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INTEGRAL EQUATIONS FOR TRANSMISSION 
PROBLEMS IN LINEAR ELASTICITY 

M. COSTABEL AND E.P. STEPHAN 

ABSTRACT. The scattering of elastic waves by a penetra­
ble homogeneous object is described by a system of integral 
equations for the field and its traction on the boundary of 
the scatterer. The system contains the operators of the single 
and double layer potentials, of the traction of the single layer 
potential, and of .the traction of the double layer potential. 
It is a strongly elliptic system of pseudodifferential equations. 
Therefore every Galerkin scheme for its approximate solution 
is convergent. For Lipschitz boundaries we show strong el­
lipticity of the system of boundary integral operators. This 
implies existence and uniqueness of the solution and quasiop­
timal error estimates for its Galerkin solutions. 

1. Introduction. A classical tool for the analysis of transmission 
problems is the reduction to boundary integral equations (see [11]). 
The property of strong ellipticity of boundary integral equations is 
known to be useful in several respects: It yields existence proofs as 
well as convergence results for approximate solutions. In the case 
of boundary value problems, this strong ellipticity has been analyzed 
extensively (see [3, 7, 12, 17] and the literature quoted there). It 
turned out that there exist methods for constructing strongly elliptic 
boundary integral equations for general strongly elliptic boundary 
value problems and even for non-smooth (Lipschitz) boundaries in 
the case of second order systems. For transmission problems, in 
[4] the case of the Helmholtz equation was analyzed and a proof 
for strong ellipticity of the boundary integral equations on smooth 
boundaries and on plane polygonal boundaries was given. In the 
paper [5], the scattering of electromagnetic waves was studied and a 
general principle was found that allows proof of strong ellipticity for 
the system of integral equations which is obtained by application of 
the "direct method" to transmission problems. This principle yields 
strongly elliptic boundary integral equations for general combinations 
of boundary and transmission conditions [13]. 
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Here we apply this principle to the equations of time-harmonic elas-
todynamics and show that it works in the general setting of Lipschitz 
boundaries. We consider solutions of the transmission problem with 
locally finite energy and represent them by boundary potentials whose 
densities are the jumps of the displacements and of the tractions across 
the transmission boundary T. These densities are the solution of our 
system of integral equations of the first kind on the boundary manifold. 
This system contains integral operators with weakly singular, strongly 
singular and hypersingular kernels. We prove that this system satisfies 
a Garding inequality in the energy norm, i.e., it defines a bilinear form 
which is positive definite up to a compact perturbation. This is the 
property of strong ellipticity. 

Strong ellipticity implies on one hand that the integral operator is 
Fredholm of index zero. Thus one obtains existence under the assump­
tion that the transmission problem has no eigensolutions. On the other 
hand, it follows that every Galerkin approximation method converges 
quasioptimally in the energy norm [10, 16]. Thus convergence is guar­
anteed for any choice of finite dimensional subspaces of the Sobolev 
spaces jFf1/2(r) for the displacements and of H~1^2(T) for the trac­
tions, respectively, as defined in standard boundary element methods, 
for example the h- ,p- , and h-p versions of boundary elements [15, 17] 
or spectral methods. Our system of boundary integral equations there­
fore provides a constructive solution procedure for the transmission 
problem. 

The same boundary integral operators can be used for screen or 
crack scattering problems [14] and also for the scattering from an 
inhomogeneous body which leads to a coupled finite element/boundary 
element procedure [3, 6]. 

2. Strong ellipticity of the boundary integral equations. 
In the following we present a boundary integral equation method to 
solve the scattering of time-harmonic elastic waves at a homogeneous, 
isotropic scatterer given by a bounded domain Q\ with unbounded 
exterior Q2 = R 3 \Ö i . We assume that the,boundary T = dCl\ of fîi is 
Lipschitz continuous. 

The transmission problem in steady state elastodynamics, under 
consideration here, reads: For given vector fields UQ and to on the 
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boundary F find vector fields Uj in ilj,j = 1,2, satisfying the equations 
of linear elasticity, 

(2.1) PjUj - PjU2Uj = 0 in Qj, j = 1,2, 

and the transmission conditions 

(2.2) ui = U2 + UQ, ti=t2 + t0 on T. 

Here the differential operators Pj are given by 

PjU = —(fijAu + (Xj; + /Xj)graddiv7x). 

Pj > 0 is the density of the medium Qj , and a; > 0 is the frequency 
of the incident wave. U\,u2 and UQ denote the displacement of the 
refracted, scattered and incident wave, respectively. The corresponding 
tractions ti,t2,to are given by tj = Tj(uj)\r, where 

Tj(u) = 2fijdnu + XjU divu + PjU x curl?/, 

with Lamé constants ßj > 0, 3Àj + 2/Xj > 0. Here dnu is the derivative 
with respect to the outer normal n on T. 

In addition to (2.1), (2.2) we need a regularity condition at infinity 
[11] for the displacement vector u2 which we resolve into a sum of 
an irrotational (lamellar) vector uL and a solenoidal vector uT. For 
u2 — u2 and u2 = u\, respectively, we require 

(2.3) | ^ - ik*2u*2 = O ( ^ ) , u*2 = o( l ) , as |x| - oc. 

If u2 = u2 then we take for k2 the longitudinal (dilational) wave number 

k% — ojp2 (\2 + 2p,2)~
1/2, whereas, if ^ — u2 we take the transverse 

(shear) wave number k2 = oJp2 ß2 • 

We are interested in solutions Uj of (2.1), (2.2) which belong to 

H} ( H J ) , i.e., in solutions which have local finite energy. We define 

(2.4) 
Ci = {u\ G Hl(Çt\) : P\U\ = p\uj2u\ in f2i} 

£2 = {^2 £ ffi1 (Ö2) : ^2^2 = P2U2u2 in SÌ2 and u2 satisfies (2.3)} 
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We note that, due to the trace lemma, Uj\r G H1/2(F) for Uj G Cj. 
Further we observe that the corresponding tractions tj are defined in 
the usual way as distributions in i / - 1 / 2 ( r ) via the First Green formula 
(see [2, 9]). 

LEMMA 2.1. Let u G H} (Qj) with suppit compact satisfy PjU G 

Lì (Ùj) and let v G Z/"1(fîj) with bounded support. Then Tju\r G 

H-1'2 (Y) is defined by 

(2.5) / PjU-vdx = {-l)j(TjUìv)-\-^j(uìv) 

with 

$j(u,v)= Yl aihki£ki{u)eih(v)dx. 
Jnj i,h,k,i=i 

Here we have 

aÌhki = ^jàîhôki + Vj(Ôikôhi + ôuShk) 

with 6ih — 1 for i — k and 6^ = 0 for i ^ k. 

The brackets ( •, • ) denote the duality between Hl/2(T) and H-1/2(T) 
which gives 

(f,g) = f-gds 

for smooth vector fields / , # . The bilinear form $j(u,v) represents the 
local displacement work due to the strain tensor 

£ki(u) = -(dkUt + diUk). 

For the transmission problem (2.1), (2.2) there holds the following 
general uniqueness result (see [11; Chapter III, §2.15]). (In Kupradze's 
terminology, we are considering the "basic contact problem for steady 
elastic oscillations.") 
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LEMMA 2.2. The only solution Uj G Cj,j = 1,2, of the homogeneous 
problem corresponding to (2.1)-(2.3) is the trivial solution u\ = 0,?/2 = 
0. 

From (2.5) one obtains, with the symmetry of 3>j (which holds due 
to the symmetry properties of the coefficients a3

ihkl), the Second Green 
formula 

(2.6) / {PjU • v - u • Pjv) dx = {-l)j [ (v'Tj{u)-u-Tj(v))ds. 

This gives, in flj, with the fundamental solution Gj(x,y,uj) of (Pj — 
pjüj2)uj = 0, the Somigliana representation formula for x £ Qji 

(2.7) Uj(x) = (~l)j / {Tj{x,y,u)vj{y) - Gj{x,y,uj)(j)j{y)}ds{y), 

where Vj = Uj^j = TJ(UJ) = tj on T. Here Gj is the 3 x 3 matrix 
function 

with r := \x — y\ and 

Tj{x,y,u>) = Tjty(Gj(x,yJu>))T. 

From the analysis in [2] follows the validity of (2.7) for a Lipschitz 
boundary T. 

LEMMA 2.3. Letuj G Cj. Then the representation formula (2.7) holds 
foruj inQj. For any Vj G H1/2^) and any (j)j G H~l/2(T) the formula 
(2.7) defines a vector field Uj G Cj. 

Taking Cauchy data in (2.7) one finds the relations on T, 
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where the Calderón projector 

( ' c>-{-(-i)w} Ì-(-I)>A;J 

is defined via the boundary integral operators 

Vjv(x) = / Gj(x,y,uj)v(y)ds(y), Ajv(x) = / Tj(x,y,uj)v(y)ds(y), 

(2.10) DjV{x) = -ThX j Tj(x,y,uj)v(y)ds(y), 

A'jv(x)= / Tj(y,x,uj)Tv(y)ds(y). 

We remark that, due to [1, 2], the Calderón projector Cj is well-
defined for boundary data {vj,4>j) belonging to the space Ti = 
/ f 1 / 2 ( r ) x H~l/2{Y). The mapping properties of the Calderón pro­
jector Cj are described as follows. 

LEMMA 2.4. (a) The statements (i) and (ii) on (v,iß) G H are 
equivalent: 

(i) (v,1p)are Cauchy data of some Uj G CJ; 

(a) ( / - C i ) ( ; ) = o. 

(b) The operators Cj are projection operators mapping H onto its 
subspace of Cauchy data of weak solutions in Cj. 

The proof is an immediate consequence of the representation formula 
(2.7) due to Lemma 2.3 and the definition of the Calderón projector 
Ci. 

Thus we can write the transmission problem (2.1), (2.2) in the 
equivalent form 

(2.11) (I-C1)[°})=0 (?>' 
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(2.12) ( J -C 2 ) ( 2 ) = 0 

<-> (2)=(2)-{2 
This is a system of 6 vector equations for 4 vector unknowns. From 

this system we can extract a square subsystem by inserting ( J J from 

(2.13) into (2.12) and subtracting (2.11) from the resulting equation. 
We obtain the boundary integral equation 

(2.14) ^ ( ; ; ) = ( / - c 2 ) ( ; ° o ) ^ A ==*-&. 

We have the following equivalence theorem. 

THEOREM 2.5. Let ( J ° U H = Hl/2{T) x H-^2(T) be given. Then 

there holds 

(i) If Uj G Cj solve the transmission problem (2.1)-(2.3), then 

' v \ I v\ \ ( u\\r 
<J>J-\<t>iJ~\T(Ul\)\rJ

en 

solves the boundary integral equation (2.14). 

(ii) If (l) £H solves (2.14), then, with 

(;:HC0-teH((;)-(:)) 
and Uj defined by (2.7), Uj G Cj solve the problem (2.1)-(2.3). 

PROOF, (i) follows from the derivation of (2.14) above. 

(ii). From the definition of ( ^ J and the projection property of Cj 

follows 
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hence f ^. J are Cauchy data of certain Uj G Cj which are then given 

by the representation formula (2.7). It remains to show that the 
transmission condition (2.2) is satisfied: 

& 1 V 0i 7 \4> J V 0o 7 V 0 7 V 0o 

- " - « i : - * ; - : ) • • 

REMARK. If (") is a solution of the boundary integral equation 
(2.14), then the solution Uj of the transmission problem is given by the 
representation formula (2.7) with (^) as source term, but it does not 
immediately follow that Q ) = ( ^ ) holds. Therefore the uniqueness of 
the transmission problem (Lemma 2.2) does not immediately carry over 
to the boundary integral equations. However, consider the difference 

There holds 
' w 

and 
)="-c'»C) 

(;)-<'-*-">(;)-<'-*>(;)-( ,-a)(2) 
-"-«(CD-te))-

Therefore C\ ( ^ J = 0 = C2 ( ^ ), and this shows that ( ^ J are Cauchy 
data of a homogeneous transmission problem for which the roles of Pi 
and P2 are interchanged: 

) = tóo) = Uto)) on r> 
where Wj G Cj satisfy 

P2W1 = P2U>2W\ on îîi; Pi^2 = PiW2W2 in fÌ2-



TRANSMISSION PROBLEMS 219 

From Lemma 2.2 we infer that w\ — w<i — 0, hence (™) = 0. 
Finally this implies (v, ) = (v} ) and hence also the uniqueness of the 
solution of the integral equation (2.14). Thus, for the uniqueness of the 
latter equation, we need uniqueness for both the original transmission 
problem and the above "adjoint" transmission problem. 

THEOREM 2.6. The operator A is strongly elliptic: There exist 7 > 0 
and a compact operator T :H —• H with 

(2.15) Re /^ + T) ( j ) . ( j ) ) > 7(NlW(r> + IMI2„-.„{r)) 

for all I 0 J E H . Here the brackets denote the natural (anti-) duality 

of H with itself. 

;)-(;)Wr<*+-*>*M;)-(;)6*-
PROOF. We write 

A = Al + A2 with *i = (-l)i{l-Cj) = (~'£> ^ ) -

Since the sum of two strongly elliptic operators is strongly elliptic, it 
suffices to show the strong ellipticity of the operators A\ and A<i. We 
give the proof for A\. Due to density arguments, one needs to show the 
Garding inequality (2.15) only for smooth (t>, </>). Let then Uj, j = 1,2, 
be defined by 

Uj{x) = X(x) I {Ti(x,y)v(y) - Gi(x,î/)0(î/)}d*(y), x £ ilj. 

Here we choose X G C Q ° ( R 3 ) satisfying X = 1 in a neighborhood of Ù\. 
Then, by definition of the Calderón projectors (i.e., the classical jump 
relations for the elastic potentials), the Cauchy data 

Vj := Uj\r and (j)j := T(UJ) 
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satisfy 

(2)-«-»'(s-«-«"OC;)-

By adding and subtracting these two equations, we find 

Thus the bilinear form defined by A\ is given by 

A< ~ u 
; - U i + 

« " • ' ; • ; 

h) + {<h)'\<h) \<h)) 

+(te)'(;:))-((;i)-te)) 
= 2Re (vi(/)i - v2(/>2)ds-\-2ilm (v2&i — vi<f>2)ds. 

Hence 

(2.16) ReUrhYh^^Re J (v^ - v2<f>2)ds. 

Now we need the first Green formulas for Pi in Çï\ and Q.2- This leads 
to 

(2.17) $j(uj,Uj) — Ûj • (Pi - p\uj2)uj dx = ~(-iy / Vj(t>j ds, 

where 

Ï 
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Now P\U\ - p\uu\ — 0 and P\u2 - p\uou2 = f2i where f2 G Co°(^2)-
(/2 = 0 whenever X = 1 or X = 0 holds.) From (2.16) and (2.17) 
together we find 
(2.18) 

Re( Ai 
; ) • ( ; ) 

f _ 
Re{$i (wi ,Wi) + * 2 ( W 2 , M 2 ) - / U 2 ' / 2 < M . 

As the support of f2 is disjoint from T, there is a compact operator T\ 
on tf ^ ( r ) x #-i/2(r) such that 

/ u2
 :f2 dx 

Jn2 

< ( T i 
v\ (v 

<t>)\<t> 

From Korn's inequality and the trace lemma we find that there exist 
compact quadratic forms kj on /f1(fij) and hence a compact operator 
T2 on H = Hl/2(T) x H-^2{T) such that 

* i (« i ,« i ) + $2{u2,u2) > -yi(||«i||j5ri<n1) + ||«2||ir>(na)) 

- fci(ui) - k2(u2) 

> 7ä(lMlffi/a(r) + II^IIH-»/»(D) 

- ( * ( ; ) • ( ; ) ) • 

From (2.18) and (2.19) together we get the desired result: 

Re/(A1+T1 + T2) ( j ) , ( j ) \ > -ft(lMlîn/.(r> + ll*llîr-./.(r))- ° 

By Garding's inequality (2.15) the operator A is a Fredholm operator 
of index zero from H into itself. Therefore, we obtain existence of 
a solution of the integral equation (2.14) as soon as we know its 
uniqueness, and Theorem 2.5 then implies the existence of a solution 
of the transmission problem. But under the assumptions of Lemma 2.2 
the possible solution of the transmission problem is unique. Therefore, 
from the equivalence between the transmission problem (2.1), (2.2) and 
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the integral equation (2.14) stated in Theorem 2.5, follows the existence 
of a unique solution in H of the integral equation. We summarize these 
results as follows. 

COROLLARY 2.7. For given (^°) £ W, there exists exactly one 
solution ( ^ ) E W of the integral equation (2.14) yielding exactly one 
solution u with Uj G Cj of the transmission problem (2.1)-(2.3) via the 
representation formula (2.7). 

As a final remark, we want to emphasize that the system of integral 
equations analyzed in this paper is well suited for practical computa­
tions. Parts of the system, including the most "nonclassical" hypersin-
gular integral operator Z), have already been numerically tested [8]. 
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