A NUMERICAL METHOD FOR A NONLOCAL ELLIPTIC BOUNDARY VALUE PROBLEM

JOHN R. CANNON AND DANIEL J. GALIFFA

Communicated by Charles Groetsch

Dedicated to Professor M.Z. Nashed

Abstract

In 2005 Corrêa and Filho established existence and uniqueness results for the nonlinear PDE: $-\Delta u=$ $\frac{g(x, u)^{\alpha}}{\left(\int_{\Omega} f(x, u)\right)^{\beta}}$, which arises in physical models of thermodynamical equilibrium via Coulomb potential, among others [3]. In this work we discuss a numerical method for a special case of this equation: $-\alpha\left(\int_{0}^{1} u(t) d t\right) u^{\prime \prime}=f(x), \quad 0<x<$ $1, u(0)=a, \quad u(1)=b$. We first consider the existence and uniqueness of the analytic problem using a fixed point argument and the contraction mapping theorem. Next, we evaluate the solution of the numerical problem via a finite difference scheme. From there, the existence and convergence of the approximate solution will be addressed as well as a uniqueness argument, which requires some additional restrictions. Finally, we conclude the work with some numerical examples where an interval-halving technique was implemented.

1. Introduction. At the annual meeting of the American Mathematical Society in Baltimore in January 2003, the first named author above gave a talk at a special session organized by Zuhair Nashed. Part of the talk included an example of a boundary value problem which involved a coefficient that depended upon the integral of the solution over the domain within the differential equation. Namely,

$$
\begin{gather*}
u^{\prime \prime}=\alpha\left(\int_{0}^{\infty} u(t) d t\right) u \tag{1.1}\\
0<x<\infty, \quad u(0)=1, \quad \lim _{x \rightarrow \infty} u(x)=0
\end{gather*}
$$

[^0]where $\alpha=\alpha(q)$ is a positive function defined for $0 \leq q<\infty$. Integrating the solution's formula
\[

$$
\begin{equation*}
u(x)=\exp \{-\sqrt{\alpha(q)} x\} \tag{1.2}
\end{equation*}
$$

\]

leads to the equation

$$
\begin{equation*}
q=\int_{0}^{\infty} u(x) d x=\beta(q) \equiv \frac{1}{\sqrt{\alpha(q)}} \tag{1.3}
\end{equation*}
$$

Clearly, it follows that depending upon $\alpha(q)$ there can exist a unique solution to (1.1), many solutions, or no solutions.
For example, $\beta(q)=\left(1+q^{2}\right)^{-1}, 0 \leq q<\infty$, implies the existence of a unique solution, $\beta(q)=q+\cos \frac{\pi q}{20}, 0 \leq q<\infty$, implies the existence of infinitely many solutions, and $\beta(q)=1+q^{2}, 0 \leq q<\infty$, implies the nonexistence of solutions. Recently, the authors became aware of applications for elliptic partial differential equations involving coefficients depending on the integral of solution or the L^{2} norm of the gradient of the solution over the domain of the solution. For physical applications, see [1]. For some existence and uniqueness results see $[1,2,3]$. The purpose of this paper is to consider a one-dimensional problem similar to that discussed in [3] and to analyze conditions on the coefficient and data, which lead to the existence and uniqueness of the solution, the existence and uniqueness of a numerical approximation, and the convergence of the numerical approximation to the solution.

We shall consider the problem of finding a solution $u=u(x)$ satisfying

$$
\begin{gather*}
-\alpha\left(\int_{0}^{1} u(t) d t\right) u^{\prime \prime}=f(x) \tag{1.4}\\
0<x<1, u(0)=a, u(1)=b
\end{gather*}
$$

where $\alpha=\alpha(q)$ is a positive function of q defined over $-\infty<q<\infty$, $f(x)$ is defined over $0 \leq x \leq 1$, and a and b are real constants. In Section 2, we shall demonstrate the existence of a solution via the fixed point of a nonlinear mapping under various conditions on the data a, b, α, and f. For f sufficiently small we show that the mapping is a contraction yielding unicity of the solution. Section 3 deals with a

Fourier series approach to uniqueness, which serves as a motivation for the existence of the numerical approximation of the nonlinear finite difference scheme derived in Section 4. The existence of the numerical approximation is demonstrated in Section 5 via a fixed point of a nonlinear mapping derived from the finite Fourier representation of the solution of a linear auxillary finite difference scheme of the linear auxillary problem in Section 2. The estimates involved in the existence of the solution to the nonlinear algebraic problem in Section 5 carry over to the analysis of convergence, which is demonstrated in Section 6. Basically, convergence can be guaranteed if f is sufficiently small. In Section 7, we conclude the paper with some examples of the numerical process.
2. Existence. We shall start with the assumption that $\alpha=\alpha(q)$ is a continuous function bounded below by the positive constant α_{0}. If $f \in L^{2}([0,1])$ which is the Hilbert space of square integrable functions with inner product

$$
\begin{equation*}
(\phi, \psi)=\int_{0}^{1} \phi(x) \psi(x) d x \tag{2.1}
\end{equation*}
$$

and norm

$$
\begin{equation*}
\|\phi\|_{0}^{2}=(\phi, \phi), \tag{2.2}
\end{equation*}
$$

then for each q in $-\infty<q<\infty$, the problem

$$
\begin{equation*}
-\alpha(q) u^{\prime \prime}=f(x), \quad 0<x<1, \quad u(0)=a, \quad u(1)=b \tag{2.3}
\end{equation*}
$$

has a unique solution $u=u(x ; q)$ belonging to the Sobolev space $H^{1}([0,1])$ with inner product

$$
\begin{equation*}
(\phi, \psi)_{1}=(\phi, \psi)+\left(\phi^{\prime}, \psi^{\prime}\right) \tag{2.4}
\end{equation*}
$$

which is the closure in the norm

$$
\begin{equation*}
\|\phi\|_{1}^{2}=(\phi, \phi)+\left(\phi^{\prime}, \phi^{\prime}\right) \tag{2.5}
\end{equation*}
$$

of the restrictions of the continuously differentiable functions to $0 \leq x \leq 1$. The function $u=u(x ; q)$ has the form

$$
\begin{equation*}
u=v+\varsigma \tag{2.6}
\end{equation*}
$$

where $\varsigma=a(1-x)+b x$ and $v=v(x ; q) \in H_{0}^{1}([0,1])$ is the solution of the weak formulation

$$
\begin{equation*}
\int_{0}^{1} v^{\prime} \phi^{\prime} d x=\frac{1}{\alpha(q)}(f, \phi), \quad \forall \phi \in H_{0}^{1}([0,1]) \tag{2.7}
\end{equation*}
$$

where $H_{0}^{1}([0,1])$ is the Sobolev space with the inner product and norm of $H^{1}([0,1])$ that results in the closure in the norm of $H^{1}([0,1])$ of the space of continuously differentiable functions with compact support in $0 \leq x \leq 1$. The following inequality is easy to obtain from setting $\phi=v$ in (2.7) and employing Schwarz's lemma:

$$
\begin{equation*}
\int_{0}^{1}\left(v^{\prime}\right)^{2} d x \leq \frac{1}{\alpha(q)}\|f\|_{0}\|v\|_{0} \tag{2.8}
\end{equation*}
$$

Since π^{2} is the smallest eigenvalue for the problem $u^{\prime \prime}+\lambda u=0, u(0)=$ $u(1)=0$, we have

$$
\begin{equation*}
\|v\|_{0}^{2} \leq \frac{1}{\pi^{2}} \int_{0}^{1}\left(v^{\prime}\right)^{2} d x \tag{2.9}
\end{equation*}
$$

whence it follows

$$
\begin{equation*}
\|v\|_{0} \leq \frac{1}{\alpha(q) \pi^{2}}\|f\|_{0} \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{1}\left(v^{\prime}\right)^{2} d x \leq \frac{1}{[\alpha(q) \pi]^{2}}\|f\|_{0}^{2} \tag{2.11}
\end{equation*}
$$

Utilizing the Green's function for the operator $-\frac{d^{2}}{d x^{2}}$ in $[0,1]$ with zero boundary conditions, we have

$$
\begin{equation*}
v(x)=\frac{1}{\alpha(q)} \int_{0}^{1} G(x, t) f(t) d t \tag{2.12}
\end{equation*}
$$

where $G(x, t)=\left\{\begin{array}{l}x(1-t), x \leq t \\ (1-x) t, x \geq t\end{array} \quad\right.$ and $0 \leq x, t \leq 1$, it follows that

$$
\begin{equation*}
\max _{0 \leq x \leq 1}|v(x ; q)| \leq \frac{1}{\alpha(q)}\|f\|_{0} \tag{2.13}
\end{equation*}
$$

In a similar manner, we obtain

$$
\begin{equation*}
\max _{0 \leq x \leq 1}\left|v\left(x ; q_{1}\right)-v\left(x ; q_{2}\right)\right| \leq\|f\|_{0}\left|\frac{1}{\alpha\left(q_{1}\right)}-\frac{1}{\alpha\left(q_{2}\right)}\right| \tag{2.14}
\end{equation*}
$$

We now define the mapping

$$
\begin{equation*}
T(q):=\int_{0}^{1} u(x ; q) d x=\frac{a+b}{2}+\int_{0}^{1} v(x ; q) d x \tag{2.15}
\end{equation*}
$$

From (2.12) and $\alpha(q) \geq \alpha_{0}>0$, we obtain

$$
\begin{equation*}
|T(q)| \leq \frac{1}{2}|a+b|+\frac{1}{\alpha_{0}}\|f\|_{0} \tag{2.16}
\end{equation*}
$$

Next, we see from (2.13) and (2.14) that

$$
\begin{equation*}
\left|T\left(q_{1}\right)-T\left(q_{2}\right)\right| \leq \frac{1}{\alpha_{0}^{2}}\|f\|_{0}\left|\alpha\left(q_{2}\right)-\alpha\left(q_{1}\right)\right| \tag{2.17}
\end{equation*}
$$

Since $\alpha(q)$ is uniformly continuous on the $-C \leq q \leq C$, where

$$
\begin{equation*}
C=\frac{1}{2}|a+b|+\frac{1}{\alpha_{0}}\|f\|_{o} \tag{2.18}
\end{equation*}
$$

it follows that $T(q)$ is uniformly continuous on $-C \leq q \leq C$. Consider the square $-C \leq q, y \leq C$ in the Cartesian plane. Since the graph of $y=T(q)$ is contained in the square and continuously traverses it from $q=-C$ to $q=+C$, it must intersect the diagonal $y=q$ in at least one point $q *$. Hence, there is at least one fixed point $T(q *)=q *$ and at least one solution for (1.4). We summarize the analysis above with the following statement.

Theorem 2.1. If $\alpha(q)$ is a continuous real valued function defined on $-\infty<q<\infty$, which is bounded below by α_{0} and $f(x)$ is square integrable on $0 \leq x \leq 1$, then there exists at least one weak solution $u=u(x) \in H^{1}([0,1])$ that satisfies

$$
\begin{gather*}
-\alpha\left(\int_{0}^{1} u(t) d t\right) u^{\prime \prime}=f(x) \tag{2.19}\\
0<x<1, u(0)=a, u(1)=b
\end{gather*}
$$

where a and b are real numbers and $H^{1}([0,1])$ is the Sobolev space of square integrable functions with square integrable derivatives defined over $0 \leq x \leq 1$.

Proof: See the analysis above.

As a corollary of the argument above, we have the following result.

Theorem 2.2. If $\alpha(q)$ is continuous and continuously differentiable on $-\infty<q<\infty$ such that $\left|\alpha^{\prime}(q)\right|<M$, where M is a positive real number, the remaining assumptions of Theorem 2.1 hold, and if

$$
\begin{equation*}
\frac{M}{\alpha_{0}^{2}}\|f\|_{0}<1 \tag{2.20}
\end{equation*}
$$

then the weak solution $u=u(x)$ of

$$
\begin{gather*}
-\alpha\left(\int_{0}^{1} u(t) d t\right) u^{\prime \prime}=f(x) \tag{2.21}\\
0<x<1, u(0)=a, u(1)=b
\end{gather*}
$$

is unique.

Proof: From (2.16) and (2.18), if follows that the mapping $T(q)$ is a contraction and thus possesses a unique fixed point.

Now we consider the case that $\alpha(q)$ and continuous on $0<q<$ $\infty, \alpha(0)=0$, and $\alpha(q)$ is monotone increasing which requires some
additional assumptions on the data $f(x), a$ and b in order to obtain a lower bound on $\alpha(q)$. Namely, we assume that $f(x)$ is continuous on $0<x<1, f(x)>0$, and f is square integrable over $0 \leq x \leq 1$. Also we assume that a and b are nonnegative and at least one of them is positive. Under the above assumptions for $q>0$, we have a unique classical solution for

$$
\begin{equation*}
-\alpha(q) u^{\prime \prime}=f(x), \quad 0<x<1, \quad u(0)=a, \quad u(1)=b \tag{2.22}
\end{equation*}
$$

Recalling (2.6) with $u=v+\varsigma, \varsigma=a(1-x)+b x$, we see that v is a classical solution of

$$
-\alpha(q) v^{\prime \prime}=f(x), \quad 0<x<1, \quad v(0)=v(1)=0
$$

Thus, $v(x) \geq 0$ via the maximum principle. Otherwise v has a negative minimum at say, $x_{0}, 0<x_{0}<1$, at which $v^{\prime \prime}\left(x_{0}\right) \geq 0$. However, from the differential equation at $x_{0}, v^{\prime \prime}\left(x_{0}\right)=-f\left(x_{0}\right) / \alpha(q)<0$, which is a contradiction. Thus, $u-\varsigma=v(x) \geq 0$ and

$$
\begin{equation*}
T(q)=\int_{0}^{1} u(x, q) d x \geq \int_{0}^{1} \varsigma(x) d x=\frac{a+b}{2} \tag{2.23}
\end{equation*}
$$

From the analysis for (2.8) through (2.14) we have

$$
0<\left(\frac{a+b}{2}\right) \leq T(q) \leq\left(\frac{a+b}{2}\right)+\frac{1}{\alpha_{0}}\|f\|_{0}
$$

where here

$$
\begin{equation*}
\alpha_{0}=\alpha\left(\frac{a+b}{2}\right) . \tag{2.25}
\end{equation*}
$$

Likewise (2.16) holds. As $\alpha(q)$ is uniformly continuous on $0<\left(\frac{a+b}{2}\right) \leq$ $q \leq C$, where C is defined by (2.17), it follows that T is uniformly continuous on $\left(\frac{a+b}{2}\right) \leq q \leq C$ and that from $(2.23), T(q)$ has a fixed point in that interval. We can summarize the above analysis in the following statement.

Theorem 2.3. If $\alpha=\alpha(q)$ is continuous and monotone increasing on $0 \leq q<\infty$ with $\alpha(0) \geq 0, f(x)$ is continuous, square integrable, and $f(x)>0$ on $0<x<1$, and if a and b are nonnegative real numbers with at least one of them positive, then

$$
\begin{equation*}
-\alpha\left(\int_{0}^{1} u(t) d t\right) u^{\prime \prime}=f(x), \quad 0<x<1, u(0)=a, u(1)=b \tag{2.26}
\end{equation*}
$$

has at least one classical solution.

Proof: See the analysis preceding the statement of the theorem and the analysis preceding Theorem 2.1.

As a corollary we have the following result.

Theorem 2.4. If the assumptions of Theorem 2.3 hold and if $\alpha(q)$ is continuously differentiable on $0 \leq q<\infty$ with $\left|\alpha^{\prime}(q)\right|<M$, where M is a positive real number, and if (2.20) holds, then the solution $u(x)$ is unique.

Proof: As for Theorem 2.2, $T(q)$ is a contraction.

Remark: As an example of the contraction inequality (2.20), consider $\alpha=\alpha(q)=(q)^{\frac{1}{n}}$, then $\alpha^{\prime}(q)=\frac{1}{n} q^{\frac{1}{n}-1}$ and (2.20) becomes

$$
\frac{1}{n}\left(\frac{a+b}{2}\right)^{-\frac{n+1}{n}}\|f\|_{0}<1
$$

which may allow a larger f than $\alpha(q)=q^{n}$ for which (2.20) becomes

$$
n\left(\frac{a+b}{2}\right)^{-2 n}\left[\left(\frac{a+b}{2}\right)+\left(\frac{a+b}{2}\right)^{-2 n}\|f\|_{0}\right]^{n-1}\|f\|_{0}<1
$$

3. Another analysis of uniqueness. We provide a Fourier analysis of uniqueness as a motivation of the analysis of the convergence
of a numerical procedure for problem (1.4). Let $u_{i}=u_{i}(x)$ be two solutions of (1.4). Setting $z=u_{1}-u_{2}$ and subtracting the equation for u_{2} from u_{1}, we obtain

$$
\begin{gather*}
z^{\prime \prime}=f(x)\left[\alpha\left(\int_{0}^{1} u_{1}(t) d t\right) \alpha\left(\int_{0}^{1} u_{2}(t) d t\right)\right]^{-1} \alpha^{\prime}(\xi) \int_{0}^{1} z(t) d t \tag{3.1}\\
z(0)=z(1)=0
\end{gather*}
$$

where the number ξ lies between the numbers $\int_{0}^{1} u_{1}(t) d t$ and $\int_{0}^{1} z(t) d t$. Let η denote the number

$$
\begin{equation*}
\left[\alpha\left(\int_{0}^{1} u_{1}(t) d t\right) \alpha\left(\int_{0}^{1} u_{2}(t) d t\right)\right]^{-1} \alpha^{\prime}(\xi) \int_{0}^{1} z(t) d t \tag{3.2}
\end{equation*}
$$

Expanding f in a Fourier sine series we see that

$$
\begin{equation*}
f(x)=\sum_{k=0}^{\infty} c_{n} \sin n \pi x, \quad 0 \leq x \leq 1 \tag{3.3}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{n}=2 \int_{0}^{1} f(x) \sin n \pi x d x, \quad n=1,2, \ldots \tag{3.4}
\end{equation*}
$$

So, it follows from the differential equation and boundary conditions for z that

$$
\begin{equation*}
z(x)=\eta \sum_{k=0}^{\infty}-\frac{c_{n}}{(n \pi)^{2}} \sin n \pi x \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{1} z(x) d x=\eta \sum_{k=0}^{\infty}-\frac{2 c_{2 k+1}}{[(2 k+1) \pi]^{3}} \tag{3.6}
\end{equation*}
$$

From (3.2) we see that

$$
\begin{equation*}
\left[\int_{0}^{1} z(x) d x\right]\left[1+\gamma \sum_{k=0}^{\infty} \frac{c_{2 k+1}}{[(2 k+1) \pi]^{3}}\right]=0 \tag{3.7}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma=2 \alpha^{\prime}(\xi)\left[\alpha\left(\int_{0}^{1} u_{1}(t) d t\right) \alpha\left(\int_{0}^{1} u_{2}(t) d t\right)\right]^{-1} \tag{3.8}
\end{equation*}
$$

Since we have assumed above that $\alpha(q) \geq \alpha_{0}>0$, see Theorem 2.1 or (2.24), and that $\left|\alpha^{\prime}(q)\right| \leq M$, it follows from elementary estimates that

$$
\begin{equation*}
\left|\gamma \sum_{k=0}^{\infty} \frac{c_{2 k+1}}{[(2 k+1) \pi]^{3}}\right| \leq \frac{6 M\|f\|_{0}}{\alpha_{0}^{2} \pi^{3}} \tag{3.9}
\end{equation*}
$$

Hence, from

$$
\begin{equation*}
\frac{6 M\|f\|_{0}}{\alpha_{0}^{2} \pi^{3}}<1 \tag{3.10}
\end{equation*}
$$

we see that

$$
\begin{equation*}
\int_{0}^{1} z(x) d x=0 \tag{3.11}
\end{equation*}
$$

which implies that $z=0, u_{1} \equiv u_{2}$, and uniqueness.
We remark that estimate (2.19) yields a slightly better multiplier of $\|f\|_{0}$ than that of (3.9). However, as mentioned above the Fourier analysis will yield a viable approach for the numerical approximation estimates.
4. A Finite Difference Scheme. Let N denote a postive integer, $h=\frac{1}{N}$, and $x_{i}=\frac{i}{N}, i=0,1,2, \ldots, N$. Denote $u\left(x_{i}\right)$ as u_{i} and note that it is well known [7] that

$$
\begin{equation*}
\Delta_{h}^{2} u_{i}=\frac{u_{i+1}-2 u_{i}+u_{i-1}}{h^{2}}=u^{\prime \prime}\left(x_{i}\right)+O\left(h^{2}\right) \tag{4.1}
\end{equation*}
$$

for u sufficiently smooth and that

$$
\begin{equation*}
Q(\vec{u})=\sum_{i=0}^{N-1} \frac{u_{i+1}+u_{i}}{2} h=\int_{0}^{1} u(t) d t+O\left(h^{2}\right) \tag{4.2}
\end{equation*}
$$

where $O\left(h^{2}\right)$ denotes a quantity bounded by a positive constant times h^{2} and \vec{u} denotes the vector $\left(u_{0}, u_{2}, \ldots, u_{N}\right)$. Consider now the problem (1.4). We have,

$$
\begin{align*}
& {\left[\alpha\left(\int_{0}^{1} u(t) d t\right)\right]^{-1}=[\alpha(Q(\vec{u}))]^{-1}+} {\left[\alpha\left(\int_{0}^{1} u(t) d t\right)\right]^{-1} } \tag{4.3}\\
&-[\alpha(Q(\vec{u}))]^{-1}
\end{align*}
$$

and

$$
\begin{equation*}
\left[\alpha\left(\int_{0}^{1} u(t) d t\right)\right]^{-1}-[\alpha(Q(\vec{u}))]^{-1}=O\left(h^{2}\right) \tag{4.4}
\end{equation*}
$$

where the constant in the $O\left(h^{2}\right)$ depends upon estimates of the term

$$
\begin{equation*}
\alpha^{\prime}(\xi)\left[\alpha\left(\int_{0}^{1} u(t) d t\right) \alpha(Q(\vec{u}))\right]^{-1} u^{\prime \prime} \tag{4.5}
\end{equation*}
$$

Consequently, at the points $x_{i}, i=1, \ldots, N-1$, we have from the differential equation in (1.4)

$$
\begin{align*}
& -\Delta u_{i}=f\left(x_{i}\right)[\alpha(Q(\vec{u}))]+O\left(h^{2}\right) \tag{4.6}\\
& i=1, \ldots, N-1, \quad u_{0}=a, \quad u_{N}=b
\end{align*}
$$

Setting $\vec{w}=\left(w_{0}, w_{1}, \ldots, w_{N}\right)$, deleting the $O\left(h^{2}\right)$ term and in (4.6), and substituting w_{i} and \vec{w} for u_{i} and \vec{u} in (4.6), we obtain the algebraic problem for the approximation \vec{w} for \vec{u}. Namely, find \vec{w} satisfying

$$
\begin{gather*}
-\Delta_{h}^{2} w_{i}=f\left(x_{1}\right)[\alpha(Q(\vec{w}))]^{-1} \tag{4.7}\\
i-1, \ldots, N-1, \quad w_{0}=a \text { and } w_{N}=b
\end{gather*}
$$

We turn now to the existence of a solution to the algebraic problem (4.7).
5. Existence of Approximate Solutions. As with the analytic case and under the same assumptions on the data, we consider the mapping

$$
\begin{equation*}
F(q)=Q(\vec{w}) \tag{5.1}
\end{equation*}
$$

where $\vec{w}=\left(a, w_{1}, \ldots, w_{N-1}, b\right)$ is the solution of (5.2) $\quad-\Delta_{h}^{2} w_{i}=f\left(x_{i}\right)[\alpha(q)], \quad i=1, \ldots, N-1, \quad w_{0}=a, \quad w_{N}=b$.

For each q in the appropriate interval for q, there exists a unique $\vec{w}=\vec{w}(q)$. Hence the map is well-defined. In order to apply the appropriate fixed point theorem we need estimates of $F(q)$ and to obtain these estimates, it is necessary to write \vec{w} in a form that can be estimated. Namely,

$$
\begin{equation*}
w_{i}=a\left(1-x_{i}\right)+b x_{i}+[\alpha(q)]^{-1} \sum_{n=1}^{N-1} \frac{c_{n}}{\lambda_{n}} \sin n \pi x_{i} \tag{5.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda_{n}=\frac{4 \sin ^{2} \frac{n \pi h}{2}}{h^{2}} \tag{5.4}
\end{equation*}
$$

Recall $[6,7]$ that

$$
\begin{equation*}
\Delta_{h}^{2} \sin \alpha x=-\frac{4 \sin ^{2} \frac{\alpha h}{2}}{h^{2}} \sin \alpha x \tag{5.5}
\end{equation*}
$$

and

$$
\begin{equation*}
(\overrightarrow{\sin m \pi x}, \overrightarrow{\sin n \pi x})=\frac{1}{2} \delta_{m n} \tag{5.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\overrightarrow{\sin m \pi x}=\left(0, \sin m \pi x_{1}, \sin m \pi x_{2}, \ldots, \sin m \pi x_{N-1}, 0\right) \tag{5.7}
\end{equation*}
$$

with

$$
\begin{equation*}
(\vec{f}, \vec{\phi})=\sum_{i=0}^{N} f_{i} \phi_{i} h \tag{5.8}
\end{equation*}
$$

for \vec{f} and $\vec{\phi} N+1$ dimensional vectors with the 1st and last components equal to zero,

$$
\delta_{m n}= \begin{cases}0, & m \neq n \tag{5.9}\\ 1, & m=n\end{cases}
$$

and m and n are positive integers that range from 1 to $N-1$. Also, we note that

$$
\begin{equation*}
c_{n}=2(\vec{f}, \overrightarrow{\sin n \pi x}) \tag{5.10}
\end{equation*}
$$

By Schwarz's lemma, we see that

$$
\begin{equation*}
\left|c_{n}\right| \leq 2\left(\sum_{i=1}^{N-1} f_{i}^{2} h\right)^{\frac{1}{2}}\left(\sum_{i=1}^{N-1} \sin ^{2} n \pi x_{i} h\right)^{\frac{1}{2}} \leq \sqrt{2}(\vec{f}, \vec{f})^{\frac{1}{2}} \tag{5.11}
\end{equation*}
$$

To finish the estimates for $F(q)$ we need the following result.

Lemma 5.1.

$$
Q(\overrightarrow{\sin n \pi x})=-\left\{\begin{array}{cl}
h \cot \frac{m \pi h}{2} & , \tag{5.12}\\
0 \text { odd } \\
0 & , m \text { even }
\end{array}\right.
$$

Proof: From the identity $\sin x+\sin y=2 \sin \frac{x+y}{2} \cos \frac{x-y}{2}$, we obtain

$$
\begin{equation*}
Q(\overrightarrow{\sin m \pi x})=\sum_{i=0}^{N-1} h \sin m \pi\left(\frac{x_{i+1}+x_{i}}{2}\right) \cos \frac{m \pi h}{2} \tag{5.13}
\end{equation*}
$$

multiplying (5.13) by one in the form $\sin \frac{m \pi h}{2} / \sin \frac{m \pi h}{2}$ we see that
(5.14) $Q(\overrightarrow{\sin m \pi x})=h \cot \frac{m \pi h}{2} \sum_{i=0}^{N-1}\left(\sin m \pi\left(i+\frac{1}{2}\right) h\right) \sin \frac{m \pi h}{2}$.

Next, via the identity $\cos x-\cos y=-2 \sin \frac{x+y}{2} \sin \frac{x-y}{2}$, it follows that
(5.15) $Q(\overrightarrow{\sin m \pi x})=-\frac{h}{2}\left(\cot \frac{m \pi h}{2}\right) \cdot \sum_{i=0}^{N-1}\left[\cos m \pi x_{i+1}-\cos m \pi x_{i}\right]$

$$
\begin{equation*}
=-\frac{h}{2} \cot \frac{m \pi h}{2}[\cos m \pi-\cos 0] \tag{5.16}
\end{equation*}
$$

$$
=\left\{\begin{array}{cl}
+h \cot \frac{m \pi h}{2} & , m \text { odd } \tag{5.17}\\
0 & , m \text { even }
\end{array}\right.
$$

\square

We can utilize the calculus inequality $\sin \theta<\theta<\tan \theta$ for $0<\theta<\frac{\pi}{2}$ to obtain the estimate

$$
\begin{equation*}
|Q(\overrightarrow{\sin m \pi x})|=\frac{2}{m \pi} \frac{m \pi h}{2} \cot \frac{m \pi h}{2} \leq \frac{2}{m \pi}, \quad m \text { odd } \tag{5.18}
\end{equation*}
$$

From the linearity of $Q(\vec{w})$ we see that

$$
\begin{align*}
F(q) & =Q(\vec{w}) \tag{5.19}\\
& =\frac{a+b}{2}+[\alpha(q)]^{-1} \sum_{n=1}^{N-1} \frac{c_{n}}{\lambda_{n}} Q(\overrightarrow{\sin n \pi x}) \\
& =\frac{a+b}{2}+[\alpha(q)]^{-1} \sum_{0 \leq k \leq\left\lceil\frac{N-1}{2}\right\rceil} \frac{c_{2 k+1}}{\lambda_{2 k+1}} \cdot h \cot \frac{(2 k+1) \pi h}{2} \tag{5.20}
\end{align*}
$$

where $\left\lceil\frac{N-1}{2}\right\rceil$ is the largest integer in $\frac{N-1}{2}$. Consequently, from (5.15)

$$
\begin{equation*}
|F(q)| \leq \frac{1}{2}|a+b|+\frac{1}{\alpha_{0}} \sum_{0 \leq k \leq\left\lceil\frac{N-1}{2}\right\rceil} \frac{\left|c_{2 k+1}\right|}{\left|\lambda_{2 k+1}\right|} \cdot \frac{2}{(2 k+1) \pi} . \tag{5.21}
\end{equation*}
$$

Since $\sin x>\frac{2}{\pi} x$ for $0<x<\frac{\pi}{2}$, we see that

$$
\begin{equation*}
\frac{1}{\lambda_{n}}=\frac{h^{2}}{4 \sin ^{2} \frac{n \pi h}{2}} \leq \frac{h^{2}}{4\left(\frac{2}{\pi} \frac{n \pi h}{2}\right)^{2}}=\frac{1}{4 n^{2}} \tag{5.22}
\end{equation*}
$$

and from (5.10) it follows that

$$
\begin{align*}
|F(q)| & \leq \frac{1}{2}|a+b|+\frac{\sqrt{2}}{\alpha_{0}}(\vec{f}, \vec{f}) \sum_{0 \leq k \leq\left\lceil\frac{N-1}{2}\right\rceil} \frac{1}{2 \pi} \cdot \frac{1}{(2 k+1)^{3}} \tag{5.23}\\
& \leq \frac{1}{2}|a+b|+\frac{\sqrt{2}}{\pi \alpha_{0}}(\vec{f}, \vec{f})
\end{align*}
$$

By a similar argument, we obtain

$$
\begin{equation*}
\left|F\left(q_{1}\right)-F\left(q_{2}\right)\right| \leq \frac{\sqrt{2}}{\pi \alpha_{0}^{3}}(\vec{f}, \vec{f})\left|\alpha\left(q_{1}\right)-\alpha\left(q_{2}\right)\right| \tag{5.24}
\end{equation*}
$$

From the uniform continuity of $\alpha(q)$ on $-R \leq q \leq R$, where

$$
\begin{equation*}
R=\frac{1}{2}|a+b|+\frac{\sqrt{2}}{\pi \alpha_{0}}(\vec{f}, \vec{f}) \tag{5.25}
\end{equation*}
$$

we see from (5.23) and (5.24) that $F(q)$ has at least one fixed point. As $\Delta_{h}^{2} \vec{w}_{i}$ is positive at a minimum and negative at a maximum, we see that $F(q)$ has at least one fixed point under the conditions on the data in Theorem 2.3. Likewise to Theorem 2.2 and Theorem 2.4, if $(\vec{f}, \vec{f})^{\frac{1}{2}}$ is sufficiently small $F(q)$ is a contraction and the fixed point is unique. We summarize the analysis above in the following statement.

Theorem 5.3. Under the assumptions on the data, $a, b, \alpha(q)$ and $f(x)$ given in Theorem 2.1 and Theorem 2.3, respectively, there exists a solution to the algebraic problem stated in (4.7) and if $(\vec{f}, \vec{f})^{\frac{1}{2}}$ is sufficiently small, the solution is unique.

Proof: See the analysis preceding the statement of the theorem.
6. Convergence of the approximation to the analytic solution. Setting $z_{i}=u_{i}-w_{i}, i=0, \ldots, N$ and subtracting (4.7) from (4.6), we obtain
(6.1) $-\Delta_{h}^{2} z_{i}=f\left(x_{i}\right)\left\{[\alpha(Q(\vec{u}))]^{-1}-[\alpha(Q(\vec{w}))]^{-1}\right\}+O\left(h^{2}\right) z_{0}=z_{N}=0$,
which can be written as

$$
\begin{equation*}
\Delta_{h}^{2} z_{i}=s_{i} Q(\vec{z})+r_{i}, \quad i=1, \ldots, N-1, \quad z_{0}=z_{N}=0 \tag{6.2}
\end{equation*}
$$

where

$$
\begin{equation*}
s_{i}=f\left(x_{i}\right)[\alpha(Q(\vec{u}))]^{-1}[\alpha(Q(\vec{w}))]^{-1} \alpha^{\prime}(\xi), \quad r_{i}=O\left(h^{2}\right) \tag{6.3}
\end{equation*}
$$

and ξ is a number between $Q(\vec{u})$ and $Q(\vec{w})$. In a similar manner to (5.2), we obtain the representation for z_{i} as

$$
\begin{equation*}
z_{i}=\mu Q(\vec{z}) \sum_{n=1}^{N-1} \frac{c_{n}}{\lambda_{n}} \sin n \pi x_{i}-\sum_{n=1}^{N-1} \frac{d_{n}}{\lambda_{n}} \sin n \pi x_{i} \tag{6.4}
\end{equation*}
$$

where c_{n} is defined by (5.9),

$$
\begin{equation*}
d_{n}=2(\vec{r}, \overrightarrow{\sin n \pi x}) \tag{6.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu=-[\alpha(Q(\vec{u}))]^{-1} \alpha^{\prime}(\xi) \tag{6.6}
\end{equation*}
$$

From the linearity of $Q(\vec{w})$, we see that

$$
\begin{equation*}
Q(\vec{z})=\mu Q(\vec{z}) \sum_{n=1}^{N-1} \frac{c_{n}}{\lambda_{n}} Q(\overrightarrow{\sin n \pi x})-\sum_{n=1}^{N-1} \frac{d_{n}}{\lambda_{n}} Q(\overrightarrow{\sin n \pi x}) \tag{6.7}
\end{equation*}
$$

and via Lemma 5.1 we have

$$
\begin{array}{r}
Q(\vec{z})\left[1-\mu \sum_{0 \leq k \leq\left\lceil\frac{N-1}{2}\right\rceil} \frac{c_{2 k+1}}{\lambda_{2 k+1}} \cdot h \cot \frac{(2 k+1) \pi h}{2}\right] \tag{6.8}\\
=\sum_{0 \leq k \leq\left\lceil\frac{N-1}{2}\right\rceil} \frac{d_{2 k+1}}{\lambda_{2 k+1}} \cdot h \cot \frac{(2 k+1) \pi h}{2}
\end{array}
$$

From the estimates $(5.11),(5.17)$ and (5.18) we see that
(6.9) $\left|\mu \sum_{0 \leq k \leq\left\lceil\frac{N-1}{2}\right\rceil} \frac{c_{2 k+1}}{\lambda_{2 k+1}} h \cot \frac{(2 k+1) \pi h}{2}\right| \leq \frac{\sqrt{2} M}{2 \pi \alpha_{0}^{2}}(\vec{f}, \vec{f})^{\frac{1}{2}} \sum_{0 \leq k \leq\left\lceil\frac{N-1}{2}\right\rceil} \frac{1}{(2 k+1)^{3}}$

$$
\begin{equation*}
\leq \frac{\sqrt{2} M}{\pi \alpha_{0}^{2}}(\vec{f}, \vec{f})^{\frac{1}{2}} \tag{6.10}
\end{equation*}
$$

Thus, the multiplier of $Q(\vec{z})$ on the left hand side of (6.9) is clearly not equal to zero if $(\vec{f}, \vec{f})^{\frac{1}{2}}$ is sufficiently small. Since the

$$
\begin{equation*}
\left|d_{2 k+1}\right|=O\left(h^{2}\right) \tag{6.11}
\end{equation*}
$$

and the multiplier of $Q(\vec{z})$ in (6.9) can be bounded below in absolute value via (6.10) for $(\vec{f}, \vec{f})^{\frac{1}{2}}$ sufficiently small, it follows that

$$
\begin{equation*}
Q(\vec{z})=O\left(h^{2}\right) \tag{6.12}
\end{equation*}
$$

Using (6.12) and the preceding estimates, it follows from (6.5) that

$$
\begin{equation*}
\left|z_{i}\right|=O\left(h^{2}\right) \tag{6.13}
\end{equation*}
$$

where the constant in the $O\left(h^{2}\right)$ depends upon the size of $(\vec{f}, \vec{f})^{\frac{1}{2}}$. Summarizing the analysis above we have the following statement.

Theorem 6.1. For $f(x)$ sufficiently small, the approximate solutions \vec{w} converge to the solution $u(x)$ at each x appearing in the grid at some h sufficiently small and remaining in the grid as h tends to zero.

Proof: See the analysis preceding the statement of the theorem.
7. Numerical Examples. We present here the results of three examples. For example 1, we chose $u=x^{3}$. Integrating from zero to one we obtain

$$
\begin{equation*}
q=\int_{0}^{1} u(x) d x=\frac{1}{4} \tag{7.1}
\end{equation*}
$$

Choosing

$$
\begin{equation*}
\alpha(q)=q^{\frac{1}{3}} \tag{7.2}
\end{equation*}
$$

generates from $u^{\prime \prime}=6 x$ the source term

$$
\begin{equation*}
f(x)=6\left(\frac{1}{4}\right)^{\frac{1}{3}} x \tag{7.3}
\end{equation*}
$$

The boundary conditions of $u(0)=0$ and $u(1)=1$ along with $\alpha(q)$ and $f(x)$ were employed in (5.1) for $h=.1, .01, .001$ and .0001 . The solution of $q=Q(\vec{w}(q))$ for each h required a search of $q_{k}=\frac{k}{10}$ $k=1, \ldots, 10$ until a change of sign in $q_{k}=Q\left(\vec{w}\left(q_{k}\right)\right)$ was obtained followed by interval halving until $|Q(\vec{w}(q))-q|$ diminished below a preset precision. In the Tables below the J-Value in the 2nd row denotes the number of interval halvings required for $s=\left|Q\left(\vec{w}\left(q_{j}\right)\right)-q_{j}\right|$ to fall below the pre-set Precision is recorded for each h in the third row. The actual precision $S=|Q-q|$ is recorded for each h in the fourth row. The max $\left|u\left(x_{i}\right)-w_{i}\right|$ for each h is given in the fifth row. The actual error $E=|Q-q|$ between the actual q and its approximation Q is found in sixth row. The values of h are found in the first row as labels for the columns of associated computed results listed under each value of h. The data $u, q, \alpha(q)$, and $f(x)$ for each example are summarized in the legend/title of each table.

Table 1				
	$\mathrm{h}=1 / 10$	$\mathrm{~h}=1 / 100$	$\mathrm{~h}=1 / 1000$	$\mathrm{~h}=1 / 10000$
J-Value	49	46	47	47
Precision	10^{-16}	10^{-16}	10^{-16}	10^{-16}
$S-\|Q-q\|$	$2.22040 \mathrm{E}-16$	$8.88180 \mathrm{E}-16$	$6.10620 \mathrm{E}-16$	$4.44090 \mathrm{E}-16$
$\max \left\|u_{i}-w_{i}\right\|$	$1.40000 \mathrm{E}-03$	$1.94000 \mathrm{E}-06$	$1.99400 \mathrm{E}-9$	$2.00050 \mathrm{E}-12$
$E=\|Q-q\|$	$3.70000 \mathrm{E}-03$	$3.74960 \mathrm{E}-05$	$3.75000 \mathrm{E}-07$	$3.75170 \mathrm{E}-09$

TABLE 1. $u=x^{3}, q=\frac{1}{4}, \alpha=q^{\frac{1}{3}}, f=6\left(\frac{1}{4}\right)^{\frac{1}{3}} x$.

Table 2				
	$\mathrm{~h}=1 / 10$	$\mathrm{~h}=1 / 100$	$\mathrm{~h}=1 / 1000$	$\mathrm{~h}=1 / 10000$
J-Value	51	43	42	42
Precision	10^{-16}	10^{-14}	10^{-14}	10^{-14}
$S-\|Q-q\|$	$5.55110 \mathrm{E}-17$	$5.38460 \mathrm{E}-15$	$1.77640 \mathrm{E}-15$	$8.88180 \mathrm{E}-16$
$\max \left\|u_{i}-w_{i}\right\|$	$5.88490 \mathrm{E}-04$	$4.10550 \mathrm{E}-07$	$3.87000 \mathrm{E}-10$	$3.91630 \mathrm{E}-13$
$E=\|Q-q\|$	$5.14140 \mathrm{E}-04$	$5.10340 \mathrm{E}-06$	$5.10300 \mathrm{E}-08$	$5.07910 \mathrm{E}-10$

TABLE 2. $u=\cos \left(\frac{2 \pi}{3} x\right), q=\frac{3 \sqrt{3}}{4 \pi}, \alpha=q^{2}, f=-\frac{3}{4} \cos \left(\frac{2 \pi}{3} x\right)$.

Table 3				
	$\mathrm{~h}=1 / 10$	$\mathrm{~h}=1 / 100$	$\mathrm{~h}=1 / 1000$	$\mathrm{~h}=1 / 10000$
J-Value	43	39	42	42
Precision	10^{-14}	10^{-14}	10^{-14}	10^{-14}
$S-\|Q-q\|$	$2.22040 \mathrm{E}-16$	$7.10540 \mathrm{E}-15$	$3.21960 \mathrm{E}-15$	$9.02060 \mathrm{E}-15$
$\max \left\|u_{i}-w_{i}\right\|$	$3.56810 \mathrm{E}-04$	$4.35570 \mathrm{E}-07$	$4.43560 \mathrm{E}-10$	$4.45430 \mathrm{E}-13$
$E=\|Q-q\|$	$1.30000 \mathrm{E}-03$	$1.29630 \mathrm{E}-05$	$1.29630 \mathrm{E}-07$	$1.29500 \mathrm{E}-09$

TABLE 3. $u=x(1-x), q=\frac{1}{6}, \alpha=(1+q)^{2}, f=-2\left(1+\frac{1}{6}\right)^{2}$.

Consideration of the results in the Tables above shows the error behaves as $O\left(h^{2}\right)$ or better. We note that a search followed by interval halfing was necessary since the various $f^{\prime} s$ were not small enough to cause a contraction or to satisfy the condition for uniqueness. A Newton's Method for solving $H(q) \equiv q-Q(\vec{w}(q))=0$ was not considered. Left open for consideration is the general question of uniqueness of the solution and the numerical approximation.

REFERENCES

1. Robert Stanczy, Nonlocal elliptic equations, Nonlinear Analysis 47 (2001), 3579-3584.
2. Corrêa, Francisco Julio S. A., Silvano D.B. Menezes and J. Ferreira, On a class of problems involving a nonlocal operator, Applied Mathematics and Computation, Vol. 147, Issue 2 (2004) 475-489.
3. Corrêa, F.J.S.A., and Daniel C. de Morais Filho, On a class of nonlocal elliptic problems via Galerkin method, Journal of Mathematical Analysis and Applications 310 (2005) 177-187.
4. Corrêa, F.J.S.A., and Menezes, S.D.B., Positive solutions for a class of nonlocal elliptic problems, Contributions to nonlinear analysis, 195-206, Progr. Nonlinear Differential Equations Appl., 66, Birkhaüser, Basel, (2006).
5. Corrêa, F.J.S.A., On positive solutions of nonlocal and nonvariational elliptic problems, Nonlinear Analysis, Vol. 65, Issue 4 (2006) 864-891.
6. Douglas, Jim, Jr., On the numerical integration of $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\frac{\partial u}{\partial t}$ by implicit methods, J. Soc. Indust. Appl. Math., 3 (1955), 42-65.
7. Douglas, Jim, Jr., A survey of numerical methods for parabolic differential equations, (1961), Advances in Computers Vol 2. pp 1-54 Academic Press, N.Y.
[^1]
[^0]: Received by the editors on September 16, 2007, and in revised form on October 11, 2007.

 DOI:10.1216/JIE-2008-20-2-243 Copyright (c)2008 Rocky Mountain Mathematics Consortium

[^1]: Mathematics Department, University of Central Florida, Orlando, FL 32816
 Email address: jcannon@pegasus.cc.ucf.edu
 Email address: da786917@pegasus.cc.ucf.edu

