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ABSTRACT. We consider the following system of integral
equations

ui(t) = / gi(t, s) fi(s,u1(s),ua(s), ... ,un(s))ds,
0

ae t€0,1, 1<i<n.

Our aim is to establish criteria such that the above system
has a solution (u1,u2,...,un) where u; € Ly (Orlicz space),
1 < i < n. We further investigate the system

u;(t) :/ gi(t, s)H(s,u1(s),ua(s),... ,un(s))ds,
0

ae. t€[0,1], 1<i<n

and establish the existence of constant-sign solutions in Orlicz
spaces, i.e., for each 1 < i < n, Ou; > 0 and u; € Ly, where
0 € {1,—1} is fixed.

1. Introduction. Let = = (z1,%9,...,zn5)T and y =
(y1,92,.-. ,yn)T be in RY. Throughout, by * > y we shall mean
x; > y; for each 1 < i < N. Similarly, if z,y € RV*Y (real N x N ma-

trices), then = > y also means inequality in the componentwise sense.

In this paper we shall consider the following systems of Hammerstein
integral equations

ws(t) :/0 gi(t, ) Fi(5,ur(s), us(s), - . un(s)) ds,

ae t€[0,1], 1<i<n

(1.1)
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and

PG :/0 gi(t, $)H (s, u1(5), ua(5), - - - »un(s)) ds,
ae t€[0,1], 1<i<n

where for each 1 <i < n, g; : [0,1] x [0,1] — R¥*¥ is a matrix valued
kernel function and f;, H : [0,1] x R¥ x R¥ x --- x RY - RV is a
single-valued nonlinear function.

Let v = (uy,u2,...,u,). We are interested in establishing the
existence of one and more solutions u of the systems (1.1) and (1.2) in
Orlicz spaces, i.e., u; is in an Orlicz space Ly for each 1 < ¢ < n. In
particular, for (1.2), we are concerned with the existence of constant-
sign solutions v in Orlicz spaces, i.e., for each 1 < ¢ < n, in addition
to u; € Lg, we have fu;(t) > 0 for ¢ € [0,1], where 6§ € {1,—1}
is fixed. Note that constant-sign solutions include positive solutions
( = 1), the usual consideration in the literature. For system (1.2),
we shall tackle the case when H is ‘nonnegative’ and also the case
when H can be ‘negative’ (semi-positone). The main tools employed
in this paper are the Leray-Schauder alternative and Krasnosel’skii’s
fixed point theorem.

In the literature [1, 9, 10, 12], mostly solutions of Hammerstein in-
tegral equations are sought in C|0, 1] and LP[0, 1] with p > 1. The more
recent work on the existence of solutions of Hammerstein integral equa-
tions can be found in [2—7, 13, 17—-19] where a variety of techniques
including Krasnosel’skii’s fixed point theorem and fixed point index
theory have been used. Those results obtained for LP[0, 1] invariably
assume a polynomial type restriction (in y) on the nonlinearity f(¢,y).
On the other hand, seeking solutions in other Orlicz spaces [8, 10, 16,
20—24] will lead to restrictions that are not of polynomial type, and
hence will allow us to consider new classes of equations. We remark
that our present work generalizes all the previous work done on the
existence of solutions in Orlicz spaces to (i) systems, (ii) constant-sign
solutions and (iii) semi-positone nonlinearity. Moreover, our method-
ology, especially the application of Krasnosel’skii’s fixed point theorem
in Orlicz spaces, is entirely new in the literature. Hence, our results
are new even in the case n = 1.

The paper is outlined as follows. Section 2 includes the main tools
used. The results for (1.1) and (1.2) are respectively presented in
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Sections 3 and 4. Finally, the semi-positone case of (1.2) is investigated
in Section 5.

2. Preliminaries. The following two theorems will be needed to es-
tablish the main results later. The first theorem is known as the Leray-
Schauder alternative and the second is usually called Krasnosel’skii’s
fized point theorem in a cone.

Theorem 2.1 [1]. Let B be a Banach space with E C B closed and
convez. Assume U is a relatively open subset of E with 0 € U and
S :U — E is a continuous and compact map. Then either

(a) S has a fized point in U, or
(b) there exist w € OU and A € (0,1) such that u = ASwu.

Theorem 2.2 [11]. Let B = (B, || - ||) be a Banach space, and let
C C B be a cone in B. Assume 0y and Q2 are open subsets of B with
0€Q, Q) CQ, andlet S:CN(Q\Q) — C be a continuous and
completely continuous operator such that, either

(@) ||Sul| < |lull, w € CNOQy, and ||Sul| > ||u||, v € C NN, or
(b) ||Sull > ||ul|, w € C NIy, and ||Sul| < ||ull, w € C N INy.
Then S has a fized point in C N (Q2\ Q).

3. Results for (1.1). In this section we shall employ the Leray-
Schauder alternative (Theorem 2.1) to obtain some existence results
for the system (1.1) in Orlicz spaces.

Let B be a Banach space. Let the operator S : B — (RYM)" be
defined by

(3.1) Su(t) = (S1u(t), Sau(t), ..., Syu(t)), ae. te]0,1]

where
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Clearly, a fixed point of the operator S is a solution of system (1.1).
We observe that the operator S; can be written as

(3.3) S; = A F;
where F; : B — RY is defined by
(3.4) Fiu(t) = fi(t,u(t)), te]0,1]

and A; : RY — RY is given by
1
(3.5) Asa(t) = / gi(t, $)o(s) ds, ace. t€0,1]
0

Our first result is a general existence principle in B.

Theorem 3.1. Let X = (X, |- |x) be a Banach space, and let
X"=X XX x---xX (n times) be equipped with the norm || - || where

ul = max |ui|x, ue€X"
1<i<n

Let Y be a Banach space. For each 1 < i < n, suppose

(3.6) F,: X" —Y and A;:Y — X

and

(3.7) A;F;: X" — X is continuous and completely continuous.

Moreover, for all A € (0,1), a positive constant My (independent of \)
exists such that for any solution u € X™ of the system

(3.8) u; = M;Fiu, a.e. 1<i<n
we have
(3.9) |ull # Mo.

Then, (1.1) has a solution u* € X™ with ||u*|| < Mp.
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Proof. Clearly, a solution of (3.8), is a fixed point of the equation
u = ASu. Now (3.7) guarantees that S is continuous and completely
continuous. In the context of Theorem 2.1, let

U={ueX"||ul <My}

Suppose that u is a solution of (3.8)  for some A\ € (0,1). Then, u ¢ 9U.
Thus, case (b) of Theorem 2.1 cannot arise and case (a) of Theorem 2.1
must hold, i.e., system (1.1) has a solution u* € U with ||u*|| < My. O

We shall now tackle the existence of a solution u of (1.1) with u; € X,
1 <i < n, where X is an Orlicz space.

To begin, let P and @ be complementary N-functions [13]. The
Orlicz class, denoted by Op, consists of measurable functions y :
[0,1] — RY for which

p(y; P) = / P(y(x)) da < co.

We shall denote by Lp([0,1],RY) the Orlicz space of all measurable
functions y : [0,1] — R” for which

lylp = sup < oo.
p(v;Q)<1

vEDqQ

/01 y(z) - v(zx),dz

Note also Holder’s inequality [16, page 74] which says

‘/Dly(x)-v(xdac

< [ylp - vlq-

It is known that (Lp([0,1],R%), |-|p) is a Banach space [13]. Let
Ep([0,1],RY) be the closure in Lp ([0, 1], RY) of the set of all bounded
functions. Note that Ep C Lp C Op. We have Fp = Lp = Op if P
satisfies the (A3) condition, which is (Asg) there exist w, yo > 0, such
that for y > yo, we have P(2y) < wP(y).

For a discussion of the (Az) condition, we refer the reader to [16,
pages 23-29]. For example, if P grows faster than a power, then @
satisfies the (A3) condition.
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Using the ideas of [8, 13] we can present many existence principles
in an Orlicz space. One such result is as follows.

Theorem 3.2. Let P and Q be complementary N -functions. Sup-
pose that
(3.10)

{ ¢ and v are complementary N -functions, and the functions

Q and ¢ satisfy the (A2) condition,

for each 1 < i <mn, g;(t,-) € Ep for a.e. t €[0,1],
and the function t — |g;(t,-)|p belongs to Ey,

(3.11) {

for each 1 < i < n, f; is a Carathéodory function, i.e.,
(3.12) (i)t — fi(t,w) is measurable for every u € (RN)™
(ii)u — fi(t,u) is continuous for a.e. ¢t € [0,1]

and
for eachr >0 and 1 < i <n,
there exists ann,; € Lo([0,1],R) and K, ; > 0

such that |fl(t7 u)| < nr,i(t) + Kr,i Q_l (¢ (’U,z/T))
for a.e. t €[0,1] and every u € (RV)".

(3.13)

Moreover, assume that there is a positive constant My, independent of
A, with

(3.14) Jullo = max usly # Mo

for any solution w of (3.8)x. Then, (1.1) has a solution u* €
(L ([0, 1], RN )™ with ||u*||y < Mo.

Proof. Tt follows immediately from Lemma 16.3 and Theorem 16.3
(take M, =Q, My = ¢ and Ny = P) of [13] that A; : Eqg =Lg —
E4 = Ly is continuous and completely continuous. Let

(3.15) U={ue (Lg)" |[lully < Mo}
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Applying Theorem 17.6 in [13], we deduce that F; : U — Lg is
continuous and F; maps bounded sets into bounded sets. Thus A;F; :
U — Ly is continuous (4; is continuous and F; is also continuous)
and completely continuous (4; is completely continuous and F; maps
bounded sets into bounded sets). With X = L, and Y = Lg, the
result now follows from Theorem 3.1. ]

Remark 3.1. By placing other conditions on g; and f; (see [16,
Sections 15, 16, 17]) we may deduce other existence results in an Orlicz
space.

Our next result uses Theorem 3.2.

Theorem 3.3. Let P and Q be complementary N -functions. Sup-
pose (3.10-3.13) hold. Moreover, assume, for each 1 < i < n,

r

(3.16) sup >1

re(0,00) Gilg * |1 il + 2K ilgilg

where g;(t) = |gi(t,-)|p. Then, (1.1) has a solution u* € (L4([0,1],
RN))~,

Proof. In view of (3.16), for any 1 < ¢ < n there exists a positive
constant My such that

My

(3.17) >
|9ilg - [N010,ilQ + 2K My, ilqilo

1.

Let u be a solution of (3.8) for some A € (0, 1) with ||u|ly = My. Then,
there exists some j € {1,2,...,n} such that |u;|, = M.

By using [16, Theorem 10.5 with & = 1], we have

(3.18) ‘Q‘l <¢ ($0>>‘Q§1+/01¢<ui§z)>ds, 1<i<n.

Now, applying Holder’s inequality, we get for ¢ € [0, 1],

<lgi(&, )P [£; (- u())le

1
fuy ()] = ‘ [ st s, )
= g;(0) 1;(ru())]e

(3.19)
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Hence, using (3.13) (when r = Mp) and (3.18) in (3.19), we find

lujle < lajle 15 (- u()le

< lasle \nMo,jc) K O (

]
<lgjlg {lnMo,j|Q + Ky, j Ql(

Q
1
u4ils
< |Qj|¢{77Mo,j|Q+KMo,j<1+/ ¢< i )>
0 My

Note that Lemma 9.2 in [13] provides

o(wi(s) |ujlg _ Mo _

Substituting (3.21) into (3.20) immediately leads to

(3.20)

Mo < |gjle (Ina1e,5lQ + 2K y,5)
or M
0 <1,
|a5lp - 1no,5lQ + 2K o,5195] 4
which contradicts (3.17).

Hence, any solution u of (3.8) must satisfy ||u||4 # Moy; thus, we have
condition (3.14). The conclusion is now immediate from Theorem 3.2. O

Remark 3.2. Let p (> 1) and ¢ be integers such that 1/p+1/¢ = 1.
When n = 1, in [21, Theorem 3.6] the existence of a solution in L”[0, 1]
is established using the conditions

(3.22) £t w)] < n(t) + Mlul?/?

and

r
3.23 su —F | >1
( ) rE(O,I()X>) <a0+a1 rP/Q>
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where ag and a; are some fixed constants. We remark that our
Theorem 3.3 (existence of a solution in Orlicz space) is ‘analogous’
to [21, Theorem 3.6] in the sense that if we let P(z) = ¢(z) = |z|?/p,
then Q(z) = |z]?/q and so Q~'(x) = (¢x)/? for x > 0. Then, (3.13)

(when n = 1) with
1/q
K, =M -rP/4 <£>
q

reduces to (3.22), since with this K, we have

K Qo)) =t

Moreover, condition (3.16) is ‘parallel’ to (3.23).

Remark 3.3. It is also possible to prove Theorem 3.3 using Schauder’s
fixed point theorem.

Remark 3.4. Of course (see Theorem 17.6 in [13]) one could replace
(3.13) in Theorem 3.3 with the following condition:

there exists ¢ > 0 such that for each 0 < r < My + ¢
and 1 << mn,

(3.24) there exists n,; € Lo([0,1], R) and K, ; > 0 such that
filt,w)| < mpi(t) + Krg Q1 (@ (ui/T))
for a.e. t € [0,1] and every u € (RM)",

where My is as in (3.17). In fact if we want to be more precise we only
need the inequality in (3.24) to hold at r = My + ¢ (to apply Theorem
17.6 in [13]) and r = My (for the argument in (3.20)). Note also if
(3.24) holds at r = My + €, then from the monotonicity of ¢ and Q 1,
one has an inequality of type (3.24) at r = M.

Remark 3.5. All the results in this section hold for system (1.2), with
fi replaced by H in the conditions.

Example 3.1. Suppose n = N = 1, P(x) = 22/2 (so Q(z) = z2/2),
#(z) = |z|?]| In|z||+1]. Assume that (3.11) and (3.12) hold with g; = ¢
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and f; = f. In addition suppose there exist n € Lg([0,1],R) and b > 0
with
£ (&, w)| < n(t) + bluly/|Inful[ + 1
for a.e. t €]0,1] and u€R.

Finally assume there exist € > 0 and My > 0 with

(3.25) Mo > lgls[nlq + V2lalsby/Mo(Mo +€)[|In [Mo + el + 1].

Then, (1.1) has a solution in L4([0,1],R).

To see this we will apply Theorem 3.3 (with Remark 3.4). Firstly
notice (3.10) is immediate and (3.17) (so (3.16)) also follows from (3.25)

once we show

b
K, = E\/T(Mo +¢)[|In [ My + €| + 1]

if 0 <7 < Mp+e. To see this and (3.24) at the same time notice that
if 0 < r < My + ¢ then for u € R we have

r

¢(u)=¢<MOT+E(M0+€) ) Mo e ¢<(Mo+5)$>

2
r(Mp +¢) ‘%‘ Hln‘;H +|In| My + €| +1}

r(My + &) [|In| Mo + ¢ + 11¢<§)
and so (note Q~'(z) = v2z for z > 0)

bulv/[In ful| +1 = —= Q

\/ (Mo+¢e)[|In|Mo +€|| +1] ¢ (:f)

_\/ (Mo +¢) [|In|Mo +¢|| + 1] @7 1<¢(;>>

na (o)

g

%\

g
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Thus, (3.24) and (3.16) hold and the result follows from Theorem 3.3
(with Remark 3.4).

Remark 3.6. 1t is easy to generalize the above example by considering
P(z) =|z?/p, p > 1 and ¢(x) = |z|*[|In|z|| + 1], @ > 1. Indeed other
¢, etc., could be considered (see [16, page 219]).

4. Results for (1.2). In this section, the Krasnosel’skii’s fixed point
theorem (Theorem 2.2) will be used to yield some existence results for
system (1.2) in Orlicz spaces. In particular, we are interested in the
existence of constant-sign solutions in Orlicz spaces.

Let P and @ be complementary N-functions. Suppose ¢ and 1 are
complementary N-functions, and the functions @ and ¢ satisfy the
(A2) condition. Let the Banach space

B= {u | ue (Ly([0, 1],RN))"}
be equipped with the norm

lullg = max fuily

1<i<n
where )
luilp = sup / ui(z) - v(z)dz|, 1<i<n.
plvih)<1|Jo
UGO./,

Define the operator S : B — (R™)" by
(4.1) Su(t) = (Syu(t), Sau(t),...,Syu(t)), ae. te]0,1],
where

Siu(t) :/0 gi(t,s)H(s,u(s))ds, a.e. te€][0,1],

1< <n.

(4.2)

Clearly, a fixed point of the operator S is a solution of system (1.2).

Our first result gives the existence of a constant-sign solution in

(L¢([07 l]a RN))n
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Theorem 4.1. Let § € {1,—1} be fized, and let P and @ be com-
plementary N-functions. Suppose (3.10) and (3.11) hold. Moreover,
assume

(4.3) H is a Carathéodory function,

for each r >0 and 1 < i < n,

there exists n,.; € Lg([0,1],R) and K, ; >0
such that |H(t,u)| < npi(t) + Kri Q71 (¢ (wi/T))
for a.e. t €[0,1] and every u € (RM)",

(4.4)

(4.5) 6H(t,u) >0 for (t,u) € [0,1] X A,

0,00)¥)"  ifo=1
where A = (( ) ) "
(=00, 00M)" if6 = -1
(4.6)
for0 <z <|uj| <y, 1<j<n andae. te]|0,1],
OH (t, wi, Uy .o s @yeenyUp) < OH (G w1, U,y ooy Ujy e, Upy)
< HH(taula’U/Qa"' Y Yy e 7un)7
there exist a constant 0 < M <1,
and nonnegative functions a,b
(4.7) with a : [0,1] = RN, b:[0,1] — (RM)T, a(t),b(t) > 0,

a.e. t €10,1],
and a € Ly([0,1],RN) such that for each 1 < i < n,
L Ma(t)b(s) < gi(t,s) < a(t)b(s), t €[0,1], a.e. s€]0,1],

(4.8) there exists 6 > 0 such that ¢(zy) < = d(z)p(y) for z,y > 0,

S

(4.9)
there exists B > 0 such that
68 fo 0(Ma(s) [y b(r)H (7, 89(r), B(7), .., BY(r))dr) ds) > B,
where (1) = M(a(7)/|alg), of course we also assume the above
integral exists
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and

there exists an o > 0 such that
(4.10) 1gile (INa,il@ +2Ka,) < a for each 1 <i<n,
where ¢;(t) = |gi(t,-)|p.

Then, (1.2) has a constant-sign solution u* € (Lg([0,1],RN))"™ such
that

(a) if « < B, then a < |[u*|lp < B and for each 1 < i < n,
Ou}(t) > vy(t)a, almost everywhere t € [0,1];

(b) if B < a, then B < ||[u*|lp < a and for each 1 < i < n,
Ou;(t) > v(t)B, almost everywhere t € [0,1].

Remark 4.1. A typical example of a (A2) function ¢ which satisfies
(4.8) is ¢(z) = |z|?*[|In|z||+1]. Note that (4.8) is immediate with § = 1
since

¢(zy) < 2*y*[|Inz/| + |In]y|| + 1] < 2®y?[|In|z|| + 1][|In |y|| + 1]
= ¢(x)d(y)-

Proof of Theorem 4.1. To begin, we define a cone C in B by

n

(411) € ={ue (Ls(0,1),R)

for each 1 <14 <n, Ou;(t) > y(t)||ul|¢ for a.e. t € [0, 1]},

where 7(-) is defined in (4.9). It is clear that a fixed point of S in C is
a constant-sign solution of (1.2).

Moreover, let €, and Q3 be open subsets of (L([0, 1], R™Y))" defined
by
Qo = {u e (Ly([0,1,RY))" | [Julls < o}

and
Qp = {ue (Lo(0,1,RM))" | lulls < 8}

First, using a similar argument as in the proof of Theorem 3.2, we see
that S; : CN Quax{a,sy — Le is continuous and completely continuous
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for each 1 <i < n. Thus, S : C’ﬂﬁmax{aﬂ} — (Lg)™ is also continuous
and completely continuous.

Next, we shall show that S : C N ﬁmax{aﬁ} — C. Let u €
C N Qaxfa,8}- By (4.5) and (4.7), we have

1
w12 ouu(t) < [ aO(s)0 (5, u() ds,
ae. t€0,1], 1<i<n

which leads to

1
|Siulg < |a\¢/ b(s)0H (s,u(s))ds, 1<i<n.
0

Hence, it follows that
1
(@13) (Sl = max Sl < Jaly | H(s)OH(s,u(s))do.
<i<n 0
Also, from (4.5) and (4.7) we get

(4.14) 08 :u(t) 2 M/O a(t)b(s)0H (s, u(s))ds > 0,

a.e. t€0,1], 1<i<n.
Substituting (4.13) into (4.14) gives
S
% = y(t)|Sully, ae. te0,1], 1<i<n.
¢
This shows that S : CN ﬁmax{aﬁ} — C.

We shall now prove that ||Sull > ||lulls for u € C N OQs. Let
u € CNoQs. Then, ||ullp = B. Let 1 < j < n be fixed. Since
¢(z) is increasing for > 0, we have, in view of (4.14) and (4.6),

0S;u(t) > Ma(t)

(4.15) /0  5(08,u(s)) ds
> /0 y <Ma(s) /0 1 b(T)GH(T,u(T))dT) ds
> / y (Ma<s> / R)OH (7, By(r), B1(7) (7)) df) ds.
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Now, Lemma 9.2 in [13] provides

L (6S;u(s) |S;ul
4.16 /¢< J >ds§ itle <.
(10 o \Tisully )% = 1Sl
On the other hand, using (4.8) we have
6.S;u( qﬁ (0S;u(
e
1 [Sull, CiEnm
Coupling (4.16) and (4.17) yields
(;5 (0S;u(
4.18 0
19 i)
or
o([ISully)
1
> 5 / $(0S;u(s)) ds
0

> 5/01¢ (Ma(S) /01 b(r)0H (7, 6(7), By(7); - - - a/B’Y(T))dT> ds

where we have used (4.15) in the second inequality. This implies, noting
(4.9),

Isule 07 (5 | 1 o(mats) [ bo)0H (r, By, ()
Br(r)dr ) ds

> B = llullg-
We have thus shown that ||Su|ly > |lul|¢ for v € C N OQg.

Finally, it remains to prove that ||Sull4 < ||u||s for v € CNOQ,. Let
u € C'NO0Qy. Then, [Jul|ly = a. Applying Hélder’s inequality, we get
for ¢ € [0, 1],

|Siu(t)] = ‘/1 9i(t,s)H (s, u(s)) ds

<lgi(t,)lplH(,u())le = e H( ul)le-

(4.19)
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Hence, using (4.4) (when r = «) and (3.18) in (4.19), we find

[Siulp < lgils [H(u())le

o0 (o)
< |Qi|¢{|na,i|Q+Ka,i Q" 1< }
Q

|ql¢'{|"7az|Q +Km<1 +/01¢( f)) ds)}.

Once again, from Lemma 9.2 in [13] we have

(4.21) /01 ¢<“"{is)> ds < |“;‘¢ <1

Substituting (4.21) into (4.20) immediately leads to

< laily

(4.20)

N

IN

|Siulp < max g;lol([a,lo +2KaR), L<i<mn,
SJsn
which yields, noting (4.10),
1Sully < max |gjlel(Ina.jlQ +2KajR) < o = [|ully.

Thus, we have proved that ||Sul|¢ < [Jul|¢ for uw € C N OQ,.
We conclude by Theorem 2.1 that S has a fixed point

u*eldn ( max{a, ﬁ}\Qmm{a,B})

Hence, u* is of constant sign and satisfies

min{a, 8} < [|u||y < max{a, 5}

and i . )
u; (t) > v(t)[[u*ly = v(t) min{c, B},
ae. t€[0,1], 1<i<n.

The proof is complete. ]
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Remark 4.2. In (4.10) if we have strict inequality instead, i.e.,

there exists a > 0 such that |g;|¢l(|7a,ilQ + 2Ka:R) <

(4.10) ]
for each 1 <i <n,

then from the latter part of the proof of Theorem 4.1 we see that a fixed
point u* of S must satisfy ||u*|| # «. Hence, with (4.10) replaced by
(4.10)’, the conclusion of Theorem 4.1 becomes: (1.2) has a constant-
sign solution u* € [(L4([0, 1], RV)R)™ such that

(a) if @ < B, then o < |[u*||4 < B and for each 1 < ¢ < n,
Ou}(t) > v(t)a, almost everywhere t € [0, 1];
(b) if 8 < a, then f < ||u*|l¢ < a and for each 1 < i < n,

Ouf(t) > ~v(t)B, almost everywhere t € [0, 1].

Remark 4.3. Of course (4.4) can be replaced by (3.24) with f; replaced
by H and My replaced by max{a, 5}.

The next result gives the existence of two solutions in (L4 ([0, 1],RY)™.

Theorem 4.2. Let 8 € {1,—1} be fized, and let P and Q be
complementary N -functions. Suppose (3.10), (3.11), (4.3)—(4.9) and
(4.10)" hold with o < B. Then, (1.2) has (at least) two solutions
ul,u? € (Ly([0,1],RN))™ such that

0 < [lully <a<|u’lly<B and
Ou?(t) > y(t)a, a.e. t€[0,1], 1 <i<n.

Moreover, u? is of constant sign.

Proof. The existence of u! follows from Theorem 3.3 (let My = a in
the proof), while that of u? is guaranteed by Theorem 4.1 (see Remark
4.2). O

In Theorem 4.2 it is possible to have |[u'|; = 0. The next result
guarantees the existence of two nontrivial constant-sign solutions.

Theorem 4.3. Let 8 € {1,—1} be fized, and let P and Q be
complementary N -functions. Suppose (3.10), (3.11), (4.3)—(4.10) and
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also (4.9) |ﬁ:E hold, where 0 < 3 < a < . Then, (1.2) has (at least)
two constant-sign solutions ul,u® € (Ly([0,1],RN))" such that

0<B<lutllg <a<|u?llsg <B
and

gul(t) > v(t)B, 6ul(t) >y, ae te[0,1], 1<i<n.

Proof. This follows from Theorem 4.1. u]

Finally, we give the existence of multiple solutions of (1.2) in
(L¢'([07 l]aRN))n

Theorem 4.4. Let 8 € {1,—1} be fized, and let P and Q be
complementary N -functions. Suppose (3.10), (3.11) and (4.3)—(4.8)
hold. Let (4.9) be satisfied for B = B¢, £ =1,2,... ,m.

(a) Let (4.10) be satisfied for a = ay, £ =1,2,... k.

) Ifm=k+1and0< B <a; <--- < B < ap < Brt1, then (1.2)
has (at least) 2k constant-sign solutions u', ... ,u?* € (L4([0,1],RN))"
such that

0< B <lullly <ar < lu?ly <o <oor < < July < B

(i) fm=kand 0 < B < a1 < -+ < B < ay, then (1.2) has (at
least) 2k — 1 constant-sign solutions u',... ,u* =1 € (L4([0,1],RN))"
such that

0<fr < [lu'lls <on <lu?llp < Bz <o < Br < ™ Hlp < o

(b) Let (4.10)" be satisfied for oo = a1, and let (4.10) be satisfied for
a=ap, L=2,... k.
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) Ifk=m+1land0<a; < B < < am < Pm < &my1, then
(1.2) has (at least) 2m + 1 solutions u®,... ,u®™ € (L4([0,1],RN))"
such that

0 < lellg < on < Jlutllg < By < [lullg < @z < -
< B < 1™ [ls < Qs

Moreover, u', ... ,u®>™ are of constant sign.

(i) Ifk=mand 0 < a1 < By < -+ < ag < B, then (1.2) has (at
least) 2k solutions u®, ..., u?*=1 € (L4([0,1], RN))" such that

0 < [u’lls < or < lutlly <1 < [lu?fls <02 <
< ag < [[u* Mg < B

2k—1

Moreover, u',... ,u are of constant sign.

Proof. In (a), we just apply Theorem 4.3 repeatedly. In (b),
Theorem 3.3 is used to obtain the existence of u® € (L,([0,1],RY))"
with 0 < ||u°]] < ai. The results then follow by repeated use of
Theorem 4.3. O

Remark 4.4. If (4.10) is replaced by (4.10)" in Theorems 4.3 and
4.4, then noting Remark 4.2 those inequalities involving as in the
conclusions must be strict.

5. Semi-positone (semi-bounded) case of (1.2). In Section 4,
the nonlinearity H considered is ‘nonnegative’ in the sense of condition
(4.5). We shall now tackle the ‘semi-positone’ (semi-bounded) case,
i.e., when 0H can take negative values.

Our first result gives the existence of a constant-sign solution in
(L¢([07 l]a RN))n

Theorem 5.1. Let 8 € {1,—1} be fized, and let P and Q be
complementary N -functions. Suppose (3.10), (3.11), (4.3), (4.7) and
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(4.8) hold. Moreover, assume

there exists K € (0,00)N such that 0H (t,u) + K > p(u)
for a.e. t€10,1], u € A,

((0,00)M)"  ifo =1,

((—00,00M)" ifo=—1,

p:A—[0,00)N is continuous, and if

0 <0z <0u; <0y 1<j5<n,
then p(ut,... ,&,... ,up) < P(UL, ... Ujyen. ,Up)

< p(Uty e Yyenr yUn),

where A = {

(5.2) /01 b(s)K ds < o0,

OH(t,u) + K < 9(u) for a.e. t €[0,1], u € A,
where ¢ : A — [0,00)N is continuous, and if
(5.3) 0<fz<fu; <Oy, 1<j<n,
then (u1,... @y un) < P(Ut,y.nn, Ujy et Up)
SY(ULy e 3 Yyenn yUn),

(5.4)
{ there ezists T € C[0,00) such that for u € (Lg([0,1],RM))",
[Y(u)le < T([lullg),

(5.5)
there exists 8 > (|a|y/M) fol b(s)K ds > 0 such that

¢! <§f01 ¢<Ma(s) fol b(T)p(On(T),0n(T), ..., 0n(T)) dT) ds) > B3,
where 1(7) = a(7) [(MB/lals) — [, b(s)K ds] ,

of course we also assume the above integral exists,

(5.6)
there exists o > (|a|g/M) fol b(s)K ds > 0 such that
|gil - T(@) < & for each 1 <i < n, where q;(t) = |gi(t,")|p
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and

(5.7)
let &(t) = Hfol gi(t,s)K ds, 1 <i<n and
for each r >0 and 1 < i <n, there exists n,; € Lg([0,1],R)
and K,.; >0
such that |H(t,u — &) + 0K| < n,i(t) + K,; Q7" (¢ (u; — & /7))
for a.e. t €10,1] and every u € (RN)™.

Then, (1.2) has a constant-sign solution u* € (L4([0,1],RV))™ such
that for 1 <i <mn,

Ou;(t) >0, tel0,1] and

(5.8) Oui(t) >0, tel={te[0,1]]a(t) > 0}.
Moreover,
(5.9) min{a, B} — [[€lly < [lu*[lg < max{a, B} + [I€]lo-

Proof. To show that (1.2) has a constant-sign solution, we consider
the system
(5.10)

Z/i(t)Z/Ogi(t,S)H*(S,yl(s)—&(s),yz(s)—fz(s)a---,yn(s)—fn(s))ds,
ae. t€[0,1], 1<i<n

where for each 1 <i <mn,

&(t) —9/Olgi(t,s)de, te o]

and

H*(t,v1,v2,...,v,) = H(t,v1,02,... ,v,) + 0K,

5.11
( ) ifv; >0, 1<j5<n.

We shall show that system (5.10) has a constant-sign solution y* €
(Ly([0, 1], RN))" satisfying

(5.12) Oyr(t) > 0&(t), te0,1], 1<i<n.
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It is then clear that u* = y*— £ = (y7 — &1,us — &a,- .y — &p) s
a constant-sign solution of (1.2). Moreover, v* fulfills (5.8) since for
tel,

Oy; (

7

t) > 0(t) /Ma s)Kds>0, 1<i<n

(use (4.7)). Note that & € (Ly([0,1],RN))™, since in view of (4.7) and
(5.2) we have

1<i<n

1
el = max [&l < / icds| =lale- [ o)icds < oo
0

¢

Thus, u* = y*—£ is a constant-sign solution of (1.2) in (L4([0, 1], RY))".

Without loss of generality, assume that 8 > «. To proceed, we
introduce the cone C

(5.13)
C = {y € (L¢([07 1],RN))n ‘ for each 1 <4 <n, y;(t) > v(t)||yll4

for a.e. t € [0, 1]}

where (1) = M)

/lals). Moreover, we define open subsets €, and
Qg of (Ly([0,1 s

Q, = {ye L,([0, 1], RN))" ‘||y||¢<oz}

and
o= {v e (La(0,1,RY)" | llylls < 8}

Let the operator 7' : C N (25\Q4) — (L4 ([0, 1], RY))" be defined by
(514) Ty(t) = (le(t)a sz(t), T 7Tny(t)) , ae te [07 1]

where
(5.15)

1
Ta(®) = [ ot )H (5,y(s) ~ € ds, ne. t€(0,1), 1<i <.
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Clearly, a fixed point of the operator T is a solution of system (5.10).
Indeed, a fixed point of T’ obtained in C will be a constant-sign solution
of system (5.10).

First, we shall show that 7" is well defined. Let y € C N (Q5\Qa).
Then, o < ||y|l¢ < B. Using (4.7), we obtain for t € [0,1]and 1 < ¢ < n,

(5.16)  6lyi(t) — &:(6)] = Oui(t) - / gi(t, $)K ds

> 5(@)lalle — | " a(t)b(s) K ds
— a(t) [M - /0 b ds].

alg

Since ||y[|4 > a, it follows that

o) ~ 0] > at) 122 - [ oyrcas] >

te0,1, 1<i<n

(use (5.6)), or

(5.17) () —E() €A, te o]

Hence, noting (5.11) we have

(G.18)  H'(Ly(t) — €0) = H(ty(t) — €0) + 0K, te0,1].

Also, since 6¢; > 0, it is obvious that

(519) () — &) <on(), e 1, 1<i<n.

Now, we apply (5.18), (5.19) and (5.3) to get

(5.20)

T0(0) = [ 0t )0 es0(5) — E(9) + K s

< / gi(t, syp(y(s) — &(s)) ds

1
< [ st ds, tep) 1<i<n.
0
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By Lemma 16.3(a) of [13] (with M2 = ¢, Ny = P, M; = @), we have

| " gi(t,5)ols) ds

<lailg - [vlg, 1<i<n.
b

Therefore, using the above inequality and (5.4) leads to

1
| Tl < \ / it (N |
< lails - [WWle < laily - T(llylly) <00, 1<i<n,

This shows that T;y € Lg([0,1],RY) for each 1 <

)
Ty € (Lg([O, 1],RN))". Hence, T : C'N (ﬁg\ﬂa) — (Lg([0, 1],RN))"
is well defined.

Next, we claim that 7' : C' N (Q5\Qa) — (Lg([0,1],RY))" is con-
tinuous and completely continuous. We observe that the operator T;,
1 < ¢ < n, can be written as

(5.21

< n, ie.,

(5.22) T, — AF*,
where F* : C N (Q5\Q) — RY is defined by
(5.23) Fry(t) = H*(t,y(t) — £()), t€[0,1]

and A; : RV — RY is given by (3.5). As in the proof of Theorem 3.2,
we can show that T;, 1 < ¢ < n, is continuous and completely
continuous, and hence so is 7T'.

Now, we shall show that 7" maps C N (25\Q4
1,R

C N (25\Q24). We already have Ty € (Ly([0,
of (5.20), (5.1) and (4.7), it follows that

into C. Let y €

)
N))m. Next, in view

0T y(t) < / a(t)b(s)[0H (s,y(s) — £(s)) + K] ds,

ae. t€[0,1], 1<i<n

(5.24)

which leads to

1
Tuyls < lals / b(s)[0H (s,y(s) — £(s)) + K]ds, 1<i<n.
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Hence, it follows that
1

(5:25) [Tyllo = max [Touly < laly [ b(s)[6H (5,9(s) —€()+ K] d.

Also, from (5.20), (5.1) and (4.7) we obtain

1
OTiy(t) = M [ a(Ob(s)0H(s,y(s) - £(5)) + K] 20,
(5.26) o
ae. te[0,1], 1<i<n.

Substituting (5.25) into (5.26) yields

T

6T(t) 2 Ma(t) 1 —2OITyll, e te 01 1< <0,

ale

We have proved that T : C' N (Q5\Q4) — C.

Next, we shall verify that | Ty|ls > ||ylle for y € C N OQg. Let
y € CN0OQg. Then, |ly|lp = B. From (5.16) and (5.5), we have

1
Ol (1) — &0 = alt) [M - [ ds]

laly

(5.27) _ a(t)[Mﬁ _ /01 b(s)de]

lale
=n(t)>0, tel0,1], 1<i<n.

Let 1 < j < n be fixed. Noting (5.20), (5.1), (4.7), (5.27) and (5.1), we
find

(5.28) 1
0T;y(t) = / gi(t, $)[OH (5, y(s) — £(s)) + K] ds

> / Ma(t)b(s)(y(s) — £(s)) ds

> Ma(t) /0 b(s)p(0n(s), On(s), . .., Om(s)) ds > 0, t € [0, 1].

Since ¢(z) is increasing for z > 0, we have, in view of (5.28),

1
(5.29) /0 d(0T;y(s)) ds

- | K (Ma<s> / b(r)p(Bn(r),Bn(r). .. On(r)) df) ds.
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Now, Lemma 9.2 in [13] provides

1
0T;y(s) Tjyle
(5.30) / ¢< J ) ds < <1.
o\ [ITylls 1Tyllg

On the other hand, using (4.8) gives

0T;y(s d(0T;y(s
5.31 J >§ | =L
(5.31) / ¢< ITyls ) / ||Ty\|¢

A combination of (5.30) and (5.31) yields

P(0T;y(s
5/ I ds < 1
IITyIIqs

or, together with (5.28),
o([ITyllg)
> 5 / $(OTy(s)) ds
01 1
> 5/0 1) (Ma(s)/o b(T)p(On(r),0n(T),...,0n(T)) d7'> ds.

Hence, noting (5.5) we get

Iyl 07 (5 [ 1 o(ae) [ b )p(6n(r). (),

. ,07](7'))d7'> ds> > B = |lylle-

We have thus shown that || Tyl > ||y||¢ for y € C' N 0OQg.

We shall now prove that ||Ty|¢ < |lyll¢ for y € C N OQy. Let
y € CNOQy. Then, ||y||s = . From (5.21) and (5.6), we find

Tyl < lailg - T(llylle) = lails - T(a) <o, 1<i<mn,

which implies
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ITylle < a=llylls-
Hence, || Ty||lo < ||lyllp for y € C N OQ,.

_We conclude by Theorem 2.1 that T" has a fixed point y* € C'N
(25\Q). Hence, y* is of constant sign and o < ||y*||, < B. Since
u* = y* — ¢, we obtain (5.9).

It remains to show that y* satisfies (5.12). This is clear since from
(5.6) and (4.7), we get for t € [0,1] and 1 < i < m,
0y; (t) Z v (D)lly*llo = v(H)ex

1
> (1) e [ bis) ¢

The proof is complete. |

Remark 5.1. A remark similar to Remark 4.3 applies here in relation
to (5.7).

Our next result guarantees the existence of two constant-sign solu-
tions in (L4([0, 1], RN))™.

Theorem 5.2. Let 8 € {1,—1} be fized, and let P and Q be
complementary N -functions. Suppose (3.10), (3.11), (4.3), (4.7), (4.8),
(5.1)—(5.7) and also (5'5)|ﬁ:5 hold, where 0 < B < oo < 8. Then, (1.2)

has (at least) two constant-sign solutions u',u® € (L4([0,1],RN))"
such that for k=1,2 and 1 <i < mn,

fuk(t) >0, te[0,1]
and

Ouk(t) >0, tel={te(0,1]]a(t)> 0}

(3
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Moreover,
ut =yl — € and u? = y* - ¢,

where gi(t) = 0‘/‘01 gi(tv S)de; 1<i<n, Z/l, y2 € (L¢([Oa l]vRN))n
are of constant sign and satisfy

0<B<lytlle <a<ly’lls <8
and

0yl (t) > v()B, 60y} (t) > v(t), ae te[0,1], 1<i<n.

Proof. This follows from Theorem 5.1. O

Finally, by applying Theorem 5.1 repeatedly we obtain the existence
of multiple constant-sign solutions of (1.2) in (L,([0, 1], RY))".

Theorem 5.3. Let 8 € {1,—1} be fized, and let P and Q be
complementary N -functions. Suppose (3.10), (3.11), (4.3), (4.7), (4.8),
(5.1)—(5.4) and (5.7) hold. Let (5.5) be satisfied for B = B¢, £ =
1,2,...,m and let (5.6) be satisfied for o = oy, £ =1,2,... k.

@) Ifm=k+1land0< B <oy <- <P <ag <Bri1, then (1.2)
has (at least) 2k constant-sign solutions u', ... ,u?* € (L4([0,1],RN))"
such that for j=1,2,... 2k and 1 < i <n,

oul(t) >0, tel0,1]
and

gui(t) >0, tel={te(0,1]]a(t) >0}

(2

Moreover, ' ‘
u]:yj_é.’ 1§]§2ka

where &(t) = 0 [ gi(t,s)K ds, 1 <i <n, 3 € (Ly([0,1],RN))" is of
constant sign and satisfies

0< B <|lytlls <ar <|[g2llg < B2 < - < ar < |y**lg < Bt
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(b)) Ifm=kand 0 < 1 < a1 < -+ < B < a, then (1.2) has (at
least) 2k — 1 constant-sign solutions u',... ,u* =1 € (L4([0,1],RN))"
such that for j=1,2,... 2k -1 and 1 <i <mn,

oul(t) >0, tel0,1]
and

Oul(t) >0, tel={tel0,1]]a(t)> 0}
Moreover, ' '
w=9y —¢ 1<j<2k-1

where &;(t) = 0f0 gi(t,s)Kds, 1 <i<mn, yl € (Lg([0,1],RN))" is of
constant sign and satisfies

0<B <|ly'llsg <ar <[[¥2llp < B2 < < B < l¥*F My <
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