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INTEGRAL EQUATIONS OF THE SECOND KIND 
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ABSTRACT. The solution of the Volterra integral equation 
with degenerate kernel 

pt n 

y(t) = g(t)+ ^2ai(t)bi(s)y{s)dsi t > 0 , 

is bounded provided that g and Y^ laiWI a r e bounded, 
and bj,j = 1 ,2 , . . . ,n are absolutely integrable. 

It is shown that under the same hypotheses this property 
is inherited by the numerical solution resulting from applying 
exact collocation methods to this equation. 

1. Introduction. The purpose of this paper is to investigate 
stability properties of exact collocation methods for Volterra integral 
equations (VIEs) of the second kind 

(1) y{t) = g(t) + / k(t, s, y(s)) ds, t e [0, T], 
Jo 

where the functions g and k are continuous. We denote by Y the unique 
solution of this equation. 

Consider the partition 0 — to < t\ < • • • < tjy — T of the 
interval [0,T], and put hi — t^+i — U, ao = [/o^i]?^ = (U,ti+i],i — 
1, 2 , . . . , TV - 1, ZN = {U : i = 1,2,..., TV}. Define also the set X of 
collocation points by 

where Xi = {Uj := tt + Cjhi, 0 < c\ < C2 < • • • < cm. < 1}. Here, 
Cj,j — 1, 2 , . . . , m, are given collocation parameters. 
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Finally, for given integers m > 0 and d > — 1 define the space of 
polynomial splines of degree m and continuity class d by 

S<? :={u:ux :=u\ai G 7rm, i = 0 , 1 , . . . , N - 1, 

u(£1(u) = u?){ti)i j = o,i,...,d}. 

Here, 7rm denotes the space of polynomials of degree less than or equal 
to m and u\ai stands for the restriction of the function u to the interval 
(Ti. 

The exact collocation method for VIEs approximates the solution Y 

of (1) by a function u G S^-i defined on the interval <x; by 

u(tij) = g{Uj) + / k(Uj,s, u(s)) ds 
Jo 

(2) + / k(Uj,s,u(s))ds, j = l ,2 , . . . , r a , 

m 

u(t) = ̂ Tu(ti,k)LÌ{t)ì t e er,, 
fc=i 

i = 0 , 1 , . . . , TV — 1, where L\(t) are Lagrange fundamental polynomials 
for the collocation points tij 

L1-(*) = I I T ^ - , fc = l,2,...,m. 

Observe that if ci = 0 and cm = 1, then u G S^-i- It is known that 
if g and /c are of class Cp then the method (2) is convergent to Y and 
the order of convergence is: 

I IV_„ | . _ / 0 ( f c p ) i f l < P < m 
11 No° \ 0 ( / i m ) i f p > m 

where ft := max?:/i?:, and HF-^Hoo :=sup{|F(t) - u(t)\ : £ G [0,T]}. 

A number of superconvergence results have also been obtained for 
(2); see [3] or [4] for a survey of results in this area. For example, if 
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the collocation parameters {CJ} are the Radau II points for (0,1], then 
in a sufficiently smooth situation, 

max{\Y(U) - u(U)\ : t% G ZN} = 0 ( / i 2 m - 1 ) , h - 0; 

and if {CJ} are the Lobatto points for [0,1], then 

m a x { | y ( ^ ) - u(U)\ : U G ZN} = 0( / i 2 r n~ 2) , h -> 0. 

However, contrary to the case of ordinary differential equations, there 
is no superconvergence if {CJ} are the Gauss points for (0,1). Refer to 
[3] for an explanation of this phenomenon. 

The purpose of this paper is to investigate stability properties of (2) 
with respect to the test equation with degenerate kernel 

pt n 

(3) y{t)=g(t)+ y^al{t)bl(s)y(s)ds, t > 0, 

where g, â  and bi are always assumed to be continuous. 

The importance of this equation in testing stability properties of 
numerical methods for VIEs follows from the fact tha t degenerate 
kernels are dense in the space of all continuous kernels k(t,s), see [4] 
for the discussion of this topic. 

Application of numerical method for VIEs to the equation (3) lead 
to recurrence relations with variable coefficients which are, in general, 
difficult to investigate. Therefore, it is not surprising tha t stability 
results with respect to (3) obtained up to date are of local nature. 
They are based, in principle, on "freezing" the variable coefficients in 
these recursions. For example, van der Houwen and Wolkenfelt [7] have 
studied local stability properties of Volterra linear multistep methods 
for (1). Similar results have been obtained by Brunner and van der 
Houwen [4] for indirect linear multistep methods. Crisci et. al. [5] have 
formulated local stability conditions for exact collocation methods (3). 
Refer also to [1] and [6] for related results. 

In this paper, using a completely different approach from that given 
in the above papers, we have arrived at global stability conditions for 
the method (2) with respect to the test equation (3). 
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The essence of the result is the following: assuming that g and 
S r = i la*WI a r e bounded and bi,i — l , 2 , . . . , n , are absolutely inte­
gra te , the solution Y of (3) is bounded (see §2), and it has been 
proved that every exact collocation method is stable, in the sense that, 
under the same hypotheses on the equation (3), the numerical solution 
inherits the property of boundedness (see §3). 

2. Boundedness of solutions of the integral equation with 
degenerate kernel. In this section we will prove the following result. 

THEOREM 1. Assume that g and YH=\ K'(0I are bounded in [0, oo) 
and that bi £ ^[O, oo), i.e. J0 \bi(s)\ ds < oo,i = 1, 2 , . . . , n. Then the 
solution Y of (3) is also bounded. 

PROOF. It could be proved that the above hypotheses imply those of 
the theorem 2.1 of [2], concerning the uniform stability of (3), choosing 
as logarithmic norm /ioo. The following direct proof is more suitable 
for our purposes, as it gives hints for the analogous proof in the discrete 
case. 

Define b(t) := maxj|òj(t)| and denote by A, B, and G constants such 
that 

n /»OO 

ll0l|oo<G, y > i ( * ) | < A * > 0 , / b(s)ds<B. 

Putting 

£i{t)= / bl(s)y(s)ds, z = l , 2 , . . . n , 
Jo 

the equation (3) can be written in the form 

n 

i=l 

where the functions &(£) are solutions of the system of differential 
equations 

n 

£(t) = '$2ak(t)bi(t)Çk(t) + bi(t)g(t), 
fe=i 

6(0) = 0. 
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Define £(£) := maxj|£j(£)|. Then, integrating the above system of 
differential equations, it follows that 

16(01 < / y2\ak(s)\b(S)t;(S)ds + BG, 
Jo fc=i 

and since the right hand side is independent of i then 

L / b(8)Ç(* 
JO 

£(t) <A / b(s)£(s)ds + BG. 
Jo 

The application of the Gronwall's inequality to this relation yields 

£(t) < BGexp^A f b(s)ds^ t > 0. 

But b e L^O.oo), therefore H^U < BGexp(AB) and H^Hoo < 
G(l + AB exp(AB)) which concludes the proof. D 

3. Stability analysis of the exact collocation methods. The 
application of the method (2) to the test equation (3) leads to: 

v>i(U,j)=g(Uj) + y2al(tij) / bi(s)u(s)ds 

+ Y2ai(ttiJ) / bi(s)ui(s)ds j = l , 2 , . . . , r a 
i=i Jt* 

m 

Mt) = ^Ui{U,k)Ll
k(t) tea,, z = 0 , 1 , . . . 

k=l 

Put 
zj(t)= / bj(s)u(s)ds, j = l , 2 , . . . , n . 

Jo 
It follows that 

n 
ui(tij) = g{Uj) + ^2<ii(ti,j)zi(ti) 

i=i 

k=\ 1=1 Jti 
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(5) Zj{U+l) = Z. 
™ / rti+i \ 

•AU) + z2( bi(a)LU*) d8Jui(u,k) 

Define the matrices 

*j,k 

B * = ß l 
i= i , fe=i 

and put 

>J,k 
j,k=l 

Ìk=£ + 1bj(8)LÌ(8)d8 

r L i , j 

U = J2ai^) / bi(s)Ll(s)ds, 
1=1 Jfi 

j = h fc=l 

^ + 1 = [Zi(ti + i), Z2(U + i), . . . , Z n(^+l)] » 

9i = [^ ,1 )^ (^ ,2 ) , • • • ,0(*i,m)]T. 

Then the relations (4) and (5) can be written in the following vector 
form: 

(6) 

(7) 

tti+i = A1 Zi + SlUi+i + pi, 

^i+i = zi + B w«+i 

z = 0,1, Deriving i^+ 1 from the first relation and substituting in 
the second one, with easy algebraic manipulations the above relation 
can be rewritten in the form: 

(8) ui+1 = (Im - Si)~1AiZi + (Im - S*)" 1 ^ 

(9) zw = (In + B*(Im - S*)"1 A*)* + B*(Im - . S * ) " 1 ^ , 

i = 0 , 1 , . . . , where I n stands for n-dimensional identity matrix. 

This recurrence equation was obtained before in [5]. We implicitly 
assumed that the collocation equations (6), (7) have a solution, that is 
det(Im — S7) ^ 0. This is surely true for sufficiently small h > 0, since 
from the definition of the elements of Sl it follows: 

s)k = 0(h). 
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Now consider the collocation approximation on the knots of the positive 
real line [0, oo) ti — ihi, where ti —> oo as i —» oo (e.g. hi — h for every 

We have the following discrete analogue of Theorem 1. 

THEOREM 2. Assume that g and X]/c=i lafcWI are bounded in 
[0,oo); 6fc G £*[(), 00), fc = l , . . . , n . Then every exact collocation 
method is stable. 

PROOF. AS stated in the introduction, in order to prove the stability 
of the methods, we show that every solution of the recurrence relations 
(8) and (9) is bounded. 

First investigate the relation (8). We have 

(10) Zi+i = MiZx +uji, 

where 

The solution of (10) is given by 

i— 1 i— 1 i— 1 
Zi=n ^-i-^^o+^2 n M*+/*-"^' 

i — 0 , 1 , . . . , rL= i : = 1? Sï/=i :== 0, and it follows that 

i—1 i — 1 i — 1 

(H) ĤHoo < n i i M - i i - i i ^ i i - + z n nM-iuiKiioo. 
To estimate n i=o 11^^I loo observe that 

IIMiiu < i + HA'iUHB'iuiKi™ - s 'r1!!», 
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and 
n 

HA Îloo = m a x { ^ | a M ( ^ ) | : v = 1 ,2 , . . . ,m} < A, 

m -ti + i 

||B2||oo = maxj J2 / |M*)l l4(s) l ^ : * = 1,2,..., n j 

< Qmmax< / |ò^(s)|ds : i /= 1,2,... ,n > 

< Qm / &(s) ds. 

Here, A and ò(s) are defined as in Section 2 and 

m 

Q m : = s u p { ^ | ^ ( s ) | : s e [ 0 , l ] } , 
M = I 

where l^s) are Lagrange fundamental polynomials with respect to 
{cj}. We have also 

||S*||oo = m a x | ^ | a J - ( ^ 1 / ) | / ^ ( s ) ! ] P |L^(s)| ds : ^ = 1,2,.. . r a j 

< AQm J b(s) ds < AQm I b(s) ds. 
Jti iti 

Since bß G L1 [0, 00) for fi — 1,2 . . . , n, it follows that b e L1 [0, 00) and 
I|SZI|oo —• 0 as z —> 00. 

Therefore, there exists AT such that ||S*||oo < 1 for i > N and 

for some constant P independent of 2. Since, if the method is applicable, 
det (Im — S2) ^ 0,i > 0, we can assume without loss of generality that 
| |(Im - S2) - 1!!^ < P for any 2 > 0. Consequently, 

2 - 1 

ni iM, iu<n( i + j 4 p i i B " i i~ ) ' ^ ° -
i/=0 v=0 
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But 

^IIB"!!«, <Qm]P / b(s)ds<BQm, 

hence the infinite product n^Lo(l + ^4^P||B^||oo) is convergent. There­
fore, there exists a constant C independent of i such that 

i-l 

ni i M - i ioo<c, z=o,i , . . . 
In view of (11) we obtain 

i-l 

Halloo < C ( | | 2 ; o | | o o + 5 Z H a l l o o ) 

< c ( | | ^ o | | o o + G P B Q m ) :=£>, 

which proves that the sequence {2 i}^ 0 is bounded. Taking into account 
the relation (8) we have 

Iklloo <P(AD + G), 

and in view of the definition of u(t) for t G di we obtain |M|oo < 
QmP(AD + G). This completes the proof. G 
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