. Also Ru € H?(Q) for u € HY(Q) and A[PA(f)] = f €
Lo(Q2%). Therefore, Lu € L2(2F). So, u € HY9(QF; L) and we can
write the third Green identity (4.2) for the function w.

Subtracting (4.6) from identity (4.2), we obtain
(4.8) V¥ +Wo* =P[Lu— f] inQ,

where ¥* ;= Tty — ¥ and ®* := vt — &. Multiplying equality (4.8)
by aly), we get

(4.9) ~VAU* + Wa(a®*) = PalLu — f], in Q7.

Applying the Laplace operator A to the last equation and taking into
consideration that both functions in the lefthand side are harmonic
surface potentials, while the righthand side function is the classical
Newtonian volume potential, we arrive at the equation

(4.10) Lu—f=0 inQ".

This shows that u solves differential equation (2.5).

Substituting (4.10) into (4.8) leads to (4.7). O

Lemma 4.2. (i) Let U* € H Y%(S). If
(4.11) VU*(y) =0, yeQ,

then ¥* = 0.
(ii) Let ®* € HY2(S). If

(4.12) Wo*(y) =0, yeQt,

then ®* = 0.
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(iii) Let S = S; U Sy, where Sy and So are nonintersecting simply
connected submanifolds of S with infinitely smooth boundaries and Sy
is nonempty. Let ¥* € H~'/2(8)), ®* € H'/%(S,). If

(4.13) VI (y) -We*(y) =0, yeQr,

then ¥* =0 and ®* =0 on S.

Proof. To prove (i), let us take the trace of (4.11) on S and use (3.14).
Then Remark 3.7 implies point (i).

Due to (3.15), the trace of condition (4.12) gives —(1/2)@*4+Wd* =0
or, due to the second equation of (3.11), —(1/2)®* + WA®* =0 on S,

A~

where ®* = a®*. Since this equation for ®* is uniquely solvable, see
e.g., [11, Chapter XI, Part B, § 2, Remark 8] and a(y) # 0, this implies
point (ii).
Let us now prove point (iii). Multiplying equation (4.13) by a(y), we
have
VAU* — Wa(a®*) =0, inQF.

Take the traces of this equation and its normal derivative on S; and
Sa, respectively, to obtain

(4.14) {rslvA\Il* —rg,WaA®* =0 on Sy,

Ts, WA T* — TSZL',Z&)* =0 on Ss,
where ®* = a®*. We put

o 7°51VA _T51WA _ 9;,*
As = [Tszw'A —rs, LA ] S [ ] '

Equation (4.14) then can be written as

(4.15) AaX = 0.

It is well known that the operators

re,Va: H3(Sy) — H3(Sy), —rs, L% : H?(Sy) — H™3(S,)
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are positive definite in the following sense,

* * *[12
<T5'1VA\I” , ¥ >51 2 CH\I” HH’%(S)’
(4.16) P i

_ * * > *
(rs.a® @) > el@ 2y

for arbitrary U* € H~1/2(S;) and arbitrary ®* € H/2(S,). For the
first estimate (4.16), see e.g., [11, Chapter XI, Part B, § 2, Theorem
3]. The second estimate (4.16) can be proved by modifying the proof

of [11, Chapter XI, Part B, § 2, Theorem 6] for nonclosed surfaces, see
also [33].

In addition, the operators

rs,Wa : H?(Sy) —s H3(Sy),
rg,Wh t H"3(8y) —s H™3(S,)

are mutually adjoint, i.e., (rs, Wa®*, U*)g, = (®* rg, Wy T¥*)s, for
arbitrary U* € H~'/2(S;) and arbitrary ®* € H'/?(S,). Consequently,
we derive the inequality

112 Tk (2
(AnX, X) > ¢ (I‘If [ ”H%(a)'

Due to (4.15), this implies ¥* = 0 and 3+ = 0. Keeping in mind that
a(y) # 0, we have ®* = 0 on S, which completes the proof for point
(ii). o

5. Boundary-domain integral equations. Let ®, € H'/?(S) be
a fixed extension of the given function ¢ from the submanifold Sp to
the whole of S (see Dirichlet condition (2.6)). An arbitrary extension
® € H'/2(S) preserving the function space can then be represented as
® = By + ¢ with ¢ € H/2(Sy).

Analogously, let ¥y € H /2(S) be a fixed extension of the given
function o from the submanifold Sy to the whole of S (see the
Neumann condition (2.7)). An arbitrary extension ¥ € H1/2(S)
preserving the function space can then be represented as ¥ = ¥o + ¢
with ¢ € H=Y/2(Sp).
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If oo € H'/2(Sn) or pog € HY?(Sp) admits the canonical extension,
i.e., can be extended onto the whole boundary S by zero preserving
the spaces, then evidently one may choose ¥, € H™'/2(Sy) or &y €
H/? (Sp), respectively.

A way of reducing BVP (2.5)—(2.7) to boundary-domain integral equa-
tions is to substitute the Neumann and Dirichlet boundary conditions
(2.6) and (2.7) into (4.3) and either into its trace (4.4) or into its
conormal derivative (4.5) on Sp and Sy. To work with the bound-
ary functions defined on the whole boundary S, we will also replace
the boundary trace u™ and the conormal derivative TTu by new func-
tions ® = &y + ¢ and ¥ = ¥, + 9, respectively, formally segregated
from u. Here ®y € H'/?(S) and ¥, € H '/2(S) are some of the above-
mentioned extensions of the given functions ¢y from Sp to S and o
from Sy to S, respectively, while o € H'/2(Sy), ¥ € H~'/2(Sp).

5.1. Boundary-domain integral equation system (G7). Dif-
ferent possibilities exist of reducing BVP (2.5)—(2.7) to a BDIE system.
In this subsection we will use equation (4.3) in QF, the restriction of
equation (4.4) on Sp, and the restriction of equation (4.5) on Sy, where
®( + ¢ is substituted for u™ and Vg + ¢ for THu (cf. [39, 42] where
boundary integral equations of the mixed BVP with the constant coef-
ficient a were considered). Then we arrive at the following system with
respect to the unknowns u, ¥, and ¢:

(5.1) u+Ru—Vip + W = Fy in QF,
(5.2) TSp Rtu— rsy, VY +rs, Wy =rs, FO+ — o on Sp,
(5.3)rsy TTRu —rs W'Y + 15 LYo =15, TTFy — 1y on Sy,

where
(5.4) Fy:=Pf+V¥—-W&, in Q7.

Note that, for f € Ly(Qt), ¥ € H=1/2(S) and ®, € H/?(S), we have
the inclusion Fy € H'(£2") due to mapping properties of the Newtonian
(volume) and layer potentials (cf. Theorems 3.1 and 3.10).

Note also that, due to Lemma 4.1, all terms of equation (5.1) belong
to H9(£2; L) and their conormal derivatives are well defined. This fact
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will be used in the analysis of the BDIE system (5.1)—(5.3) as well as
all the other BDIE systems below.

The second and third equations of the system are associated with
operator G on Sp and with operator T on Sy, respectively.

Let us denote the righthand side of BDIES (5.1)—(5.3) by
(55) '7:97— = [FO, TSp F0+*800a TSNTJFFO*wO]Ta

where the superscript | denotes transposition.

Remark 5.1. F97 = 0 if and only if (f, ®y, Vo) = 0. Indeed, the
latter equality evidently implies the former. Inversely, let F97 = 0.
Keeping in mind equation (5.4), Lemma 4.1 with Fy = 0 for u implies
f =0and V¥ - W&, = 0 in Q. The equalities F§’ = 0
and .7-'397 = 0 imply ¢g = 0 on Sp and 9 = 0 on Sy, that is,
&, € H'/2(Sy), ¥g € H/2(Sp). Lemma 4.2 (iii) then gives ®¢ = 0
and ¥g=0on S.

Let us prove that BVP (2.5)—(2.7) in Q%, is equivalent to the system
of BDIEs (5.1)—(5.3).

Theorem 5.2. Let f € Ly(Q7F), and let &y € HY/?(S) and ¥, €
H~Y2(8) be some extensions of py € H'/%(Sp) and 1y € H'/%(Sy),
respectively.

(i) If some u € HY(QT) solves the mized BVP (2.5)—(2.7) in
QF, then the solution is unique and the triple (u,v,¢p) € H(QT) x
H~Y2(8p) x HY2(Sy), where

(5.6) Y =T u— Uy, p=ut—® onS,

solves BDIE system (5.1)—(5.3).

(i) If a triple (u,1, ) € H'(QXT) x H™Y/2(Sp) x H/2(Sy) solves
BDIE system (5.1)—(5.3), then the solution is unique, u solves BVP
(2.5)—(2.7), and equations (5.6) hold.

Proof. Let u € H'(Q7) be a solution to BVP (2.5)—(2.7). It is unique
due to Theorem 2.1. Set ¢ := THtu— ¥y and ¢ := uT — ®y. Evidently,
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¢ € HY/2(Sp) and ¢ € HY/2(Sy). Then it immediately follows from
relations (4.3)—(4.5) that the triple (u,, ¢) solves system (5.1)—(5.3),
which completes the proof of item (i).

Now let a triple (u,1,¢) € HY(QF) x H-Y/2(Sp) x HY2(Sy) solve
BDIE system (5.1)—(5.3). Taking the trace of equation (5.1) on Sp

using (3.14) and (3.15), and subtracting equation (5.2) from it, we
obtain

(5.7) rsput =g on Sp,

i.e., u satisfies Dirichlet condition (2.6). Taking the conormal derivative
of equation (5.1) on Sy using (3.9), (3.16), and subtracting equation
(5.3) from it, we obtain

(5.8) rsy TTu =1y on Sy,

i.e., u satisfies the Neumann condition (2.7). Taking into account ¢ = 0,
&y = g on Sp and ¥ =0, ¥y = 1)y on Sy, equations (5.7) and (5.8)
imply that the first equation (5.6) is satisfied on Sy and the second
equation (5.6) is satisfied on Sp.

Equation (5.1) and Lemma 4.1 with ¥ = ¢ + ¥y and ® = ¢ + ®¢
imply that u is a solution of PDE (2.5) and

VI - We* =0 in QF,

where U* = ¥y + 1 — TTy and ®* = &y + ¢ — uT. Due to the first
equation (5.6) on Sy and the second equation (5.6) on Sp, already
proved, we have ¥* € H=Y/2(Sp), ®* € H/?(Sy). Lemma 4.2 (iii)
with S; = Sp and Se = Sy implies ¥* = &* = 0, which completes the
proof of conditions (5.6).

Uniqueness of the solution to the BDIE system (5.1)—(5.3) follows
from (5.6) along with Remark 5.1 and Theorem 2.1. O

System (5.1)—(5.3) can be rewritten in the form
(5.9) ATY = F97

where UT := (u,, ) € HY(QT) x H-1/2(Sp) x HY2(Sy),
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I+R -V w
(5.10) AT = T‘SD'R,+ —rsp,V  rs,W |,
T‘SNT+R —T'SNW/ T5N£+

and F97 is defined by (5.5).

Due to the mapping properties of operators V, V, W, W, P, R, Rt
and T*R described in Section 3, we have F97 € H'(QT)x HY/?(Sp) x
H71/2 (SN)

Theorem 5.3. The operators

(5.11)
AIT L HYN Q) x H 3 (Sp) x H? (Sy)
— HY(QT) x H3(Sp) x H™%(Sy),
(5.12)
A9T  HY (T L) x H3(Sp) x H?(Sy)
— HYO(QT L) x H?(Sp) x H™'/?(Sy)

are invertible.

Proof. Let us consider the following operator

I -V W
(5.13) AST =0 —rspV 0
0 0 TsNﬁ

where L is given by (3.23). As a result of Corollary 3.9 and Theorems
3.4, 3.6, the operator AogT is a compact perturbation of operator (5.11).
Due to Theorems 3.5 and 3.6 for V and E, the operator AOQT is an

upper triangular matrix operator with the following scalar diagonal
invertible operators
I:HY(QY) — HYQT),
rs, V:H™3(Sp) — H?(Sp),
TSN L: fI%(SN) — H_%(SN).
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Along with the mapping properties of the operators V and W this
implies that

AST HY Q) x H3(Sp) x H?(Sy)
— HY(Q") x H?(Sp) x H 2(Sy)

is an invertible operator. Whence it follows that operator (5.11)
possesses the Fredholm property and its index is zero.

Uniqueness of solution to system (5.1)—(5.3), provided by Theorem
5.2 (ii), yields that system (5.9) with the zero righthand side has only
the trivial solution, which completes the proof for operator (5.11).

To prove invertibility of operator (5.12), we remark that for any
FIT ¢ HY(QT) x H/2(Sp) x H Y/?(Sy) a solution of system (5.9)
can be written as U = [A97]7LF97 where [A97]7! is the contin-
uous inverse operator to operator (5.11). But due to Lemma 4.11
the first equation of system (5.9) implies that U = [A97]71F97 ¢
HYO(Q+ L) x H™Y2(Sp) x HY?(Sy) if F9T e H“O(Qt;L) x
H'Y?(Sp) x H /2(Sy), and operator [A97]~! is a continuous inverse
to (5.12) as well. O

The invertibility of operator .4 and Theorem 5.2 lead to the following

Corollary 5.4. Under the conditions of Theorem 5.2, the mized
boundary value problem (2.5)—(2.7) as well as BDIES (5.1)—(5.3) are
uniquely solvable.

5.2. Boundary-domain integral equation system (GG). To
obtain the BDIE system (GG) we will use equation (4.3) in QF and
equation (4.4), associated with operator G on the whole boundary S.
After substitution, ®q + ¢ for ut and ¥+ for TTu, we arrive at the
following system of BDIEs (GG),

(5.14) u+Ru—Viy+Wep=F, in QF,
1
(5.15) ge+ RYtu—Vy(y) + W =F;- — &, on S,

where F} is given by (5.4).
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Remark 5.5. It is easy to see that (Fy, F;t — ®¢) = 0 if and only
if (f,®9,%y) = 0. Indeed, the latter equality evidently implies the
former. Inversely, let (Fy, Fy" — ®) = 0. Keeping in mind equation
(5.4), Lemma 4.1 with F = 0 for u implies f = 0 and VU —W oy =0
in Q*. The equality F;” — &, = 0 implies ®; = 0 on S. Lemma 4.2 (i)
then gives ¥y =0 on S.

Further, we show that system (5.14)—(5.15) is equivalent to the BVP
(2.5)—(2.7).

Theorem 5.6. Let f € Lo(QF), and let &, € H'Y?(S) and
Uy € H Y%(S) be some fized extensions of g9 € HY?(Sp) and
Yo € H Y2(Sy), respectively.

(i) If some u € H*(QF) solves BVP (2.5)—(2.7) in QF, then the
triple (u,, )" € H' (Q1) x H~Y/2(Sp) x HY/?(Sy), where

(5.16) =T u—Vy and p =u" —®; on S,

solves BDIE system (5.14)—(5.15).

(i) If a triple (u,1b, )T € HY(Q1) x H™Y2(Sp) x HY2(Sy) solves
BDIE system (5.14)—(5.15), then u solves BVP (2.5)—(2.7), and ¢ and
¢ satisfy (5.16). Moreover, BDIE system (5.14)—(5.15) is uniquely
solvable.

Proof. Let u € H'(QF) be a solution to BVP (2.5)—(2.7). Set
¢ = TTu — ¥y and ¢ := ut — ®). Evidently, v € H~/%(Sp),
¢ € H'Y2(Sy). Then it immediately follows from relations (4.3)
and (4.4) that the triple (u,, ) solves system (5.14)—(5.15), which
completes the proof of item (i).

Now let a triple (u,1, )" € HY(QF) x H Y/2(Sp) x HY2(Sy) solve
BDIE system (5.14)—(5.15). Using the properties of single- and double-
layer potentials, take the trace of equation (5.14) on S and subtract it
from equation (5.15) to obtain

(5.17) um =®,+¢ onsb.

This means that the second equation in (5.16) holds. Since ¢(y) =0
on Sp and @y = ¢y on Sp, we see that the Dirichlet condition (2.6) is
satisfied.
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Equation (5.14) and Lemma 4.1 with ¥ = ¢ 4+ ¥y and & = ¢ + ¥y
imply that u is a solution of equation (2.5) and

(5.18) V(Wo+p—THu) =W (@ +¢—u")=0 in QF.

Due to (5.17), the second term vanishes in (5.18) and, by Lemma 4.2 (i),
we obtain

(5.19) Uo+9yp—T u=0 onS,
i.e., the first equation (5.16) is satisfied as well. Since ¥ = 0 on Sy and

¥y = 9 on Sy, equation (5.19) implies that u satisfies the Neumann
boundary condition (2.7).

Unique solvability of BDIE system (5.14)—(5.15) then follows from
Remark 5.5, the unique solvability of the BVP (see Theorem 2.1) and
(5.16). O

System (5.14)—(5.15) can be rewritten in the form
(5.20) AU = F99,

where U := (u,9, )" € HY(QV) x H Y2(Sp) x HY/2(Sy),

I+R -V W F,
GG ._ GG ._ 0

Due to the mapping properties of the operators involved in (5.21), see
Section 3, we have F99 ¢ H'(QT) x H'/2(S); moreover, the operator

A99 : HY () x H 3 (Sp) x H?(Sy) — HY(Q1) x H3(S)
is bounded. Now we prove invertibility of the operator A99.
Theorem 5.7. The operator
(5.22) A99: HY(Q1) x H 2(Sp) x H2(Sy) — HY(Q) x H2(S)

1s invertible.
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Proof. Evidently the operator (5.22) is bounded and injective, i.e.,
A99Y = 0 implies U = 0, due to Theorem 5.6 and Remark 5.5.

Let

(5.23) AFY = [

o~
Il
< <

Clearly,
(5.24) AS9 : HY(Q1) x H 3(Sp) x H*(Sy) — HY(Q) x H?(S)

is bounded.

Due to the mapping properties of the operators involved in (5.21) and
(5.23), see Section 3, the operator
(5.25)

A99 — A99: HY Q1) x H™3(Sp) x H?(Sy) — HY () x H%(S)

is compact.

Consider the equation
(5.26) AS9U = F
with an unknown vector U = (u,%, )T € HY(QT) x H /2(Sp)

X
HY2(Sy) and a given vector F := (Fy, F»)T € HY(QT) x HY2(S).
Rewrite (5.26) componentwise

(5.27) u—Vi+We=F inQF,
1 ~
(5.28) 3¢~ Vi =F, onS.

Restriction of equation (5.28) on Sp gives
(5.29) —rsp V) = rsp, Fo.
Due to Theorem 3.5, equation (5.29) is uniquely solvable, i.e., for

arbitrary Fy € H;/Z(S) there exists a unique ¢ € ﬁ;l/Z(SD) satisfying
(5.29).
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Note that, in accordance with (5.29),

(5.30) Vo + Fy) € HE (Sy).

Then (5.28) along with (5.30) yields that ¢ is determined also uniquely
as

(5.31) o =2[Ve+ Fy € HE(Sn))]

Thus, equation (5.28) with arbitrary F, € H;/Z(S) defines ¢ €
H;/Q(SN) and ¢ € H2_1/2(SD) uniquely. We remark that we then
have Vi), Wy € H3(QF) and, from equation (5.27), we get

(5.32) w=Vi—We+F in Q1
i.e., the function u € H3(Q") is defined uniquely also. The above
arguments show that operator (5.24) is invertible. Therefore, operator

(5.22) is Fredholm with zero index due to the compactness of operator
(5.25). Then the injectivity of (5.22) implies the invertibility. O

5.3. Boundary-domain integral equation system (77). To
obtain one more segregated BDIE system, we will use equation (4.3) in
Q7" and equation (4.5) on S, where @ + ¢ is substituted for u* and
¥y + ¢ for T u with functions ®¢, ¢, ¥y and v as introduced in the
beginning of Section 5. Then we arrive at the following system (7°7)

(5.33) ut+Ru—Vip+Wp=F, inQt,

1
(5.34) SU+T Ru—W+ Lo =T Fy— ¥ on,
where Fj is given by (5.4).

Remark 5.8. Similar to Remark 5.5, it is easy to see that
(F07T+F0 - \IlO) - O

if and only if (f, @9, ¥o) = 0.
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Let us prove that BVP (2.5)-(2.7) is equivalent to system (5.33)-
(5.34).

Theorem 5.9. Let f € Lo(QF), and let &, € H'Y?*(S) and
Uy € HY%(S) be some fived extensions of ¢o € H'Y*(Sp) and
Yo € H Y2(Sy), respectively.

(i) If some w € H'(QT) solves the mized BVP (2.5)—(2.7) in QF,
then the triple (u,, )T € HY(Q1) x H~'/2(Sp) x HY/?(Sy), where

(5.35) =T 'u—Tyand p=u" —® onS,

solves BDIE system (5.33)—(5.34).

(i) If a triple (u,, )T € HY(QV) x H™Y2(Sp) x HY2(Sy) solves
BDIE system (5.33)—(5.34), then u solves BVP (2.5)—(2.7), and ¢ and
@ satisfy (5.35). Moreover, BDIES (5.33)—(5.34) is uniquely solvable.

Proof. Let u € H'(QT) be a solution to BVP (2.5)—(2.7). Set
¢ = TTu — ¥y and ¢ := ut — ®). Evidently, v € H~/2(Sp),
¢ € HY2(Sy). Then it immediately follows from relations (4.3)
and (4.5) that the triple (u, v, ) solves system (5.33)—(5.34), which
completes the proof of item ().

Now let a triple (u,1, )T € HY(QH) x H Y/2(Sp) x HY2(Sy) solve
BDIE system (5.33)—(5.34).

Take the conormal derivative of equation (5.33) on S and subtract it
from equation (5.34) to obtain

(5.36) Y+ ¥y —T u=0 onS,

that is, the first equation(5.35) is proved. Taking into account ¢ = 0 on
Sy and ¥y = 1y on Sy, this implies u satisfies the Neumann condition
(2.7).

Equation (5.33) and Lemma 4.1 with ¥ = ¢ + ¥ and & = ¢ + @
imply that u is a solution of equation (2.5), and

(5.37) V(Wo+tp—THu) =W (@ +¢—u")=0 in QF.
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Due to (5.36), the first term vanishes in (5.18) and, by Lemma 4.2 (i),
we obtain
Pg+¢—ut =0 onS,

which means that the second condition (5.35) holds as well. Taking
into account ¢ = 0 on Sp and &y = ¢y on Sp, we conclude that u
satisfies the Dirichlet condition (2.6).

Unique solvability of BDIE system (5.33)—(5.34) then follows from
(5.35) along with the unique solvability of BVP (2.5)—(2.7) (see Theo-
rem 2.1), and Remark 5.8. O

System (5.33)—(5.34) can be rewritten in the form
(5.38) ATTu =777,

where UT := (u,9, )T € HY(QV) x H-Y2(Sp) x HY/2(Sy),
(5.39)

ATT - |1+ R -V w FTT . Fy
TR LI-w Lt TrtR -,

Due to the mapping properties of the operators involved in (5.39),
we have F77 ¢ HY(Q%) x H '/%(S), and the operator

ATT . H'(QF) x fNI_%(SD) « ﬁ%(SN) — HY(QT) x H_%(S)

is continuous.

Theorem 5.10. The operator
ATT . HY(Q) x H 2(Sp) x H2(Sy) — HY Q1) x H2(S)

s invertible.

Proof. Let
I -V W
TT . 3

Then the proof follows from the compactness of the mapping

ATT — ATT HY Q1) x H 3(Sp) x H?(Sy)— H Q) x H3(S),
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and the invertibility of the operators £ (see Theorem 3.6) and I :
HY(QY) — HY(Q'), by arguments similar to those in the proof of
Theorem 5.7. O

5.4. Boundary-domain integral equation system (7G). In
subsection 5.4 we reduce BVP (2.5)—(2.7) to a segregated BDIE system
of “almost” the second kind. We will use for this equation (4.3) in Q7,
the restriction of equation (4.5) on Sp, and the restriction of equation
(4.4) on Sy, where ®+¢ is substituted for u™ and ¥+ for T u with
functions @, ¢, ¥y and ¢ as introduced in the beginning of Section 5.
Then we arrive at the following system (7G),

(5.40) u+Ru—Vip+Wep=F, inQt,

1
(5.41) 51/1 +rs, TYRu —rs W' +rs, L0 =rs, TTFy — 75, ¥

on Sp,

1
(5.42) 2% +7rsyRYu—rs VY +rs ,We = TSNFO+ — 155y Po

on Sy,

where Fj is given by (5.4). The second and the third equations of the
system are associated with operator 7 on Sp and with operator G on
Sn, respectively.

Let us denote the righthand side of BDIES (5.40)—(5.42) by

.
(5.43) FT9 = [Fo, rsp, TTFy — 15, Vo, 1y Fyf — rsy®o)

Remark 5.11. F79 = 0 if and only if (f, @y, ¥y) = 0. Indeed, the
latter equality evidently implies the former. Inversely, let F79 = 0.
Keeping in mind equation (5.4), Lemma 4.1 with Fy = 0 for u implies
f =0and V¥ — Wd®, = 0 in Q. The equalities ]_-27’g =0
and FJ9 = 0 imply ¥y = 0 on Sp and ®; = 0 on Sy, that is,
Uy € HV/%(Sy), ® € H'/?(Sp). Lemma 4.2 (iii) then gives &y = 0
and ¥g=0on S.
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Let us prove that BVP (2.5)—(2.7) is equivalent to the system of
BDIEs (5.40)—(5.42).

Theorem 5.12. Let f € Lo(Q) and let & € HY?(S) and
Uy € HY%(S) be some fived extensions of ¢o € H'Y*(Sp) and
Yo € H Y2(Sy), respectively.

(i) If some u € H'(Q") solves the mized BVP (2.5)—(2.7) in QT,
then the triple (u,1, )T € H' (Q1) x H~1/2(Sp) x H'/?(Sy), where

(5.44) p=T"u—T¥; and ¢=u"—®; on S,

solves BDIE system (5.40)—(5.42).

(i) If a triple (u,1b, )T € HY(QV) x HY/2(Sp) x HY/2(Sy) solves
BDIE system (5.40)—(5.42), then u solves BVP (2.5)—(2.7), and ¢ and
¢ satisfy (5.44). Moreover, BDIES (5.40)—(5.42) are uniquely solvable.

Proof. Let u € H'(Q2T) be a solution to BVP (2.5)—(2.7). Set ¢ :=
THu — Wy, ¢ :=ut — &. Evidently, vp € H '/%(Sp), ¢ € H/?(Sy).
Then it immediately follows from relations (4.3)—(4.5) that the triple
(u,1, )T solves system (5.40)—(5.42), which completes the proof of
item (i).

Now let a triple (u,, )T € HY(Q1) x HY/2(Sp) x H/2(Sy) solve
BDIE system (5.40)(5.42).

Take the conormal derivative of equation (5.40) on Sp and subtract
it from equation (5.41) to obtain

(5.45) Yv=rs, TTu—rs, ¥, on Sp.

Further, take the trace of equation (5.40) on Sy and subtract it from
equation (5.42). We get

(5.46) o =rgyu’ —715,® on Sy.

Equations (5.45) and (5.46) imply that the first equation in (5.44) is
satisfied on Sp and the second equation in (5.44) is satisfied on Sy.

Equation (5.40) and Lemma 4.1 with ¥ = ¢ + ¥ and ® = ¢ + P
imply that u is a solution of equation (2.5), and VU*(y) —W®*(y) = 0,
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y € QF, where U* = WUy+19—T"u and ®* = &g+p—u'. Due to (5.45)
and (5.46), we have W* € H~/2(Sy), ®* € H/2(Sp). Lemma 4.2 (iii)
with S; = Sy and S = Sp implies ¥* = &* = 0, which completes
the proof of conditions (5.44) on the whole boundary S. Taking into
account that ¢ =0 on Sp, P9 = g on Sp, ¥ =0 on Sy and ¥y = Yy
on Sy, equations (5.44) imply the boundary conditions (2.6) and (2.7).

Unique solvability of BDIE system (5.40)—(5.42) then follows from
Remark 5.11, the unique solvability of BVP (2.5)—(2.7) and from
(5.44). o

System (5.40)—(5.42) can be rewritten in the form
(5.47) ATy = FT9,

where UT := (u,1, )T € HY(QV) x H Y2(Sp) x H/2(Sy),

I+R -V w
(548) AT9:= |rs, T™R rs, (31-W) re, LT
rsy RT —rgy V rsy (31+W)

Due to the mapping properties of the operators involved in (5.48), we
have that the operator

AT9  HY QM) x H3(Sp) x H?(Sy)
— HY(Q") x H %(Sp) x H(Sy)

is continuous. Due to Theorem 5.12 it is also injective.

To prove the invertibility of operator A7Y we need some auxiliary
assertions.

First of all, let us remark that the operator

AT9  HYO(Q; L) x H™2(Sp) x H2(Sy)
— HY(QF; L) x H™3(Sp) x H*(Sy),
where HL0(QF; L) is defined in (2.2), is continuous as well due to

the mapping properties of the operators R, V and W, see Section 3.
Further, it is also evident that F79 given by (5.43) and (5.4) belongs
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to HYO(QF; L) x H Y/2(Sp) x HY?(Sy) if (f, Wy, ®o)" € La(QF) x
H-Y2(8) x HY*(S).

Lemma 5.13. Let S = S1US,, where S1 and Sa are nonintersecting
simply connected nonempty submanifolds of S with infinitely smooth
boundaries. For any triple

F=(FU,®7 € QL) x H3(S;) x H2(S,),
there exists a unique triple

(Fu, Uu, @) 7 =Cs,.5, F € Ly(QT) x H 3(S) x H3(S)
such that

(5.49) PHLAVE, W, =F inQ",
(5.50) rs, UVu =" on Sy,
(5.51) rs, . = @ on Ss.

Moreover, the operator

Csy.50 : HYO(QUT L) x H™3(Sy) x HZ(Sy)

(5.52) 3 )
s Ly(Q) x H 3(8) x HE(S)

1s linear and bounded.

Proof. Let ¥Y be some fixed extension of the function ¥ from S; onto
the whole surface S; similarly, denote by ®° some fixed extension of the
function ® from S onto the whole surface S. We assume that these
extensions preserve the spaces, i.e., ¥* € H1/%(S), ®° ¢ HY?(S),
and moreover,

bl < Gol[¥[] -4 12°]],, 3 5, < Coll@|l

H™3(S) ~3(5)’ HE(S) H3(Sy)

with some positive constant C independent of ¥ and ® (see, e.g.,
[40, Chapter 4, subsection 4.2]. Then arbitrary extensions of the
functions ¥ and ® in spaces H~/2(S) and H'/?(S), respectively, can
be represented as

(5.53) U, =004y, P
(5.54) P, =%+ 3, 7
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If we look for the unknown functions ¥, and @, in the form (5.53)
and (5.54), respectively, we see that conditions (5.50) and (5.51) are
automatically satisfied for arbitrary ¢ and .

Thus, we have to show that functions f,, 1; and @ can be chosen in
such a way that equation (5.49) is satisfied.

Due to relations (3.10) and (3.29), equation (5.49) can be rewritten
in the following equivalent form

(5.55)  Pafe+Va(¥+4)—Wa(a® +aF)=aF inQt,

Apply the Laplace operator A to equation (5.55) to obtain
(5.56) fe=A(F) inQT,

which shows that function f, is uniquely defined and belongs to Lo (Q21)
since F € HLO(QH; L).

Further, substitute (5.56) into (5.55) and rewrite it in the form

(5.57)
Va () = Wa (a@) =aF —Pa (A(aF)) — Va (2°) + Wa (a®)
in Q.

Denote the known righthand side expression in (5.57) by Q:
(558) Q:=aF —Pa(A(aF))—Va (% +Wa(a®’) inQF.

It is easy to check that @ is a harmonic function in QT, as well as
the sum of layer potentials in the lefthand side of (5.57).

Let us choose the yet unknown functions {/; and @ by the conditions

(659 s, [Va@)-Waled)| =rslQF oS,

s, [0n [Va (@) -~ Wa @8)]] " =rs. [0 Q)T o S,

where 0,, denotes the normal derivative. Asshown in [39, Theorem 3.6],
the operator generated by the lefthand side of system (5.59)—(5.60) is



532 O. CHKADUA, S.E. MIKHAILOV AND D. NATROSHVILI

an isomorphism from H~1/2(S,) x HY/2(S;) onto HY/2(Sy) x HY/2(8y).
Therefore, the system (5.59)—(5.60) is uniquely solvable with respect to
1; and ¢ for the arbitrary righthand side. Denote this solution by 1;0
and ¢°. From conditions (5.59)—(5.60), due to the uniqueness theorem
for the mixed boundary value problem for harmonic functions, it then
follows that

(5.61)
Va (@) — Wa (a3®) =aF —Pa (A(aF)) — Va (¥°) + Wa (a @)
in QF,

(5.62) P (A@F)+V (¥ +4°) —W (@ +¢%) =F inQ*.

This yields the existence of a triple (f., ¥,,®,)" satisfying condition
(5.49).

The uniqueness is a consequence of the fact that f, is defined uniquely
by (5.56). Indeed, if F = 0, ¥ = 0 and ® = 0, then we have f, =0 and

V(¥,)-W(®)=0 inQF

with W, € H Y/2(S,), ®, € H'/2(S;), whence we conclude ¥, = 0 and
®, = 0 by Lemma 4.2 (iii).

From the above arguments, it is evident that the operator (?31752, see
(5.52), is linear and that the norm of the triple

Csr.50 F = (fu, Ua, @) T € Ly(QF) x H™3(S) x H?(S)
can be controlled by the norm of the triple
F=(F,0,®" € HYOQ L) x H 3(S1) x H?(S,)

in the corresponding function spaces. |
From Lemma 5.13 immediately follows

Corollary 5.14. For arbitrary triple
F = (F1, P2, Fs) | € HY(QF L) x H73(S1) x H(Sy),
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there exists a unique triple

(Fo, W,,®,)T =Cs,.5, F € Lay(Q27) x H 2(8) x HZ(S)

such that

(5.63) Fi=PfH+VI,-Wo, inQF,
(5.64) Fo=r5, TTFL — 15, V. on S,
(5.65) Fs=rg, Fy —rs, ®. on Ss.

Moreover, the operator

(5.66) Cs,.5, : HVO(QT5 L) x H™3(Sy) x H2(S,)
— Ly(Q) x H 2(S) x H2(S)

1s linear and bounded.

Now we are in a position to prove the following invertibility result for
the matrix operator A79 given by (5.48).

Theorem 5.15. The operator

(5.67) AT9: HYO(Q"; L) x H %(Sp) x H?(Sy)
_)HI’O(Q+;L) % H*%(SD) X H%(SN)

is 1nvertible.
Proof. According to Corollary 5.14, any vector
T
FTO = (F79,7]9,F]%) € HY QL) x H~(Sp) x H(S)

can be represented in the form

(5.68) FI9 =Pf,+ VU, - W, inQt,
(5.69) FJ9 =rs, TYF/9 —rs, ¥, on Sp,
(5.70) FJ9 =rgyFl 9" —rs,®, on Sy,
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where
(571) (f*a\Il*a(I)*)T :CSD,SN ]:’TQ,
and the operator

Cop.sn : HYO(QT; L) x H™3(Sp) x H?(Sy)

— Ly(QF) x H3(S) x H3(S),

is linear and bounded.

For any F97 € HYO(Q+; L) x HY?(Sp) x H '/%(Sy), let
U=(u,1, )" =[ AT ] FT € HYO(QF; L) x H™%(Sp) x H(Sw),

where [A9T]1 : HLO(Q+; L)x HY/2(Sp)x H1/2(Sy) — Hy °(Q+; L) x
H~Y2(8p) x H/2(Sy) is the bounded inverse to operator (5.12) from
Theorem 5.3 with matrix operator A97 given by (5.10). Then U is a
solution of the equation

(5.72) A9Tu = F97.
Let us take
(5.73) FIT =BTIFTY,
where
(5.74) B9 .=
I 0 0

+_ - —
rsp7t =rsp[Cspsnly —rsp [Copsny —msn [Csnisn ],

+ _ _ _
rsyT TSN [CSD»S'N] 21 TSN [C5D75N] 22 TSN [CSD,SN:I 23

In what follows, we will prove that ¢/ is then also a solution to equation
(5.47) with the righthand side F79.

Due to (5.71), we can rewrite (5.73) in the form
(5.75) F{T =FT9 inQf,

(5.76) FIT =rg, FI9" —r5,®, on Sp
(5.77) FIT =rgyTHF]9 —rgy¥. on Sy.
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Taking the trace of the first equation of system (5.72) on Sp and
subtracting from it the second equation of the system, we obtain

(5.78) rsput =rs, FITT — F§T =rg, &, on Sp.

Taking the conormal derivative of the first equation of system (5.72)
on Sy and subtracting from it the third equation of the system, we
obtain

(5.79) ron TTu=rs TTFYT — F§T =rg, ¥, on Sy.

The first equation of system (5.72), representations (5.68), (5.75)
and Lemma 4.1 with f = f,, ¥ = ¢ + ¥, and ® = ¢ + &,
imply V¥* — W®* = 0 in Qf, where ¥* = ¢ + ¥, — T"u and
®* = ¢+ &, —ut. Due to (5.78) and (5.79), we have ¥* € H~/2(Sp)
and ®* € H'/?(Sy), since ¢ € H~'/2(Sp) and ¢ € H'/?(Sy). Lemma
4.2 (iii) with Sy = Sp and Sy = Sy implies ¥* = ®* = 0, that is,

(5.80) Ttu=v¢+¥, onS,
(5.81) um=¢p+®, onS.

Taking the conormal derivative of the first equation of system (5.72)
on Sp and substituting there 7% u from (5.80), we obtain

rsp [+ W+ THRu = 3o~ W(y) + L] = re, THF] .

Taking into account (5.69), this implies that the second equation of
system (5.47) is satisfied.

Similarly, taking the trace of the first equation of system (5.72) on
Sn and substituting there ut from (5.81), we obtain

roy [+ @+ RYu— Vo — Lo+ We| =rg, FTO.

Taking into account (5.70), this implies the third equation of system
(5.47) is satisfied.

The first equations of system (5.47) coincide with the first equations of
system (5.72) and consequently is also satisfied. Thus, U = [u, 1, ¢]" =
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[A9T]71BTI9FTY satisfies the whole system (5.47) and [A97]71B7Y is
a bounded right inverse to the operator

(5.82) AT9:HY(Qt; L) x H 2(Sp) x H?(Sy)
— HY9(QF; L) x H 2(Sp) x H2(Sy).

On the other hand, system (5.47) with zero righthand side has only
the trivial solution due to Theorem 5.12 (ii). This means that, for any
righthand side

FT9 ¢ HY(Q1; L) x H %(Sp) x H?(Sy),
the solution of (5.47) is unique and is given by the formula

U= [UJ/J,SO]T _ [AQT]le’Tg}'Tg‘

Thus, the operator [[A97]~'B79Y is a bounded two-side inverse to the
operator (5.82). O

Original BVP (2.5)—(2.7) can be written in the form

(5.83) APNy = pPN
where
L f
(584) ADN = ’I"S'D’y+ y FDN = (100
rsy Tt o

The operator AP : HLO(QF; L) — Lo(QF) x HY2(Sp) x H Y/%(Sy)
is evidently continuous and due to the uniqueness theorem for the BVP
is also injective.

The invertibility of operator A7 9 from Theorem 5.15 and equivalence
Theorem 5.12 lead to the following

Corollary 5.16. The operator APN : H'O(QF, L) — Ly(QF) x
H'Y2(Sp) x H-'Y2(Sy) is continuous and continuously invertible.
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In the particular case a(z) =1 at z € QF, (2.5) becomes the classical
Laplace equation, R = 0, and BDIES (5.40)—(5.42) splits into the
Boundary Integral Equation System (BIES),

(5.85)

TSp (%1/1 — WAY + ﬁZQO) =rs,T"Fy—rs,¥ on Sp,
(5.86)

rsy (39— Vab+ Wap) = rs Fy = 1sy@0 on Sy,

and the representation formula for « in terms of ¢ and ¥,

(587) u:F0+VA¢—WA<p in QF.

Then Theorem 5.12 leads to the following

Corollary 5.17. Leta = 1 in QF, f € L2(Q7F), and let ®¢ €
HY?(8) and ¥y € H'/%(S) be some extensions of py € HY*(Sp)
and vy € H Y/2(Sy), respectively.

(i) If some u € H'(QF) solves the mized BVP (2.5)—(2.7) in QF,
then the solution is unique, the couple (¢, ) € ﬁ_l/Q(SD) X INII/Q(SN)
given by (5.44) solves BIE system (5.85)—(5.86), and u satisfies (5.87).

(i) If a couple (¢, ) € H™1/2(Sp) x HY2(Sy) solves BIE system
(5.85)—(5.86), then u given by (5.87) solves BVP (2.5)—(2.7) and equa-
tions (5.44) hold. Moreover, BIES (5.85)—(5.86) is uniquely solvable in
Hil/z(SD) X H1/2(SN).

System (5.85)—(5.86) can be rewritten in the form
(5.88) AL%Un = F1°,

where Z/A{Z = (¥, ) € HY/2(Sp) x HY*(Sy),
TSp <%I_W’A> TSDEX
N

ATS .
(5.89) —TsyVa TSy (% I+ WA>

)

776 . |rspT Fo—rs, %
A L ’I“SNFJ'_—T‘SN(I)O ’
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FI9 € HY2(Sp) x HY*(Sy). Moreover, the operator ALY
H=Y2(Sp) x HY*(Syx) — H~Y/2(Sp) x H'/?(Sy) is bounded and
injective.

Theorem 5.18. The operator A‘gg : fI*l/2(5’D) % fIl/Z(SN) N
H-Y2(8p) x HY?(Sy) is invertible.

Proof. A solution of system (5.88) with an arbitrary (j-'\Zg)T =
(FT9,FT9) € H-Y/2(Sp) x H'/?(Sy) is delivered by the couple (1, p)
satisfying extended system

(5.90) Alu = F1§,

where U = (u, ¥, )T, ]-'Zog = (0, ]_-27’Ag’ _7_-37’AG)T and

I —Va Wa
(5.91) ALY = 0 Tsp (%I_ WlA) rsp L4
0 —Tsy VA TSy (% I+ WA>

Operator ALY has a continuous inverse due to Theorem 5.15 for a = 1.
Consequently, operator jfZg has a right bounded inverse, which is also
a two-sided inverse due to injectivity of the operator (.zzl\zg). O

Note that invertibility of the boundary integral operator with a
structure similar to ng but associated with homogeneous elasticity
was analyzed in [22] in weighted spaces of functions with Holder-
continuous derivatives, using the known properties of the original BVP
solutions in corresponding spaces.

Now we prove the counterpart of Theorem 5.15 in wider spaces.

Theorem 5.19. The operator

AT9  HY Q) x H 2(Sp) x H?(Sy)
— H'(Q1) x H™3(Sp) x H3(Sy)

1s invertible.
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Proof. Let us consider the following operator,

I -V
(5‘92) Ag-g — 0 Tsp <%I - WIA> TSp L
0 —T‘SNV TSy (%I—FWA)

By Theorems 3.4, 3.6 and Corollary 3.45, operator Ag’g is a compact
perturbation of the operator .A79. Taking into account relations (3.10),
(3.11) and (3.23), the above operator can be represented as

AT = diag (3.1, 1) AL [diag (a1, a)g],

where

a’ " ?’a

diag (1 1 l) and diag (a,1,a)
are diagonal 3 x 3 matrices. The operator
(5.93) ALY : HY(Q) x H %(Sp) x H?(Sy)
— HY2") x H 3(Sp) x H?(S),

where ALY is given by (5.91), is an upper block-triangular matrix
operator with the following diagonal operators

I:HY Q") — H'Y(OQ),
AT9 : H™3(Sp) x H?(Sy) — H™3(Sp) x H?(Sy).
The operator ng is invertible due to Theorem 5.18. Consequently,

(5.93) is an invertible operator as well. Taking into account that
a > const > 0 and is bounded, this implies the diagonal matrices

diag (%, 1, %) and diag(a,1,a)
are invertible, and the operator

AT9 - HY(QT) x H™3(Sp) x H?(Sy)
— HY(QT) x H™3(Sp) x H?(Sy)
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is invertible. This implies that the operator A7 Y possesses the Fred-
holm property and its index is zero.

Then injectivity of the operator A9 : H'(Qt) x H-'/2(Sp) x
HY2(Sy) — HY(QF) x H™Y/2(Sp) x H'Y/2(Sy) implies its invertibil-
ity. O

Concluding remarks. Mapping and jump properties of surface
and volume integral potentials based on a generalized parametrix (Levi
function) of a “Poisson” PDE with variable coefficient were presented
in the paper in a scale of Sobolev spaces. Four segregated boundary-
domain integral equation systems were then formulated and analyzed,
and their equivalence to the original mixed variable-coefficient BVP
was proved in the case of PDE righthand side function from Lo(Q%),
and the Dirichlet and the Neumann data from the spaces H'/2(Sp) and
H~'/2(Sy), respectively. Invertibility of the operators of the BDIES
was proved in the corresponding Sobolev space.

The BDIES (7G) looks like an operator equation of the second kind,
but the operator domain and the range coincide only “up to the tilde.”
Although the resolvent theory and Neumann series method (cf. [24, 37
and references therein|) are then not directly applicable to the equation
solution, further analysis is needed to find out whether it might be
possible after an appropriate modification of the operator and/or the
spaces, cf. [3, 25].

By the same approach, the corresponding BDIE system can also be
considered with the PDE righthand side from H~'(Q7) (cf. [27]), and
for unbounded domains. Smoothness of variable coefficients and the
boundary can also be essentially relaxed, taking them sufficient only to
provide appropriate mapping properties of parametrix-based potentials
and ensure invertibility of corresponding classical surface potentials
associated with the Laplace operator.

In the formulations considered, unknown boundary traces and conor-
mal derivatives are replaced by auxiliary boundary functions formally
segregated from the solution inside the domain. The so-called united
formulations not involving such auxiliary functions and leading to
boundary domain integro-differential equations are analyzed in [28].
Results of the present paper can also be extended to BDIEs of more
general scalar partial differential elliptic operators, particularly with
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matrix coefficients, as well as to BDIEs of elliptic systems of partial
differential equations.

The analysis presented makes a theoretical basis for justification of
numerical methods for the BDIES solution. The approach can be
extended to analysis of localized BDIES, cf. [5], to serve as a theoretical
basis for justification of associated localized numerical methods leading
to sparsely populated systems of linear algebraic equations (see [26] for
details).
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