
JOURNAL OF INTEGRAL EQUATIONS
AND APPLICATIONS
Volume 20, Number 2, Summer 2008

A NUMERICAL METHOD FOR A NONLOCAL
ELLIPTIC BOUNDARY VALUE PROBLEM

JOHN R. CANNON AND DANIEL J. GALIFFA

Communicated by Charles Groetsch

Dedicated to Professor M.Z. Nashed

ABSTRACT. In 2005 Corrêa and Filho established ex-
istence and uniqueness results for the nonlinear PDE: −Δu =

g(x,u)α(∫
Ω

f(x,u)
)β , which arises in physical models of thermody-

namical equilibrium via Coulomb potential, among others [3].
In this work we discuss a numerical method for a special

case of this equation: −α

(∫ 1

0
u(t)dt

)
u′′ = f(x), 0 < x <

1, u(0) = a, u(1) = b. We first consider the existence
and uniqueness of the analytic problem using a fixed point
argument and the contraction mapping theorem. Next, we
evaluate the solution of the numerical problem via a finite dif-
ference scheme. From there, the existence and convergence of
the approximate solution will be addressed as well as a unique-
ness argument, which requires some additional restrictions.
Finally, we conclude the work with some numerical examples
where an interval-halving technique was implemented.

1. Introduction. At the annual meeting of the American
Mathematical Society in Baltimore in January 2003, the first named
author above gave a talk at a special session organized by Zuhair
Nashed. Part of the talk included an example of a boundary value
problem which involved a coefficient that depended upon the integral of
the solution over the domain within the differential equation. Namely,

u′′ = α

(∫ ∞

0

u(t)dt
)
u,(1.1)

0 < x <∞, u(0) = 1, lim
x→∞u(x) = 0,
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where α = α(q) is a positive function defined for 0 ≤ q <∞. Integrating
the solution’s formula

(1.2) u(x) = exp
{
−
√
α(q)x

}

leads to the equation

(1.3) q =
∫ ∞

0

u(x)dx = β(q) ≡ 1√
α(q)

.

Clearly, it follows that depending upon α(q) there can exist a unique
solution to (1.1), many solutions, or no solutions.

For example, β(q) =
(
1 + q2

)−1
, 0 ≤ q < ∞, implies the existence

of a unique solution, β(q) = q + cos πq
20 , 0 ≤ q < ∞, implies the

existence of infinitely many solutions, and β(q) = 1 + q2, 0 ≤ q < ∞,
implies the nonexistence of solutions. Recently, the authors became
aware of applications for elliptic partial differential equations involving
coefficients depending on the integral of solution or the L2 norm of the
gradient of the solution over the domain of the solution. For physical
applications, see [1]. For some existence and uniqueness results see
[1, 2, 3]. The purpose of this paper is to consider a one-dimensional
problem similar to that discussed in [3] and to analyze conditions on the
coefficient and data, which lead to the existence and uniqueness of the
solution, the existence and uniqueness of a numerical approximation,
and the convergence of the numerical approximation to the solution.

We shall consider the problem of finding a solution u = u(x) satisfying

−α
(∫ 1

0

u(t)dt
)
u′′ = f(x),(1.4)

0 < x < 1, u(0) = a, u(1) = b

where α = α(q) is a positive function of q defined over −∞ < q < ∞,
f(x) is defined over 0 ≤ x ≤ 1, and a and b are real constants. In
Section 2, we shall demonstrate the existence of a solution via the fixed
point of a nonlinear mapping under various conditions on the data a,
b, α, and f . For f sufficiently small we show that the mapping is
a contraction yielding unicity of the solution. Section 3 deals with a
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Fourier series approach to uniqueness, which serves as a motivation for
the existence of the numerical approximation of the nonlinear finite
difference scheme derived in Section 4. The existence of the numerical
approximation is demonstrated in Section 5 via a fixed point of a
nonlinear mapping derived from the finite Fourier representation of
the solution of a linear auxillary finite difference scheme of the linear
auxillary problem in Section 2. The estimates involved in the existence
of the solution to the nonlinear algebraic problem in Section 5 carry
over to the analysis of convergence, which is demonstrated in Section
6. Basically, convergence can be guaranteed if f is sufficiently small. In
Section 7, we conclude the paper with some examples of the numerical
process.

2. Existence. We shall start with the assumption that α = α(q)
is a continuous function bounded below by the positive constant α0. If
f ∈ L2([0, 1]) which is the Hilbert space of square integrable functions
with inner product

(2.1) (φ, ψ) =
∫ 1

0

φ(x)ψ(x)dx

and norm

(2.2) ‖ φ ‖2
0= (φ, φ),

then for each q in −∞ < q <∞, the problem

(2.3) −α(q)u′′ = f(x), 0 < x < 1, u(0) = a, u(1) = b

has a unique solution u = u(x; q) belonging to the Sobolev space
H1([0, 1]) with inner product

(2.4) (φ, ψ)1 = (φ, ψ) + (φ′, ψ′),

which is the closure in the norm

(2.5) ‖ φ ‖2
1= (φ, φ) + (φ′, φ′)
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of the restrictions of the continuously differentiable functions to
0 ≤ x ≤ 1. The function u = u(x; q) has the form

(2.6) u = v + ς,

where ς = a(1 − x) + bx and v = v(x; q) ∈ H1
0 ([0, 1]) is the solution of

the weak formulation

(2.7)
∫ 1

0

v′φ′dx =
1

α(q)
(f, φ), ∀φ ∈ H1

0 ([0, 1]),

where H1
0 ([0, 1]) is the Sobolev space with the inner product and norm

of H1([0, 1]) that results in the closure in the norm of H1([0, 1]) of the
space of continuously differentiable functions with compact support in
0 ≤ x ≤ 1. The following inequality is easy to obtain from setting φ = v
in (2.7) and employing Schwarz’s lemma:

(2.8)
∫ 1

0

(v′)2dx ≤ 1
α(q)

‖f‖0 ‖v‖0 .

Since π2 is the smallest eigenvalue for the problem u′′+λu = 0, u(0) =
u(1) = 0, we have

(2.9) ‖ v ‖2
0≤

1
π2

∫ 1

0

(v′)2dx,

whence it follows

(2.10) ‖ v ‖0≤ 1
α(q)π2

‖ f ‖0,

and

(2.11)
∫ 1

0

(v′)2dx ≤ 1
[α(q)π]2

‖ f ‖2
0 .

Utilizing the Green’s function for the operator − d2

dx2 in [0, 1] with zero
boundary conditions, we have

(2.12) v(x) =
1

α(q)

∫ 1

0

G(x, t)f(t)dt,
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where G(x, t) =
{
x(1 − t), x ≤ t

(1 − x)t, x ≥ t
and 0 ≤ x, t ≤ 1, it follows that

(2.13) max
0≤x≤1

|v(x; q)| ≤ 1
α(q)

‖ f ‖0 .

In a similar manner, we obtain

(2.14) max
0≤x≤1

|v(x; q1) − v(x; q2)| ≤‖ f ‖0

∣∣∣∣ 1
α(q1)

− 1
α(q2)

∣∣∣∣ .
We now define the mapping

(2.15) T (q) :=
∫ 1

0

u(x; q)dx =
a+ b

2
+
∫ 1

0

v(x; q)dx.

From (2.12) and α(q) ≥ α0 > 0, we obtain

(2.16) |T (q)| ≤ 1
2
|a+ b| + 1

α0
‖ f ‖0 .

Next, we see from (2.13) and (2.14) that

(2.17) |T (q1) − T (q2)| ≤ 1
α2

0

‖ f ‖0 |α(q2) − α(q1)|.

Since α(q) is uniformly continuous on the −C ≤ q ≤ C, where

(2.18) C =
1
2
|a+ b| + 1

α0
‖f‖o

it follows that T (q) is uniformly continuous on −C ≤ q ≤ C. Consider
the square −C ≤ q, y ≤ C in the Cartesian plane. Since the graph of
y = T (q) is contained in the square and continuously traverses it from
q = −C to q = +C, it must intersect the diagonal y = q in at least
one point q∗. Hence, there is at least one fixed point T (q∗) = q∗ and
at least one solution for (1.4). We summarize the analysis above with
the following statement.
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Theorem 2.1. If α(q) is a continuous real valued function defined
on −∞ < q < ∞, which is bounded below by α0 and f(x) is square
integrable on 0 ≤ x ≤ 1, then there exists at least one weak solution
u = u(x) ∈ H1([0, 1]) that satisfies

−α
(∫ 1

0

u(t) dt
)
u′′ = f(x),(2.19)

0 < x < 1, u(0) = a, u(1) = b,

where a and b are real numbers and H1([0, 1]) is the Sobolev space of
square integrable functions with square integrable derivatives defined
over 0 ≤ x ≤ 1.

Proof: See the analysis above.

As a corollary of the argument above, we have the following result.

Theorem 2.2. If α(q) is continuous and continuously differentiable
on −∞ < q < ∞ such that |α′(q)| < M , where M is a positive real
number, the remaining assumptions of Theorem 2.1 hold, and if

(2.20)
M

α2
0

‖f‖0 < 1,

then the weak solution u = u(x) of

−α
(∫ 1

0

u(t) dt
)
u′′ = f(x),(2.21)

0 < x < 1, u(0) = a, u(1) = b,

is unique.

Proof: From (2.16) and (2.18), if follows that the mapping T (q) is a
contraction and thus possesses a unique fixed point.

Now we consider the case that α (q) and continuous on 0 < q <
∞, α(0) = 0, and α(q) is monotone increasing which requires some
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additional assumptions on the data f(x), a and b in order to obtain a
lower bound on α(q). Namely, we assume that f(x) is continuous on
0 < x < 1, f(x) > 0, and f is square integrable over 0 ≤ x ≤ 1. Also
we assume that a and b are nonnegative and at least one of them is
positive. Under the above assumptions for q > 0, we have a unique
classical solution for

(2.22) −α(q)u′′ = f(x), 0 < x < 1, u(0) = a, u(1) = b.

Recalling (2.6) with u = v + ς, ς = a(1 − x) + bx, we see that v is a
classical solution of

−α(q)v′′ = f(x), 0 < x < 1, v(0) = v(1) = 0.

Thus, v(x) ≥ 0 via the maximum principle. Otherwise v has a negative
minimum at say, x0, 0 < x0 < 1, at which v′′(x0) ≥ 0. However, from
the differential equation at x0, v′′(x0) = −f(x0)/α(q) < 0, which is a
contradiction. Thus, u− ς = v(x) ≥ 0 and

(2.23) T (q) =
∫ 1

0

u(x, q)dx ≥
∫ 1

0

ς(x)dx =
a+ b

2
.

From the analysis for (2.8) through (2.14) we have

(2.24,) 0 <
(
a+ b

2

)
≤ T (q) ≤

(
a+ b

2

)
+

1
α0

‖f‖0

where here

(2.25) α0 = α

(
a+ b

2

)
.

Likewise (2.16) holds. As α (q) is uniformly continuous on 0 <
(

a+b
2

) ≤
q ≤ C, where C is defined by (2.17), it follows that T is uniformly
continuous on

(
a+b
2

) ≤ q ≤ C and that from (2.23), T (q) has a fixed
point in that interval. We can summarize the above analysis in the
following statement.
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Theorem 2.3. If α = α(q) is continuous and monotone increasing
on 0 ≤ q <∞ with α(0) ≥ 0, f(x) is continuous, square integrable, and
f(x) > 0 on 0 < x < 1, and if a and b are nonnegative real numbers
with at least one of them positive, then

(2.26) −α
(∫ 1

0

u(t)dt
)
u′′ = f(x), 0 < x < 1, u(0) = a, u(1) = b

has at least one classical solution.

Proof: See the analysis preceding the statement of the theorem and
the analysis preceding Theorem 2.1.

As a corollary we have the following result.

Theorem 2.4. If the assumptions of Theorem 2.3 hold and if α(q)
is continuously differentiable on 0 ≤ q < ∞ with |α′(q)| < M , where
M is a positive real number, and if (2.20) holds, then the solution u(x)
is unique.

Proof: As for Theorem 2.2, T (q) is a contraction.

Remark: As an example of the contraction inequality (2.20),
consider α = α(q) = (q)

1
n , then α′(q) = 1

nq
1
n−1 and (2.20) becomes

1
n

(
a+ b

2

)−n+1
n

‖f‖0 < 1,

which may allow a larger f than α(q) = qn for which (2.20) becomes

n

(
a+ b

2

)−2n
[(

a+ b

2

)
+
(
a+ b

2

)−2n

‖f‖0

]n−1

‖f‖0 < 1.

3. Another analysis of uniqueness. We provide a Fourier
analysis of uniqueness as a motivation of the analysis of the convergence
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of a numerical procedure for problem (1.4). Let ui = ui(x) be two
solutions of (1.4). Setting z = u1−u2 and subtracting the equation for
u2 from u1, we obtain

(3.1) z′′=f(x)
[
α

(∫ 1

0

u1(t) dt
)
α

(∫ 1

0

u2(t) dt
)]−1

α′(ξ)
∫ 1

0

z(t) dt,

z(0) = z(1) = 0,

where the number ξ lies between the numbers
∫ 1

0 u1(t) dt and
∫ 1

0 z(t) dt.
Let η denote the number

(3.2)
[
α

(∫ 1

0

u1(t) dt
)
α

(∫ 1

0

u2(t) dt
)]−1

α′(ξ)
∫ 1

0

z(t) dt,

Expanding f in a Fourier sine series we see that

(3.3) f(x) =
∞∑

k=0

cn sinnπx, 0 ≤ x ≤ 1,

where

(3.4) cn = 2
∫ 1

0

f(x) sinnπxdx, n = 1, 2, ...

So, it follows from the differential equation and boundary conditions
for z that

(3.5) z(x) = η
∞∑

k=0

− cn
(nπ)2

sinnπx

and

(3.6)
∫ 1

0

z(x)dx = η

∞∑
k=0

− 2c2k+1

[(2k + 1)π]3
.

From (3.2) we see that

(3.7)
[∫ 1

0

z(x)dx
] [

1 + γ
∞∑

k=0

c2k+1

[(2k + 1)π]3

]
= 0,
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where

(3.8) γ = 2α′(ξ)
[
α

(∫ 1

0

u1(t) dt
)
α

(∫ 1

0

u2(t) dt
)]−1

.

Since we have assumed above that α(q) ≥ α0 > 0, see Theorem 2.1
or (2.24), and that |α′(q)| ≤ M , it follows from elementary estimates
that

(3.9)

∣∣∣∣∣γ
∞∑

k=0

c2k+1

[(2k + 1)π]3

∣∣∣∣∣ ≤ 6M‖f‖0

α2
0π

3
.

Hence, from

(3.10)
6M‖f‖0

α2
0π

3
< 1

we see that

(3.11)
∫ 1

0

z(x)dx = 0,

which implies that z = 0, u1 ≡ u2, and uniqueness.

We remark that estimate (2.19) yields a slightly better multiplier
of ‖f‖0 than that of (3.9). However, as mentioned above the Fourier
analysis will yield a viable approach for the numerical approximation
estimates.

4. A Finite Difference Scheme. Let N denote a postive integer,
h = 1

N , and xi = i
N , i = 0, 1, 2, ..., N . Denote u(xi) as ui and note that

it is well known [7] that

(4.1) Δ2
hui =

ui+1 − 2ui + ui−1

h2
= u′′(xi) +O(h2)

for u sufficiently smooth and that

(4.2) Q(�u) =
N−1∑
i=0

ui+1 + ui

2
h =

∫ 1

0

u(t) dt+O(h2)
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where O(h2) denotes a quantity bounded by a positive constant times
h2 and �u denotes the vector (u0, u2, ..., uN). Consider now the problem
(1.4). We have,

(4.3)
[
α

(∫ 1

0

u(t) dt
)]−1

= [α(Q(�u))]−1 +
[
α

(∫ 1

0

u(t) dt
)]−1

− [α(Q(�u))]−1

and

(4.4)
[
α

(∫ 1

0

u(t) dt
)]−1

− [α(Q(�u))]−1 = O(h2),

where the constant in the O(h2) depends upon estimates of the term

(4.5) α′(ξ)
[
α

(∫ 1

0

u(t) dt
)
α(Q(�u))

]−1

u′′.

Consequently, at the points xi, i = 1, ..., N − 1, we have from the
differential equation in (1.4)

−Δui = f(xi) [α(Q(�u))] +O(h2),(4.6)
i = 1, ..., N − 1, u0 = a, uN = b.

Setting �w = (w0, w1, ..., wN ), deleting the O(h2) term and in (4.6), and
substituting wi and �w for ui and �u in (4.6), we obtain the algebraic
problem for the approximation �w for �u. Namely, find �w satisfying

−Δ2
hwi = f(x1) [α(Q(�w))]−1

,(4.7)
i− 1, ..., N − 1, w0 = a and wN = b.

We turn now to the existence of a solution to the algebraic problem
(4.7).

5. Existence of Approximate Solutions. As with the analytic
case and under the same assumptions on the data, we consider the
mapping

(5.1) F (q) = Q(�w)
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where �w = (a,w1, ..., wN−1, b) is the solution of

(5.2) −Δ2
hwi = f(xi) [α(q)] , i = 1, ..., N − 1, w0 = a, wN = b.

For each q in the appropriate interval for q, there exists a unique
�w = �w(q). Hence the map is well-defined. In order to apply the
appropriate fixed point theorem we need estimates of F (q) and to
obtain these estimates, it is necessary to write �w in a form that can be
estimated. Namely,

(5.3) wi = a(1 − xi) + bxi + [α(q)]−1
N−1∑
n=1

cn
λn

sinnπxi,

where

(5.4) λn =
4 sin2 nπh

2

h2
.

Recall [6,7] that

(5.5) Δ2
h sinαx = −4 sin2 αh

2

h2
sinαx,

and

(5.6) (
−−−−−→
sin mπx,

−−−−−→
sin nπx) =

1
2
δmn,

where

(5.7)
−−−−−→
sin mπx = (0, sin mπx1, sin mπx2, ..., sin mπxN−1, 0)

with

(5.8) (�f, �φ) =
N∑

i=0

fiφih,
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for �f and �φ N+1 dimensional vectors with the 1st and last components
equal to zero,

(5.9) δmn =
{

0, m �= n

1, m = n

and m and n are positive integers that range from 1 to N − 1. Also,
we note that

(5.10) cn = 2(�f,
−−−−−→
sin nπx).

By Schwarz’s lemma, we see that

(5.11) |cn| ≤ 2

(
N−1∑
i=1

f2
i h

) 1
2
(

N−1∑
i=1

sin2 nπxih

) 1
2

≤
√

2
(
�f, �f

) 1
2
.

To finish the estimates for F (q) we need the following result.

Lemma 5.1.

(5.12) Q(
−−−−−→
sin nπx) = −

⎧⎨
⎩h cot

mπh

2
, m odd

0 , m even

Proof: From the identity sin x+sin y = 2 sin x+y
2 cos x−y

2 , we obtain

(5.13) Q(
−−−−−→
sin mπx) =

N−1∑
i=0

h sin mπ
(
xi+1 + xi

2

)
cos

mπh

2

multiplying (5.13) by one in the form sin mπh
2 / sin mπh

2 we see that

(5.14) Q(
−−−−−→
sin mπx) = h cot

mπh

2

N−1∑
i=0

(
sin mπ

(
i+

1
2

)
h

)
sin

mπh

2
.
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Next, via the identity cos x − cos y = −2 sin x+y
2 sin x−y

2 , it follows
that

(5.15) Q(
−−−−−→
sin mπx) = −h

2

(
cot

mπh

2

)
·

N−1∑
i=0

[cos mπxi+1 − cos mπxi]

(5.16) = −h
2

cot
mπh

2
[cos mπ − cos 0]

(5.17) =

⎧⎨
⎩+h cot

mπh

2
, m odd

0 , m even

We can utilize the calculus inequality sin θ < θ < tan θ for 0 < θ < π
2

to obtain the estimate

(5.18)
∣∣∣Q(

−−−−−→
sin mπx)

∣∣∣ =
2
mπ

mπh

2
cot

mπh

2
≤ 2
mπ

, m odd.

From the linearity of Q(�w) we see that

(5.19) F (q) = Q(�w)

=
a+ b

2
+ [α(q)]−1

N−1∑
n=1

cn
λn
Q(

−−−−→
sinnπx)

=
a+ b

2
+ [α(q)]−1

∑
0≤k≤N−1

2 �
c2k+1

λ2k+1
· h cot

(2k + 1)πh
2

(5.20)

where
⌈

N−1
2

⌉
is the largest integer in N−1

2 . Consequently, from (5.15)

(5.21) |F (q)| ≤ 1
2
|a+ b| + 1

α0

∑
0≤k≤N−1

2 �
|c2k+1|
|λ2k+1| ·

2
(2k + 1)π

.
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Since sinx > 2
πx for 0 < x < π

2 , we see that

(5.22)
1
λn

=
h2

4 sin2 nπh
2

≤ h2

4
(

2
π

nπh
2

)
2

=
1

4n2

and from (5.10) it follows that

(5.23) |F (q)| ≤ 1
2
|a+ b| +

√
2

α0

(
�f, �f

) ∑
0≤k≤N−1

2 �
1
2π

· 1
(2k + 1)3

≤ 1
2
|a+ b| +

√
2

πα0

(
�f, �f

)
.

By a similar argument, we obtain

(5.24) |F (q1) − F (q2)| ≤
√

2
πα3

0

(
�f, �f

)
|α(q1) − α(q2)|

From the uniform continuity of α(q) on −R ≤ q ≤ R, where

(5.25) R =
1
2
|a+ b| +

√
2

πα0

(
�f, �f

)
,

we see from (5.23) and (5.24) that F (q) has at least one fixed point.
As Δ2

h �wi is positive at a minimum and negative at a maximum, we see
that F (q) has at least one fixed point under the conditions on the data

in Theorem 2.3. Likewise to Theorem 2.2 and Theorem 2.4, if
(
�f, �f

) 1
2

is sufficiently small F (q) is a contraction and the fixed point is unique.
We summarize the analysis above in the following statement.

Theorem 5.3. Under the assumptions on the data, a, b, α(q) and
f(x) given in Theorem 2.1 and Theorem 2.3, respectively, there exists

a solution to the algebraic problem stated in (4.7) and if
(
�f, �f

) 1
2

is
sufficiently small, the solution is unique.

Proof: See the analysis preceding the statement of the theorem.



258 J.R. CANNON AND D.J. GALIFFA

6. Convergence of the approximation to the analytic solu-
tion. Setting zi = ui − wi, i = 0, ..., N and subtracting (4.7) from
(4.6), we obtain

(6.1) −Δ2
hzi =f(xi)

{
[α (Q(�u))]−1−[α (Q(�w))]−1

}
+O(h2) z0 =zN =0,

which can be written as

(6.2) Δ2
hzi = siQ(�z) + ri, i = 1, ..., N − 1, z0 = zN = 0,

where

(6.3) si = f(xi) [α (Q(�u))]−1 [α (Q(�w))]−1
α′(ξ), ri = O(h2),

and ξ is a number between Q(�u) and Q(�w). In a similar manner to
(5.2), we obtain the representation for zi as

(6.4) zi = μQ(�z)
N−1∑
n=1

cn
λn

sinnπxi −
N−1∑
n=1

dn

λn
sinnπxi

where cn is defined by (5.9),

(6.5) dn = 2(�r,
−−−−→
sinnπx),

and

(6.6) μ = − [α (Q(�u))]−1 α′(ξ).

From the linearity of Q(�w), we see that

(6.7) Q(�z) = μQ(�z)
N−1∑
n=1

cn
λn
Q(

−−−−→
sinnπx) −

N−1∑
n=1

dn

λn
Q(

−−−−→
sinnπx)

and via Lemma 5.1 we have

(6.8) Q(�z)

⎡
⎢⎣1 − μ

∑
0≤k≤N−1

2 �
c2k+1

λ2k+1
· h cot

(2k+1)πh
2

⎤
⎥⎦

=
∑

0≤k≤N−1
2 �

d2k+1

λ2k+1
· h cot

(2k+1)πh
2

.
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From the estimates (5.11), (5.17) and (5.18) we see that

(6.9)

∣∣∣∣∣∣∣μ
∑

0≤k≤N−1
2 �

c2k+1

λ2k+1
h cot

(2k+1)πh
2

∣∣∣∣∣∣∣ ≤
√

2M
2πα2

0

(�f, �f)
1
2

∑
0≤k≤N−1

2 �
1

(2k+1)3

≤
√

2M
πα2

0

(�f, �f)
1
2 .(6.10)

Thus, the multiplier of Q (�z) on the left hand side of (6.9) is clearly
not equal to zero if (�f, �f)

1
2 is sufficiently small. Since the

(6.11) |d2k+1| = O(h2)

and the multiplier of Q (�z) in (6.9) can be bounded below in absolute
value via (6.10) for (�f, �f)

1
2 sufficiently small, it follows that

(6.12) Q (�z) = O(h2)

Using (6.12) and the preceding estimates, it follows from (6.5) that

(6.13) |zi| = O(h2),

where the constant in the O(h2) depends upon the size of (�f, �f)
1
2 .

Summarizing the analysis above we have the following statement.

Theorem 6.1. For f(x) sufficiently small, the approximate solutions
�w converge to the solution u(x) at each x appearing in the grid at some
h sufficiently small and remaining in the grid as h tends to zero.

Proof: See the analysis preceding the statement of the theorem.

7. Numerical Examples. We present here the results of three
examples. For example 1, we chose u = x3. Integrating from zero to
one we obtain

(7.1) q =
∫ 1

0

u(x)dx =
1
4
.
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Choosing

(7.2) α(q) = q
1
3 ,

generates from u′′ = 6x the source term

(7.3) f(x) = 6
(

1
4

) 1
3

x.

The boundary conditions of u(0) = 0 and u(1) = 1 along with α(q)
and f(x) were employed in (5.1) for h = .1, .01, .001 and .0001. The
solution of q = Q(�w(q)) for each h required a search of qk = k

10
k = 1, ..., 10 until a change of sign in qk = Q (�w(qk)) was obtained
followed by interval halving until |Q (�w(q))−q| diminished below a pre-
set precision. In the Tables below the J-Value in the 2nd row denotes
the number of interval halvings required for s = |Q (�w(qj))− qj | to fall
below the pre-set Precision is recorded for each h in the third row. The
actual precision S = |Q − q| is recorded for each h in the fourth row.
The max |u(xi) − wi| for each h is given in the fifth row. The actual
error E = |Q − q| between the actual q and its approximation Q is
found in sixth row. The values of h are found in the first row as labels
for the columns of associated computed results listed under each value
of h. The data u, q, α(q), and f(x) for each example are summarized
in the legend/title of each table.

Table 1
h=1/10 h=1/100 h=1/1000 h=1/10000

J-Value 49 46 47 47
Precision 10−16 10−16 10−16 10−16

S − |Q− q| 2.22040E-16 8.88180E-16 6.10620E-16 4.44090E-16
max|ui − wi| 1.40000E-03 1.94000E-06 1.99400E-9 2.00050E-12
E = |Q− q| 3.70000E-03 3.74960E-05 3.75000E-07 3.75170E-09

TABLE 1. u = x3, q = 1
4
, α = q

1
3 , f = 6( 1

4
)
1
3 x.

Table 2
h=1/10 h=1/100 h=1/1000 h=1/10000

J-Value 51 43 42 42
Precision 10−16 10−14 10−14 10−14

S − |Q− q| 5.55110E-17 5.38460E-15 1.77640E-15 8.88180E-16
max|ui − wi| 5.88490E-04 4.10550E-07 3.87000E-10 3.91630E-13
E = |Q− q| 5.14140E-04 5.10340E-06 5.10300E-08 5.07910E-10

TABLE 2. u = cos
(

2π
3

x
)

, q = 3
√

3
4π

, α = q2, f = − 3
4

cos
(

2π
3

x
)

.
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Table 3
h=1/10 h=1/100 h=1/1000 h=1/10000

J-Value 43 39 42 42
Precision 10−14 10−14 10−14 10−14

S − |Q− q| 2.22040E-16 7.10540E-15 3.21960E-15 9.02060E-15
max|ui − wi| 3.56810E-04 4.35570E-07 4.43560E-10 4.45430E-13
E = |Q− q| 1.30000E-03 1.29630E-05 1.29630E-07 1.29500E-09

TABLE 3. u = x(1 − x), q = 1
6
, α = (1 + q)2, f = −2

(
1 + 1

6

)2
.

Consideration of the results in the Tables above shows the error
behaves as O(h2) or better. We note that a search followed by interval
halfing was necessary since the various f ′s were not small enough
to cause a contraction or to satisfy the condition for uniqueness. A
Newton’s Method for solving H(q) ≡ q − Q (�w(q)) = 0 was not
considered. Left open for consideration is the general question of
uniqueness of the solution and the numerical approximation.
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