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ABSTRACT. We realize fast collocation methods for solv-
ing Fredholm integral equations of the second kind with
weakly singular kernels on a polyhedral domain in Rd with
d ≥ 3. A polyhedral domain is subdivided into a finite number
of simplices. We construct a uniform self-similar partition of a
simplex for the purpose of constructing multi-scale bases and
their corresponding collocation functionals. The multi-scale
bases and the collocation functionals lead to a compression
of the matrix representation of the weakly singular integral
operator and thus to a fast collocation scheme for solving the
integral equation. We develop a quadrature rule for com-
puting the weakly singular integrals appearing in the matrix.
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We propose an error control strategy for the numerical inte-
gration so that the nearly optimal convergence order for the
discrete fast collocation method is obtained. Finally, a nu-
merical experiment of solving the three-dimensional equation
is presented to confirm the theoretical estimates.

1. Introduction. We consider in this paper solving Fredholm
integral equations of the second kind with weakly singular kernels
on a polyhedral domain in Rd for d ≥ 3 by using fast collocation
methods. Equations of this type are of importance in many engineering
application areas [1, 24]. Collocation methods are widely used in
solving the equations due to their significant computational efficiency
and attractive convergence properties, cf. [1, 2, 4]. The coefficient
matrix for the linear system obtained from the standard collocation
method of the integral equation is a full matrix. Generating the full
matrix requires computing N2 integrals among which there are O(N)
singular integrals, where N is the size of the matrix. When N is large,
the standard collocation method is too costly to be used in practice.

Aiming at designing fast collocation methods, a general setting of
the fast collocation method for solving the equation was developed in
[11] and appropriate basis functions and collocation functionals are
constructed in the paper. By appropriately choosing basis functions
and collocation functionals so that they have multi-scale structures
and certain order of vanishing moments, the coefficient matrix can be
approximated by a sparse matrix having only O(N log N) number of
nonzero entries. The optimal order (up to a logarithmic factor) of con-
vergence for the approximate solution resulting from the compressed
sparse coefficient matrix was proved in the paper. The quasi-linear
order of the computational complexity for the method was estimated.
It was also shown that the condition number of the compressed sparse
coefficient matrix is in order of log2 N . Realizations of the method
for one-dimensional equations and that for two-dimensional equations
was presented in [14, 38], respectively. See also [13] for the control
of numerical quadratures for the one-dimensional equations. A mul-
tilevel augmentation method and a multi-level iteration method were
proposed respectively in [12, 17], to efficiently solving the linear sys-
tem resulting in the fast collocation method for integral equations. The
fast collocation method was used in [16] to solve an inverse boundary
value problem. Collocation methods based on wavelets were proposed
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in [20, 33, 35].

In this paper, as in our previous work [6, 11], we assume that the
solution of the weakly singular integral equation is in certain Sobolev
spaces. Such an assumption is normally not met if the boundary
has corners and edges. Regularity analysis for solutions of Fredholm
integral equations are found in [22, 32, 36, 37]. However, there are
many cases when the solution is in a Sobolev space. For example,
solutions of some boundary integral equations on a smooth boundary
are smooth even though the kernels have singularities [1]. The main
purpose of this paper and our previously published papers in the
same context is to understand how we compress the coefficient matrix
resulting from the collocation method when the kernel has a weak
singularity so that the fast solutions give a nearly optimal convergence
order. The assumption that the solution is in a Sobolev space helps us
isolate the difficulty caused by the singular kernel from the difficulty
caused by the singular solution. A study on the treatment of using
wavelets for solutions that are not in a Sobolev space is a future research
topic.

Realization of the fast collocation method for integral equations on a
polyhedral domain in Rd with d ≥ 3 is a challenging task. It requires
the availability of multi-scale basis functions and the corresponding
multi-scale collocation functionals and efficient numerical integration
methods for computing high-dimensional weakly singular integrals. It
is the purpose of this paper to study these issues. Noting that a d-
dimensional polyhedral domain can be decomposed as the union of a
finite number of d-dimensional simplices, for convenience of presen-
tation, we will only present our method for integral equations on a
simplex. It is straightforward to extend it to an arbitrary polyhedral
domain. Remarks on the extension will be given.

This paper is organized into six sections. In Section 2, we present a
uniform self-similar partition for the standard d-dimensional simplex.
Based on such a partition, we describe in Section 3 the construction
of multi-scale bases and the corresponding collocation functionals on a
simplex. Specific constructions for several examples of important ap-
plications are presented. The fast collocation scheme using these multi-
scale bases and collocation functionals is described in Section 4. We also
improve the analysis of convergence and computational complexity for
the fast collocation method presented in [11] by removing a hypothesis.
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The entries of the coefficient matrix resulted from the fast collocation
method are all nearly weakly singular. In Section 5, a quadrature rule
for computing the weakly singular integral is developed. An error con-
trol strategy for the numerical integration is designed to preserve the
nearly optimal order of convergence and computational complexity for
the discrete fast collocation method. A numerical experiment
on the implementation of a three-dimensional equation is presented in
Section 6 to confirm the theoretical estimates.

2. A uniform partition of the simplex. The realization of the
fast collocation method requires the availability of multi-scale bases and
collocation functionals on the simplex having a multi-scale structure.
The construction of these bases and functionals demands a uniform self-
similar partition of the simplex. For general self-similar sets, see [21]
and also see [7, 26, 27, 28] for wavelet constructions on fractal sets. In
this section we construct such a partition for the d-dimensional simplex.
We first describe the partition strategy of the unit simplex and prove
that the partition has some uniformness property. We then extend the
partition strategy to a general simplex through affine mappings.

For a vector x ∈ Rd , we write x = [xj ∈ R : j ∈ Zd], where
Zd := {0, 1, . . . , d − 1}. The unit simplex S in Rd is the subset
S := {x ∈ Rd : 0 ≤ x0 ≤ x1 · · · ≤ xd−1 ≤ 1}. In order to partition
S, for a positive integer μ, we define a family of counting functions
χj : Zd

μ → Zd+1, j ∈ Zμ for e := (e0, e1, . . . , ed−1) ∈ Zd
μ by

(2.1) χj(e) =
∑
i∈Zd

δj(ei),

where δj(k) = 1 when j = k and otherwise δj(k) = 0. The value of
χj(e) is exactly the number of components of e that equals to j. Given
e ∈ Zd

μ, we identify a vector c(e) := [cj : j ∈ Zμ+1] ∈ Zμ+1
d+1 by

(2.2) c0 = 0, cj =
∑
i∈Zj

χi(e), j = 1, 2, . . . , μ.

We remark that c(e) is always nondecreasing since each χj takes
nonnegative value, and cμ is always equal to d. For e ∈ Zd

μ and j < k,
we define the index set Ψk

j := {el : j ≤ l < k, el = ek}. Then we define
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the permutation vector Ie = [ik : k ∈ Zd] ∈ Zd
d of e by

(2.3) ik = cek
+ |Ψk

0 |,

where |A| denotes the cardinality of set A, and we assume card (∅) = 0.
We have the following lemma about Ie.

Lemma 2.1. For any e ∈ Zd
μ, the permutation vector Ie has the

following properties.

(1) For k ∈ Zd, cm ≤ ik < cm+1 if and only if m = ek.

(2) For any j, k ∈ Zd, ij < ik if and only if ej < ek or ej = ek with
j < k.

(3) The equality ij = ik holds if and only if j = k.

(4) The vector Ie is a permutation of vd := [j : j ∈ Zd].

Proof. According to the definition of Ie, we have for any k ∈ Zk that

(2.4) cek
≤ ik < cek

+ |{ej : j ∈ Zd, ej = ek}| = cek+1.

This implies that if m = ek, cm ≤ ik < cm+1. On the other hand,
if there is an m such that cm ≤ ik < cm+1, it is unique because the
components of c(e) are nondecreasing. It follows from the uniqueness
of m and (2.4) that m = ek. Thus, property (1) is proved.

We now turn to proving property (2). If ej < ek, then ej + 1 ≤ ek

and hence cej+1 ≤ cek
since the component of c(e) is a nondecreasing

sequence. By (2.4) we conclude that ij < cej+1 ≤ cek
≤ ik. If ej = ek

with j < k, then ik − ij = |Ψk
j | ≥ 1, hence ij < ik. It remains to prove

that if ij < ik then ej < ek or ej = ek, j < k. Since in general for
j, k ∈ Zd one of the following cases holds: ej < ek, ej = ek with j < k,
ej = ek with j ≥ k, or ej > ek, it suffices to show that if ej > ek or
ej = ek with j ≥ k, then ij ≥ ik. If ej > ek, by the proof we showed
earlier in this paragraph, we conclude that ij > ik. If ej = ek with
j ≥ k, we have that ij − ik = |Ψj

k| ≥ 0, that is, ij ≥ ik. Thus, we
complete a proof for property (2).

The above analysis also implies that the only possibility to have
ij = ik is j = k. This proves property (3).
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Noticing that ek ∈ Zμ for k ∈ Zd and 0 ≤ cek
≤ ik < cek+1 ≤ d, we

conclude that Ie is a permutation of vd.

We next partition the unit simplex S. Associated with each e ∈ Zd
μ,

we define a set in Rd by

(2.5) Se :=
{
x ∈ Rd :0 ≤ xi0−

e0

μ
≤ xi1−

e1

μ
≤ · · · ≤ xid−1−

ed−1

μ
≤ 1

μ

}
,

where ik, k ∈ Zd, are the components of the permutation vector Ie of e.
Since Ie is a permutation of vd, Se is a simplex in Rd. In the following
lemma we present properties of the family of simplices Se, e ∈ Zd

μ.

Lemma 2.2. The simplices Se, e ∈ Zd
μ have the properties:

(1) For any x ∈ Se, there holds

(2.6)
k

μ
≤ xck

≤ xck+1 ≤ · · · ≤ xck+1−1 ≤ k + 1
μ

, k ∈ Zμ.

(2) For any e ∈ Zd
μ, Se ⊂ S.

(3) If e1, e2 ∈ Zd
μ with e1 �= e2, then int (Se1) ∩ int (Se2) = ∅.

(4) For any e ∈ Zd
μ, meas (Se) = 1/(μd · d!), where meas (Ω) denotes

the Lebesgue measure of set Ω.

Proof. In order to prove (2.6), it suffices to show

(2.7) 0 ≤ xck
− k

μ
≤ xck+1 −

k

μ
≤ · · · ≤ xck+1−1 −

k

μ
≤ 1

μ
, k ∈ Zμ,

or equivalently,

0 ≤ xp − k

μ
≤ xq −

k

μ
≤ 1

μ

for any ck ≤ p < q < ck+1. In fact, since Ie is a permutation of vd, for
any integers ck ≤ p < q < ck+1, there exists a unique pair p′, q′ ∈ Zd

such that ip′ = p, iq′ = q. It follows from Lemma 2.1 that ep′ = eq′ = k
and p′ < q′. Thus (2.5) states that

0 ≤ xp − k

μ
= xip′ −

ep′

μ
≤ xiq′ −

eq′

μ
= xq −

k

μ
≤ 1

μ
,
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which concludes property (1).

Property (2) is a direct consequence of (1) and the definition of S.

For the proof of (3), we first notice that

(2.8) int (Se)

=
{
x ∈ Rd : 0 < xi0 −

e0

μ
< xi1 −

e1

μ
< · · · < xid−1 −

ed−1

μ
<

1
μ

}
.

Moreover, by a proof similar to the one for (2.6), we utilize (2.8) to
conclude for any x ∈ int (Se) that

(2.9)
k

μ
< xck

< xck+1 < · · · < xck+1−1 <
k + 1

μ
, k ∈ Zμ.

For j = 1, 2 we denote ej = (ej
0, . . . , ej

d−1), Iej = (ij0, . . . , ijd−1),
c(ej) = (cj

0, . . . , cj
μ).

Assume to the contrary that int (Se1) ∩ int (Se2) is not empty. We
consider two cases. In Case 1 if c(e1) �= c(e2), we let k be the smallest
integer such that c1

k �= c2
k and assume c1

k < c2
k without loss of generality.

For any x ∈ int (Se1) ∩ int (Se2), by (2.9), we have xc1
k

> k/μ and
xc2

k
−1 < k/μ. On the other hand, because x ∈ S, we have that

xc1
k
≤ xc2

k
−1, a contradiction. In Case 2 if c(e1) = c(e2), since e1 �= e2,

we let k be the smallest integer such that e1
k �= e2

k. Hence, e1
j = e2

j for
j < k, and we assume that e1

k < e2
k without loss of generality. Thus,

we have that i1k < c1
e1

k
+1

≤ c2
e2

k

≤ i2k. There exists a unique p ∈ Zd such

that i1p = i2k since Ie1 is a permutation, and p ≥ k because i1j = i2j �= i2k
for all j < k. Furthermore, it follows from Lemma 2.1, c(e1) = c(e2)
and i1p = i2k that e1

p = e2
k �= e1

k, which implies p �= k. Therefore, for any
x ∈ int (Se1), there holds

xi1
k
− e1

k

μ
< xi1p

−
e1

p

μ
= xi2

k
− e2

k

μ
.

On the other hand, there is a unique q ∈ Zd such that q > k, i2q = i1k,
and for any x ∈ int (Se2),

xi2
k
− e2

k

μ
< xi2q

−
e2

q

μ
= xi1

k
− e1

k

μ
,
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again, a contradiction. This completes the proof of property (3).

For property (4), we find by a direct computation that meas (S′
e) =

1/(μdd!), where

S′
e :=

{
x ∈ Rd : 0 ≤ xi0 ≤ xi1 ≤ · · · ≤ xid−1 ≤ 1

μ

}
.

Notice that Se is the translation of simplex S′
e through the vector e/μ.

Since the Lebesgue measure of a set is invariant under translation, we
thus conclude property (4).

Theorem 2.3. The family S(Zd
μ) := {Se : e ∈ Zd

μ} is an equi-volume
partition of the unit simplex S.

Proof. By Lemma 2.2, we see that for any e ∈ Zd
μ, Se ⊂ S,

and for e1, e2 ∈ Zd
μ with e1 �= e2, int (Se1) ∩ int (Se2 ) = ∅ and

meas (Se1) = meas (Se2). It remains to prove that S ⊆ ∪e∈Zd
μ
Se.

To this end, for each x ∈ S we will find e ∈ Zd
μ such that x ∈ Se.

Note that for each x ∈ S we have 0 ≤ x0 ≤ x1 ≤ · · · ≤ xd−1 ≤ 1.
For each k ∈ Zμ we denote by ck the subscript of the smallest
component xj greater than or equal to k/μ. We order the elements
in set {xj : j ∈ Zd} ∪ {k/μ : k ∈ Zμ+1} in increasing order. We then
obtain that

0 ≤ x0 ≤ · · · ≤ xc1−1

≤ 1
μ
≤ xc1 ≤ · · · ≤ xcμ−1−1

≤ μ − 1
μ

≤ xcμ−1 ≤ · · · ≤ xcμ−1

= xd−1 ≤ 1.

In other words, we have that

(2.10) 0 ≤ xck
− k

μ
≤ xck+1 −

k

μ
≤ · · · ≤ xck+1−1 −

k

μ
≤ 1

μ
, k ∈ Zμ.

Denote pj := max{k : ck ≤ j}. It follows from (2.10) that the set
{xj − (pj/μ) : j ∈ Zd} ⊂ [0, (1/μ)]. We sort the elements of this set
into

(2.11) 0 ≤ xi0 −
pi0

μ
≤ xi1 −

pi1

μ
≤ · · · ≤ xid−1 −

pid−1

μ
≤ 1

μ
.
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Notice that the vector I := (i0, i1, . . . , id−1) is a permutation of vd.
Let e := (e0, . . . , ed−1) be a vector such that ej = pij . It is easy to
verify ij = cej + |Ψj

0|. Hence, I = Ie, which together with (2.11) shows
x ∈ Se.

In the rest of this section, we consider the important affine mappings
from S to Se, which are utilized to define linear operators for the
recursive construction of the multi-scale basis functions and functionals
from a lower level to higher levels. A permutation matrix has exactly
one entry in each row and column equal to 1 and all other entries being
zero, cf. [19]. Hence, a permutation matrix is an orthogonal matrix.
For any permutation Ie of vd, there is a unique permutation matrix Pe

such that Ie = Pevd. We call the vector

I∗e = (i∗0, . . . , i∗d−1) := PT
e vd

the conjugate permutation of Ie. Thus, I∗e itself is also a permutation
of vd. It follows from the definition above that for l ∈ Zd, i∗l = k if and
only if ik = l. We define the conjugate vector e∗ := (e∗0, e

∗
1, . . . , e∗d−1) of

e by setting e∗l = ei∗
l
, l ∈ Zd. Utilizing the above notations, we define

the mapping Ge by

(2.12) Ge(x) := x̃ =
[
x̃l =

xi∗
l

+ e∗l
μ

: l ∈ Zd

]
, x ∈ S.

We intend to show Ge(S) = Se. Indeed, for k ∈ Zd, we let l = ik and
observe by definition that i∗l = k, e∗l = ek. Thus x̃l = (xk + ek)/μ, or

(2.13) xk = μx̃l − ek = μx̃ik
− ek.

If x ∈ S, then 0 ≤ x0 ≤ x1 ≤ · · · ≤ xd−1 ≤ 1, which implies that

0 ≤ μx̃i0 − e0 ≤ μx̃i1 − e1 ≤ · · · ≤ μx̃id−1 − ed−1 ≤ 1,

or
0 ≤ x̃i0 −

e0

μ
≤ x̃i1 −

e1

μ
≤ · · · ≤ x̃id−1 −

ed−1

μ
≤ 1

μ
,

so that x̃ ∈ Se. On the other hand, given x̃ ∈ Se, we define
x := [xk : k ∈ Zd] by equation (2.13). Thus, x ∈ S and x̃ = Ge(x).
Therefore, Ge(S) = Se.
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The expression of the inverse mapping G−1
e has been given by equation

(2.13), which is written formally as

(2.14) x := G−1
e (x̃) = [xk = μx̃ik

− ek : k ∈ Zd], x̃ ∈ Se.

For any e ∈ Zd
μ and x′,x′′ ∈ Rd, there holds

‖Ge(x′) − Ge(x′′)‖p =
1
μ
‖x′ − x′′‖p,(2.15)

‖G−1
e (x′) − G−1

e (x′′)‖p = μ‖x′ − x′′‖p,(2.16)

where ‖ · ‖p is the standard �p norm on Rd for 1 ≤ p ≤ ∞.

Proposition 2.4. The family S(Zd
μ) is a uniform partition of the

unit simplex S in the sense that all elements of S(Zd
μ) have an identical

diameter.

Proof. We denote Δ := maxx′,x′′∈S ‖x′ − x′′‖p. It suffices to prove
that for any e ∈ Zd

μ,

max
x′
e,x′′

e∈Se

‖x′
e − x′′

e‖p =
Δ
μ

.

It follows from formula (2.16) that for any x′
e,x

′′
e ∈ Se,

μ‖x′
e − x′′

e‖p = ‖G−1
e (x′

e) − G−1
e (x′′

e)‖p ≤ Δ.

On the other hand, suppose that x̄′, x̄′′ ∈ S such that ‖x̄′ − x̄′′‖p = Δ
and let x̄′

e := Ge(x̄′), and x̄′′
e := Ge(x̄′′). By (2.15), we have that

‖x̄′
e − x̄′′

e‖p =
1
μ
‖x̄′ − x̄′′‖p =

Δ
μ

,

which completes the proof.

When a partition of the unit simplex has been established, it is not
difficult to obtain a corresponding partition of a general simplex in Rd.
For a nondegenerate simplex S′ in Rd, in the sense Vol (S′) �= 0, there
exists an affine mapping F : Rd → Rd such that F(S′) = S. It can be
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FIGURE 1. The distribution of Se, e ∈ Z2
2 in S.

shown that for 1 ≤ p ≤ ∞ there are two positive constants c1 and c2

such that

(2.17) c1‖x′ − x′′‖p ≤ ‖F(x′) −F(x′′)‖p ≤ c2‖x′ − x′′‖p,

for any x′,x′′ ∈ S′. For any e ∈ Zd
μ, we define G′

e := F−1 ◦ Ge ◦ F .
Thus, the family of simplices {G′

e(S
′) : e ∈ Zd

μ} is a partition of S′.
Furthermore, for any x′,x′′ ∈ Rd and e ∈ Zd

μ, there holds

c1

c2μ
‖x′ − x′′‖p ≤ ‖G′

e(x
′) − G′

e(x
′′)‖p ≤ c2

c1μ
‖x′ − x′′‖p.

For E := [ej : j ∈ Zm] ∈ (Zd
μ)m, we define the composite mappings

GE := Ge0 ◦ · · · ◦ Gem−1 and G′
E := G′

e0
◦ · · · ◦ G′

em−1

and observe that G′
E = F−1 ◦ GE ◦ F . In the next theorem we show

that the partition {G′
e(S

′) : e ∈ Zd
μ} of S′ is uniform, and it meets

the requirement of the fast collocation method. To this end, we let
SE := GE(S) and S′

E := GE(S′). Also, we use diamp to denote the
diameter of a domain in Rd with respect to the �p norm.
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Theorem 2.5. For any x′,x′′ ∈ Rd and E ∈ (Zd
μ)m, there hold

c1

c2

(
1
μ

)m

‖x′ − x′′‖p ≤ ‖G′
E(x′) − G′

E(x′′)‖p ≤ c2

c1

(
1
μ

)m

‖x′ − x′′‖p,

diamp(SE) =
(

1
μ

)m

diamp(S),

and

c1

c2

(
1
μ

)m

diamp(S′) ≤ diamp(S′
E) ≤ c2

c1

(
1
μ

)m

diamp(S′).

At the end of this section, we give partitions for important cases in
practice. For d = 1, the unit simplex is just the unit interval [0, 1]. We
obtain from (2.13) and (2.14) that

Gj(x) =
x + j

μ
, G−1

j (x) = μx − j, j ∈ Zμ,

and the subintervals obtained from the mappings are Sj = [(j/μ),
((j + 1)/μ)], j ∈ Zμ. For d = 2, the unit simplex is the unit triangle
S = {(x0, x1) : 0 ≤ x0 ≤ x1 ≤ 1}. We only consider the case
μ = 2. The expressions of the contractive mappings are listed in
Table 1, and the mapped triangles are Se, e ∈ Z2

2. We illustrate their
position in S in Figure 1. For d = 3, the unit simplex is given by
S = {(x0, x1, x2) : 0 ≤ x0 ≤ x1 ≤ x2 ≤ 1}. We also restrict ourselves
to the case μ = 2. In Table 2, we list the expressions of the eight
affine mappings Ge, e ∈ Z3

2 as well as their inverse mappings. The
sub-simplices Se, e ∈ Z3

2 are shown in Figure 2.

TABLE 1. The expressions of the mappings Ge for μ = 2, d = 2.

e Ce Ie I∗e e∗ Ge(x0, x1) G−1
e (x̃0, x̃1)

(0, 0) (0, 2, 2) (0, 1) (0, 1) (0, 0) ((x0/2), (x1/2)) (2x̃0, 2x̃1)

(0, 1) (0, 1, 2) (0, 1) (0, 1) (0, 1) ((x0/2), (x1 + 1/2)) (2x̃0, 2x̃1 − 1)

(1, 0) (0, 1, 2) (1, 0) (1, 0) (0, 1) ((x1/2), (x0 + 1/2)) (2x̃1 − 1, 2x̃0)

(1, 1) (0, 0, 2) (0, 1) (0, 1) (1, 1) ((x0 + 1/2), (x1 + 1/2)) (2x̃0 − 1, 2x̃1 − 1)
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FIGURE 2. A uniform partition of the three-dimensional unit simplex.

3. The multi-scale bases and collocation functionals. In
this section, we specialize the general construction of multi-scale bases
and their corresponding collocation functionals described in [11] to the
simplex S in Rd, by using the affine contractive mappings constructed
for the simplex in the previous section. For practical use, we also
present concrete multi-scale bases and collocation functionals for the
cases d = 1, 2, 3. The basis functions and collocation functionals on
the simplex are used to construct those on a polyhedral domain by
subdividing it into a fixed number of simplices. For more information
on construction of multi-scale bases and functionals, see [7, 8, 25, 27,
28].

We begin with the space X0 of polynomials of order k, i.e., polynomi-
als of total degree less than k, on S and the family Φ := {φe : e ∈ Zν}
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of affine contractive mappings of cardinality ν := μd, constructed in
the previous section, which satisfy

S = Φ(S) :=
⋃

e∈Zν

φe(S) and φe(S) ∩ φe′(S) = ∅,

for e, e′ ∈ Zν with e �= e′.

The dimension of X0 is w(0) :=
(
k−1+d

d

)
. A set G0 ⊆ Rd is said to

be refinable with respect to Φ if G0 ⊆ Φ(G0). The notion of refinable
sets was introduced in [7] and a concrete construction of G0 which
admits a unique Lagrange interpolatory polynomial of a prescribed
order was described in [25]. Associated with the space X0, we construct
a refinable set G0 := {sj : j ∈ Zw(0)} with respect to Φ of cardinality
|G0| = w(0), which admits a unique Lagrange interpolatory polynomial
of order k. For any j ∈ Zw(0), we let w0,j be the Lagrange interpolating
polynomial with respect to the interpolation set G0 at the point sj

and define the point evaluation functional at sj by �0,j := δsj . This
construction ensures that 〈�0,i, w0,j〉 = δij , for i, j ∈ Zw(0), where 〈·, ·〉
denotes the functional application as in [11].

To construct higher level basis functions, for each e ∈ Zν , we
introduce a linear operator Te : L∞(S) → L∞(S) defined for f ∈
L∞(S) by

(3.1) Tef := f ◦ φ−1
e

χφe(S),

where χA denotes the characteristic function of set A. For n ∈ N, we
define Xn recursively by

Xn :=
⋃

e∈Zν

TeXn−1.

Hence, Xn is the space of piecewise polynomials of order k with respect
to the partition Φn(S) and a basis for Xn is recursively constructed
by a basis for X1 with operator applications of Te. We next describe
a construction of a basis for X1. Clearly, the dimension of X1 is given
by νw(0) and we have the nestedness property that X0 ⊂ X1. We
let G1 := Φ(G0) and observe that the cardinality of G1 is νw(0). Let
L1 denote the space of the point evaluation functionals � of the form
� =

∑
s∈G1

csδs which satisfies 〈�, f〉 = 0, for f ∈ X0. We denote



HIGH-DIMENSIONAL WEAKLY SINGULAR INTEGRAL EQUATIONS 63

by {�1,j : j ∈ Zw(1)} a basis of L1, where w(1) := (ν − 1)w(0). For
j ∈ Zw(1), let w1,j ∈ X1 satisfy

(w0,j′ , w1,j) = 0, j′ ∈ Zw(0), and(3.2)
〈�1,j′ , w1,j〉 = δj′,j, j′ ∈ Zw(1).

We remark that each w1,j is uniquely determined by (3.2).

The basis functions wi,j , j ∈ Zw(i), i > 1, where w(i) := νi−1w(1),
are constructed by recursions as described in [11]. Specifically, for i > 1
and e := (e0, e1, . . . , ei−1) ∈ Zi

ν , we introduce the composite operator
Te := Te0 ◦ · · · ◦ Tei−1 and define the number μ(e) := νi−1e0 + · · · +
νei−2 + ei−1. We construct wi,j , i > 1, j ∈ Zw(i) from w1,l, l ∈ Zw(1)

in the way

(3.3) wi,j := Tew1,l, j = μ(e)w(1) + l, e ∈ Zi−1
ν , l ∈ Zw(1).

The collocation functionals �i,j , j ∈ Zw(i), i > 1, are constructed in a
similar manner. For e ∈ Zν , we define a linear operator Le : L∞(S)∗ →
L∞(S)∗ by the equation

〈Le�, f〉 = 〈�, f ◦ φe〉, f ∈ L∞(S), � ∈ L∞(S)∗,

and for e := (e0, . . . , ei−1) ∈ Zi
ν , we define the composition operator

Le := Le0 ◦ · · · ◦ Lei−1 . For i = 2, 3, . . . , n, we generate the functionals

(3.4) �i,j := Le�1,l, j = μ(e)w(1) + l, e ∈ Zi−1
ν , l ∈ Zw(1).

The multi-scale bases {wi,j : i ∈ Zn+1, j ∈ Zw(i)} and collocation
functionals {�i,j : i ∈ Zn+1, j ∈ Zw(i)} will lead to fast collocation
methods which will be described in the following section.

In the rest of this section, we follow the construction described above
to generate the multi-scale bases and collocation functionals of several
cases of practical importance. Since basis functions and collocation
functionals of levels higher than 1 are constructed by (3.3) and (3.4),
respectively, we present only those of levels 0 and 1.

3.1. The one-dimensional case. In the one-dimensional case, S =
[0, 1] and we choose Φ = {φj : j ∈ Z2} with

φ0(t) :=
t

2
, φ0(t) :=

t + 1
2

, t ∈ [0, 1].
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The linear basis. In this case, k = 2, and thus, X0 is the space of
polynomials of order 2 and dim (X0) = 2. A refinable set of cardinality
2 with respect to Φ is G0 = {(1/3), (2/3)}. Hence, at level 0, we have
two basis functions

w0,0(t) = 2 − 3t, w0,1(t) = −1 + 3t,

and two collocation functionals

�0,0 = δ1/3, �0,1 = δ2/3.

At level 1, we have two basis functions

w1,0(t) =

{
1 − (9/2)t t ∈ [0, (1/2)],

−1 + (3/2)t t ∈ ((1/2), 1]

w1,1(t) =

{
(1/2) − (3/2)t t ∈ [0, (1/2)],

−(7/2) + (9/2)t t ∈ ((1/2), 1]

and two collocation functionals

�1,0 = δ1/6 −
3
2
δ1/3 +

1
2
δ2/3, �1,1 =

1
2
δ1/3 −

3
2
δ2/3 + δ5/6.

The cubic basis. In this case k = 4 and correspondingly, X0 is the
space of polynomials of order 4 and dim (X0) = 4. A refinable set of
cardinality 4 with respect to Φ is G0 = {(1/5), (2/5), (3/5), (4/5)}. At
level 0, we have four basis functions

w0,0(t) = −1
6
(5t − 2)(5t − 3)(5t − 4),

w0,1(t) =
1
2
(5t − 1)(5t − 3)(5t − 4),

w0,2(t) = −1
2
(5t − 1)(5t − 2)(5t − 4),

w0,3(t) =
1
6
(5t − 1)(5t − 2)(5t − 3)

and four collocation functionals

�0,j = δ(j+1)/5, j ∈ Z4.
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At level 1 we have four basis functions

w1,0(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(85/32) − (725/12)t + (575/2)t2 − (1475/4)t3

t ∈ [0, (1/2)],

−(235/32) + (575/12)t − (175/2)t2 + (575/12)t3

t ∈ ((1/2), 1],

w1,1(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1145/288) − (1775/24)t + (1675/6)t2 − (4975/18)t3

t ∈ [0, (1/2)],

−(7495/288) + (3625/24)t − (525/2)t2 + (2525/18)t3

t ∈ ((1/2), 1],

w1,2(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(805/288) − (375/8)t + (475/3)t2 − (2525/18)t3

t ∈ [0, (1/2)],

−(19355/288) + (8275/24)t − 550t2 + (4975/18)t3

t ∈ ((1/2), 1],

w1,3(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(95/96) − (50/3)t + (225/4)t2 − (575/12)t3

t ∈ [0, (1/2)],

−(13345/96) + (1775/3)t − (3275/4)t2 + (1475/4)t3

t ∈ ((1/2), 1]

and four collocation functionals

�1,0 =
2
5
δ1/10 −

3
2
δ2/10 + 2δ3/10 − δ4/10 +

1
10

δ6/10,

�1,1 =
3
10

δ2/10 − δ3/10 + δ4/10 −
1
2
δ6/10 +

1
5
δ7/10,

�1,2 =
1
5
δ3/10 −

1
2
δ4/10 + δ6/10 − δ7/10 +

3
10

δ8/10,

�1,3 =
1
10

δ4/10 − δ6/10 + 2δ7/10 −
3
2
δ8/10 +

2
5
δ9/10.

3.2. The two-dimensional case. In the two-dimensional case, S =
{(x0, x1) ∈ R2 : 0 ≤ x0 ≤ x1 ≤ 1}, and we choose the contractive
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(3/14,4/7)

FIGURE 3. The refinable set G1 for two-dimensional linear basis.

mappings as Φ = {φe : e ∈ Z4} with

φ0(x, y) =
(

x

2
,
y

2

)
, φ1(x, y) =

(
x

2
,
y + 1

2

)
,

φ2(x, y) =
(

1 − x

2
, 1 − y

2

)
, φ3(x, y) =

(
x + 1

2
,
y + 1

2

)
.

We choose k = 2 and thus X0 is the space of linear polynomials on S,
and dim (X0) = 3. A refinable set of cardinality 3 with respect to Φ is
given by

G0 =
{(

2
7
,
3
7

)
,

(
1
7
,
5
7

)
,

(
4
7
,
6
7

)}
.

The basis functions of level 0 are

w0,0(t) = −3x + 2y, w0,1(t) = x − 3y + 2, w0,2(t) = 2x + y − 1,

and collocation functionals of level 0 are

�00 := δ((2/7),(3/7)), �01 := δ((1/7),(5/7)), �02 := δ((4/7),(6/7)).
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The set

G1 =
{(

1
7
,
5
7

)
,

(
2
7
,
3
7

)
,

(
4
7
,
6
7

)
,

(
1
14

,
6
7

)
,

(
1
14

,
5
14

)
,

(
3
7
,

9
14

)
,(

9
14

,
5
7

)
,

(
1
7
,

3
14

)
,

(
5
14

,
11
14

)
,

(
2
7
,
13
14

)
,

(
11
14

,
13
14

)
,

(
3
14

,
4
7

)}
.

We plot the points of G1 in Figure 3, in which the points marked with
‘∗’ are those of the subset G0.

The nine basis functions at level 1 are given by

w1,0(x, y) =

{
−(11/8) − (15/8)x + (41/8)y (x, y) ∈ S0,

5/8 + (1/8)x − (7/8)y (x, y) ∈ S \ S0,

w1,1(x, y) =

{
1 − (15/4)x − (7/8)y (x, y) ∈ S0,

−1 + (1/4)x + (9/8)y (x, y) ∈ S \ S0,

w1,2(x, y) =

{
9/8 + (15/8)x − (29/8)y (x, y) ∈ S0,

−(15/8)− (1/8)x + (19/8)y (x, y) ∈ S \ S0,

w1,3(x, y) =

{
−(15/8) − (41/8)x + (13/4)y (x, y) ∈ S1,

1/8 + (7/8)x − (3/4)y (x, y) ∈ S \ S1,

w1,4(x, y) =

{
(29/8) + (7/8)x − (37/8)y (x, y) ∈ S1,

−3/8− (9/8)x + (11/8)y (x, y) ∈ S \ S1,

w1,5(x, y) =

{
−5/8− (29/8)x + (7/4)y (x, y) ∈ S1,

3/8 + (19/8)x − (9/4)y (x, y) ∈ S \ S1,

w1,6(x, y) =

{
(15/4) − (13/4)x − (15/8)y (x, y) ∈ S3,

−1/4 + (3/4)x + (1/8)y (x, y) ∈ S \ S3,

w1,7(x, y) =

{
−(1/8)− (37/8)x + (15/4)y (x, y) ∈ S3,

−(1/8) + (11/8)x − (1/4)y (x, y) ∈ S \ S3,

w1,8(x, y) =

{
−(5/2) + (7/4)x + (15/8)y (x, y) ∈ S3,

1/2 − (9/4)x − (1/8)y (x, y) ∈ S \ S3,

where Se = φe(S), e ∈ Z4. Correspondingly, the nine collocation
functionals are given by

�1,0 = δ((1/14),(5/14)) − δ((1/7),(3/14)) + δ((2/7),(3/7)) − δ((3/14),(4/7))
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�1,1 = δ((1/14),(5/14)) − δ((2/7),(3/7)) + δ((3/7),(9/14)) − δ((3/14),(4/7)),

�1,2 = δ((5/14),(11/14)) − δ((3/7),(9/14)) + δ((2/7),(3/7)) − δ((3/14),(4/7))

�1,3 = δ((1/14),(6/7)) − δ((1/7),(5/7)) + δ((5/14),(11/14)) − δ((2/7),(13/14)),

�1,4 = δ((1/7),(5/7)) − δ((2/7),(13/14)) + δ((5/14),(11/14)) − δ((3/14),(4/7))

�1,5 = δ((3/7),(9/14)) − δ((5/14),(11/14)) + δ((1/7),(5/7)) − δ((3/14),(4/7)),

�1,6 = δ((4/7),(6/7)) − δ((11/14),(13/14)) + δ((9/14),(5/7)) − δ((3/7),(9/14))

�1,7 = δ((4/7),(6/7)) − δ((9/14),(5/7)) + δ((3/7),(9/14)) − δ((5/14),(11/14)),

�1,8 = δ((3/14),(4/7)) − δ((3/7),(9/14)) + δ((4/7),(6/7)) − δ((5/14),(11/14)).

Note that all functionals listed above are linear combinations of four
point evaluation functionals, which use the least number of points to
construct a functional that annihilates all linear polynomials. We also
note that all weights in the linear combinations are either 1 or −1.
In fact, these functionals are divided difference functionals in some
sense. We plot the positions of the point sets of the nine functionals
in Figure 4. The points marked with ‘+’ have weights 1 while those
marked with ‘◦’ have weights −1.

3.3. The three-dimensional case. In the three-dimensional case

S = {(x0, x1, x2) : 0 ≤ x0 ≤ x1 ≤ x2 ≤ 1},

and we choose the eight contractive mappings {Ge : e ∈ Z3
2} listed in

Table 2. We construct a linear basis and its corresponding collocation
functionals. Hence, k = 2 and X0 is the space of linear polynomials on
S, and dim (X0) = 4. A basis for X0 has the form

w0,0(x, y, z) = 2 + y − 3z, w0,1(x, y, z) = x − 3y + 2z,

w0,2(x, y, z) = −3x + 2y, w0,3(x, y, z) = −1 + 2x + z.

An appropriate refinable set of cardinality 4 is given by

G0 :=
{(

8
15

,
4
5
,
14
15

)
,

(
4
15

,
2
5
,

7
15

)
,

(
2
15

,
1
5
,
11
15

)
,

(
1
15

,
3
5
,
13
15

)}
.

The elements of G0 define the collocation functions �0j of level 0, for
j = 0, 1, 2, 3.
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FIGURE 4. The functionals �1j , j ∈ Z9 for two-dimensional linear basis.

Let Se = Ge(S) for e ∈ Z3
2. The 28 basis functions w1,j , j ∈ Z28, of

level 1 are given by

w1,0(x, y, z) =
{

(55/16) − (65/8)z (x, y, z) ∈ S(0,0,0),
−(25/16) + (15/8)z (x, y, z) ∈ S \ S(0,0,0),

w1,1(x, y, z) =
{−(75/16) − (65/8)y + (65/8)z (x, y, z) ∈ S(0,0,1),

(5/16) + (15/8)y − (15/8)z (x, y, z) ∈ S \ S(0,0,1),

w1,2(x, y, z) =
{−(75/16) − (65/8)x + (65/8)y (x, y, z) ∈ S(0,1,1),

(5/16) + (15/8)x − (15/8)y (x, y, z) ∈ S \ S(0,1,1),

w1,3(x, y, z) =
{−(75/16) + (65/8)x (x, y, z) ∈ S(1,1,1),

(5/16) − (15/8)x (x, y, z) ∈ S \ S(1,1,1),

w1,4(x, y, z) =
{−(29/16) + (31/16)y + (21/8)z (x, y, z) ∈ S(0,0,0),

(19/16) − (1/16)y − (11/8)z (x, y, z) ∈ S \ S(0,0,0),
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w1,5(x, y, z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−(5/2) + (31/16)x − (31/16)y + (99/16)z

(x, y, z) ∈ S(0,0,0),

(3/2)− (1/16)x + (1/16)y − (29/16)z
(x, y, z) ∈ S \ S(0,0,0),

w1,6(x, y, z) =
{−(25/32) − (31/16)x + (17/8)z (x, y, z) ∈ S(0,0,0),

(23/32) + (1/16)x − (7/8)z (x, y, z) ∈ S \ S(0,0,0),

w1,7(x, y, z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(11/4) + (31/16)x + (21/8)y − (73/16)z

(x, y, z) ∈ S(0,0,1),

−(1/4)− (1/16)x − (11/8)y + (23/16)z
(x, y, z) ∈ S \ S(0,0,1),

w1,8(x, y, z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(59/16) − (31/16)x + (99/16)y − (99/16)z

(x, y, z) ∈ S(0,0,1),

−(5/16) + (1/16)x − (29/16)y + (29/16)z
(x, y, z) ∈ S \ S(0,0,1),

w1,9(x, y, z) =
{−(19/32) + (17/8)y − (3/16)z (x, y, z) ∈ S(0,0,1),

−(3/32) − (7/8)y + (13/16)z (x, y, z) ∈ S \ S(0,0,1)

w1,10(x, y, z) =
{

(11/4) + (21/8)x − (73/16)y (x, y, z) ∈ S(0,1,1),

−(1/4)− (11/8)x + (23/16)y (x, y, z) ∈ S \ S(0,1,1),

w1,11(x, y, z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(7/4) + (99/16)x − (99/16)y + (31/16)z

(x, y, z) ∈ S(0,1,1),

−(1/4)− (29/16)x + (29/16)y − (1/16)z
(x, y, z) ∈ S \ S(0,1,1),

w1,12(x, y, z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(43/32) + (17/8)x − (3/16)y − (31/16)z

(x, y, z) ∈ S(0,1,1),

−(5/32) − (7/8)x + (13/16)y + (1/16)z
(x, y, z) ∈ S \ S(0,1,1),

w1,13(x, y, z) =
{

(13/16) − (73/16)x + (31/16)z (x, y, z) ∈ S(1,1,1),

−(3/16) + (23/16)x − (1/16)z (x, y, z) ∈ S \ S(1,1,1),

w1,14(x, y, z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(59/16) − (99/16)x + (31/16)y − (31/16)z

(x, y, z) ∈ S(1,1,1),

−(5/16) + (29/16)x − (1/16)y + (1/16)z
(x, y, z) ∈ S \ S(1,1,1),
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w1,15(x, y, z) =
{

(43/32) − (3/16)x − (31/16)y (x, y, z) ∈ S(1,1,1),

−(5/32) + (13/16)x + (1/16)y (x, y, z) ∈ S \ S(1,1,1),

w1,16(x, y, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(1/4) + (79/240)x + (451/240)y − (229/240)z
(x, y, z) ∈ S(0,0,0) ∪ S(1,0,0),

(29/60) − (49/240)x − (29/240)y − (101/240)z
(x, y, z) ∈ S(0,1,0) ∪ S(0,0,1),

(11/20) − (49/240)x − (61/240)y − (101/240)z
(x, y, z) ∈ S(0,1,1) ∪ S(1,0,1),

(49/60) + (79/240)x − (61/240)y − (229/240)z
(x, y, z) ∈ S(1,1,0) ∪ S(1,1,1),

w1,17(x, y, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25/464) + (727/696)x − (2857/1392)y + (461/696)z
(x, y, z) ∈ S(0,0,0) ∪ S(1,0,0),

(47/48) + (119/696)x − (73/1392)y − (827/696)z
(x, y, z) ∈ S(0,1,0) ∪ S(0,0,1),

(185/464) + (119/696)x + (679/1392)y − (611/696)z
(x, y, z) ∈ S(0,1,1) ∪ S(1,0,1),

−(13/1392) − (449/696)x − (329/1392)y + (461/696)z
(x, y, z) ∈ S(1,1,0) ∪ S(1,1,1),

w1,18(x, y, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(1/16) − (179/240)x + (49/240)y + (29/240)z
(x, y, z) ∈ S(0,0,0) ∪ S(1,0,0),

−(31/240) − (211/240)x + (49/240)y + (61/240)z
(x, y, z) ∈ S(0,1,0) ∪ S(0,0,1),

(11/80) − (211/240)x − (79/240)y + (61/240)z
(x, y, z) ∈ S(0,1,1) ∪ S(1,0,1),

(289/240) + (301/240)x − (79/240)y − (451/240)z
(x, y, z) ∈ S(1,1,0) ∪ S(1,1,1),
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w1,19(x, y, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(97/464) − (1489/1392)x − (119/696)y + (73/1392)z
(x, y, z) ∈ S(0,0,0) ∪ S(1,0,0),

(23/48) − (305/1392)x − (119/696)y − (679/1392)z
(x, y, z) ∈ S(0,1,0) ∪ S(0,0,1),

−(303/464) − (305/1392)x + (449/696)y + (329/1392)z
(x, y, z) ∈ S(0,1,1) ∪ S(1,0,1),

−(997/1392) − (481/1392)x − (727/696)y + (2857/1392)z
(x, y, z) ∈ S(1,1,0) ∪ S(1,1,1),

w1,20(x, y, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1/16) + (61/240)x + (229/240)y − (211/240)z
(x, y, z) ∈ S(0,0,0) ∪ S(1,0,0),

−(241/240) − (451/240)x + (229/240)y + (301/240)z
(x, y, z) ∈ S(0,1,0) ∪ S(0,0,1),

(21/80) + (29/240)x + (101/240)y − (179/240)z
(x, y, z) ∈ S(0,1,1) ∪ S(1,0,1),

(79/240) + (61/240)x + (101/240)y − (211/240)z
(x, y, z) ∈ S(1,1,0) ∪ S(1,1,1)

w1,21(x, y, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(53/232) + (329/1392)x − (461/696)y − (305/1392)z
(x, y, z) ∈ S(0,0,0) ∪ S(1,0,0),

(7/24) + (2857/1392)x − (461/696)y − (481/1392)z
(x, y, z) ∈ S(0,1,0) ∪ S(0,0,1),

(21/232) + (73/1392)x + (827/696)y − (1489/1392)z
(x, y, z) ∈ S(0,1,1) ∪ S(1,0,1),

−(125/696) − (679/1392)x + (611/696)y − (305/1392)z
(x, y, z) ∈ S(1,1,0) ∪ S(1,1,1),

w1,22(x, y, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(1/8)− (101/240)x + (211/240)y − (49/240)z
(x, y, z) ∈ S(0,0,0) ∪ S(1,0,0),

−(47/120) − (229/240)x + (211/240)y + (79/240)z
(x, y, z) ∈ S(0,1,0) ∪ S(0,0,1),

(27/40) − (229/240)x − (301/240)y + (79/240)z
(x, y, z) ∈ S(0,1,1) ∪ S(1,0,1),

−(7/120) − (101/240)x + (179/240)y − (49/240)z
(x, y, z) ∈ S(1,1,0) ∪ S(1,1,1)
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w1,23(x, y, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1/116) − (611/696)x + (305/1392)y + (119/696)z
(x, y, z) ∈ S(0,0,0) ∪ S(1,0,0),

(5/12) + (461/696)x + (305/1392)y − (449/696)z
(x, y, z) ∈ S(0,1,0) ∪ S(0,0,1),

−(155/116) + (461/696)x + (481/1392)y + (727/696)z
(x, y, z) ∈ S(0,1,1) ∪ S(1,0,1),

−(91/348) − (827/696)x + (1489/1392)y + (119/696)z
(x, y, z) ∈ S(1,1,0) ∪ S(1,1,1),

w1,24(x, y, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(345/464) + (1103/464)x + (12/29)y − (1263/464)z
(x, y, z) ∈ S(0,0,0) ∪ S(1,0,0),

−(27/16) − (593/464)x + (12/29)y + (993/464)z
(x, y, z) ∈ S(0,1,0) ∪ S(0,0,1),

−(231/464) − (593/464)x − (27/29)y + (753/464)z
(x, y, z) ∈ S(0,1,1) ∪ S(1,0,1),

(497/464) + (863/464)x + (8/29)y − (1263/464)z
(x, y, z) ∈ S(1,1,0) ∪ S(1,1,1),

w1,25(x, y, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(225/464) + (8/29)x − (1263/464)y + (17/29)z
(x, y, z) ∈ S(0,0,0) ∪ S(1,0,0),

(13/16) + (12/29)x − (1263/464)y − (2/29)z
(x, y, z) ∈ S(0,1,0) ∪ S(0,0,1),

−(191/464) + (12/29)x + (993/464)y − (37/29)z
(x, y, z) ∈ S(0,1,1) ∪ S(1,0,1),

−(503/464) − (27/29)x + (753/464)y + (17/29)z
(x, y, z) ∈ S(1,1,0) ∪ S(1,1,1),

w1,26(x, y, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(45/232) + (753/464)x + (17/29)y − (593/464)z
(x, y, z) ∈ S(0,0,0) ∪ S(1,0,0),

−(11/8)− (1263/464)x + (17/29)y + (863/464)z
(x, y, z) ∈ S(0,1,0) ∪ S(0,0,1),

−(363/232) − (1263/464)x − (2/29)y + (1103/464)z
(x, y, z) ∈ S(0,1,1) ∪ S(1,0,1),

(201/232) + (993/464)x − (37/29)y − (593/464)z
(x, y, z) ∈ S(1,1,0) ∪ S(1,1,1),
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w1,27(x, y, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(105/232) − (37/29)x − (593/464)y + (12/29)z
(x, y, z) ∈ S(0,0,0) ∪ S(1,0,0),

(9/8) + (17/29)x − (593/464)y − (27/29)z
(x, y, z) ∈ S(0,1,0) ∪ S(0,0,1),

−(383/232) + (17/29)x + (863/464)y + (8/29)z
(x, y, z) ∈ S(0,1,1) ∪ S(1,0,1),

−(459/232) − (2/29)x + (1103/464)y + (12/29)z
(x, y, z) ∈ S(1,1,0) ∪ S(1,1,1).

The set G1 = {ti,j : i ∈ Z8, j ∈ Z4} where

t0,0 :=
(

2
15

,
1
5
,

7
30

)
, t0,1 :=

(
1
15

,
1
10

,
11
30

)
,

t0,2 :=
(

1
30

,
3
10

,
1, 3
30

)
, t03 :=

(
4
15

,
2
5
,

7
15

)
,

t1,0 :=
(

1
15

,
1
10

,
13
15

)
, t1,1 :=

(
1
30

,
3
10

,
14
15

)
,

t1,2 :=
(

4
15

,
2
5
,
29
30

)
, t1,3 :=

(
2
15

,
1
5
,
11
15

)
,

t2,0 :=
(

1
30

,
4
5
,
14
15

)
, t2,1 :=

(
4
15

,
9
10

,
29
30

)
,

t2,2 :=
(

2
15

,
7
10

,
11
15

)
, t2,3 :=

(
1
15

,
3
5
,
13
15

)
,

t3,0 :=
(

23
30

,
9
10

,
29
30

)
, t3,1 :=

(
19
30

,
7
10

,
11
15

)
,

t3,2 :=
(

17
30

,
3
5
,
13
15

)
, t3,3 :=

(
8
15

,
4
5
,
14
15

)
,

t4,0 :=
(

2
5
,

7
15

,
23
30

)
, t4,1 :=

(
1
5
,

7
30

,
19
30

)
,

t4,2 :=
(

1
10

,
11
30

,
17
30

)
, t4,3 :=

(
3
10

,
13
30

,
8
15

)
,

t5,0 :=
(

1
15

,
11
30

,
3
5

)
, t5,1 :=

(
1
30

,
13
30

,
4
5

)
,

t5,2 :=
(

4
15

,
7
15

,
9
10

)
, t5,3 :=

(
2
15

,
7
30

,
7
10

)
,
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t6,0 :=
(

3
10

,
8
15

,
14
15

)
, t6,1 :=

(
2
5
,
23
30

,
29
30

)
,

t6,2 :=
(

1
5
,
19
30

,
11
15

)
, t6,3 :=

(
1
10

,
17
30

,
13
15

)
,

t7,0 :=
(

7
30

,
19
30

,
7
10

)
, t7,1 :=

(
11
30

,
17
30

,
3
5

)
,

t7,2 :=
(

13
30

,
8
15

,
4
5

)
, t7,3 :=

(
7
15

,
23
30

,
9
10

)
.

Correspondingly, the collocation functionals of level 1 have the form

�1,0 := δt00 −
2
5
δt01 −

13
10

δt02 −
4
5
δt03 +

3
2
δt42 ,

�1,1 := δt10 −
2
5
δt11 −

13
10

δt12 −
4
5
δt13 +

3
2
δt52 ,

�1,2 := δt20 −
2
5
δt21 −

13
10

δt22 −
4
5
δt23 +

3
2
δt62 ,

�1,3 := δt30 −
2
5
δt31 −

13
10

δt32 −
4
5
δt33 +

3
2
δt72 ,

�1,4 := δt00 − 2δt01 − δt40 + 2δt41 ,

�1,5 := δt01 − 2δt02 − δt41 + 2δt42 ,

�1,6 := δt02 − 2δt03 − δt42 + 2δt43 ,

�1,7 := δt10 − 2δt11 − δt50 + 2δt51 ,

�1,8 := δt11 − 2δt12 − δt51 + 2δt52 ,

�1,9 := δt12 − 2δt13 − δt52 + 2δt53 ,

�1,10 := δt20 − 2δt21 − δt60 + 2δt61 ,

�1,11 := δt21 − 2δt22 − δt61 + 2δt62 ,

�1,12 := δt22 − 2δt23 − δt62 + 2δt63 ,

�1,13 := δt30 − 2δt31 − δt70 + 2δt71 ,

�1,14 := δt31 − 2δt32 − δt71 + 2δt72 ,

�1,15 := δt32 − 2δt33 − δt72 + 2δt73 ,

�1,16 := δt40 − 2δt41 − δt52 + 2δt53 ,

�1,17 := δt41 − 2δt42 − δt53 + 2δt50 ,

�1,18 := δt42 − 2δt43 − δt70 + 2δt71 ,
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�1,19 := δt43 − 2δt40 − δt71 + 2δt72 ,

�1,20 := δt62 − 2δt63 − δt50 + 2δt51 ,

�1,21 := δt63 − 2δt60 − δt51 + 2δt52 ,

�1,22 := δt60 − 2δt61 − δt72 + 2δt73 ,

�1,23 := δt61 − 2δt62 − δt73 + 2δt70 ,

�1,24 := δt60 −
9
5
δt40 +

3
5
δt41 −

6
5
δt42 +

7
5
δt43 ,

�1,25 := δt70 −
9
5
δt50 +

3
5
δt51 −

6
5
δt52 +

7
5
δt53 .

�1,26 := δt40 −
9
5
δt60 +

3
5
δt61 −

6
5
δt62 +

7
5
δt63 ,

�1,27 := δt50 −
9
5
δt70 +

3
5
δt71 −

6
5
δt72 +

7
5
δt73 .

4. The fast collocation scheme. We describe in this section a
matrix compression strategy which defines the fast collocation method.
Matrix compression for singular integral operators by using Galerkin
methods has been studied by many authors, cf. [5, 6, 15, 29]. The re-
cent paper [11] established a general setting for the matrix compression
of a weakly singular operator by using collocation methods. While we
review the fast collocation method we will also improve the theoretical
results in [11] by removing a technical hypothesis.

Let Ω be a compact domain in Rd, and let the operator K : L∞(Ω) →
L∞(Ω) be defined by

(4.1) (Ku)(s) :=
∫

Ω

K(s, t)u(t) dt, s ∈ Ω.

We consider the Fredholm integral equation of the second kind of the
form

(4.2) u −Ku = f,

where f ∈ L∞(Ω) is a given function, u ∈ L∞(Ω) is the unknown to
be determined. For any d-dimensional vector α := [αi : i ∈ Zd] ∈ Nd

0,
where N0 := {0, 1, 2, . . .}, we define |α| :=

∑
i∈Zd

αi, and the partial
derivative

Dα = Dα
t :=

∂|α|

∂tα0
0 · · ·∂t

αd−1
d−1

,
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where t := [ti : i ∈ Zd] ∈ Rd. We assume that for s, t ∈ Ω, s �= t, the
kernel K has continuous derivatives Dα

s Dβ
t K(s, t) for |α| < k, |β| < k,

and there exist positive constants σ and θ with σ < d such that for
|α| = |β| = k, there holds

(4.3) |Dα
s Dβ

t K(s, t)| ≤ θ

|s − t|σ+|α|+|β| .

In this case K is a compact operator on L∞(Ω). We also suppose that
1 is not an eigenvalue of K which ensures that the equation (4.2) has a
unique solution in L∞(Ω).

We assume that Ω is the union of a finite number p of simplices.
Multi-scale basis functions and functionals on Ω are constructed in
terms of those described in the last section on the unit simplex.
Specifically, Ω is subdivided into p simplices, and each simplex is
mapped onto the unit simplex by the corresponding affine mapping.
The basis functions and functionals on the unit simplex are transformed
to those on the particular simplex which is a part of Ω, and they
are extended to the entire domain Ω by setting to zero outside the
simplex. In the following description of the collocation method, to avoid
notational complication we restrict to the case p = 1. The extension to
the general case is straightforward.

The collocation method for solving (4.2) is to find a vector un :=
[ui,j : (i, j) ∈ Un]T , where Un := {(i, j) : j ∈ Zw(i), i ∈ Zn+1}, such
that the function un :=

∑
(i,j)∈Un

ui,jwi,j satisfies the equation

(4.4) 〈�i′,j′ , un −Kun〉 = 〈�i′,j′ , f〉, (i′, j′) ∈ Un.

Let f(n) :=
∑

i∈Zn+1
w(i) and the dimension of the vector un is f(n).

By defining f(n) × f(n) matrices

En := [〈�i′,j′ , wi,j〉 : (i′, j′), (i, j) ∈ Un],
Kn := [〈�i′,j′ ,Kwi,j〉 : (i′, j′), (i, j) ∈ Un],

and vector fn := [〈�i′,j′ , f〉 : (i′, j′) ∈ Un]T , equation (4.4) has the form

(4.5) (En − Kn)un = fn.

Note that the properties of the multi-scale basis and collocation func-
tionals described in the previous section ensure that the matrix En is
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sparse and the full matrix Kn can be approximated by a sparse matrix
K̃n, which leads to a fast collocation method. Specifically, we partition
Kn as

Kn := [Ki′i : i′, i ∈ Zn+1]

where
Ki′i := [Ki′j′,ij : j′ ∈ Zw(i′), j ∈ Zw(i)]

with Ki′j′,ij := 〈�i′,j′ ,Kwi,j〉. Choosing a family of truncation param-
eters

(4.6) εn
i′i := max{aμ−n+b(n−i)+b′(n−i′), ρ(μ−i + μ−i′)}, i′, i ∈ Zn+1

for some constants a, b, b′ > 0 and ρ > 1, we define the truncated matrix

K̃n :=
[
K̃i′i : i′, i ∈ Zn+1

]
,

where
K̃i′i :=

[
K̃i′j′,ij : j′ ∈ Zw(i′), j ∈ Zw(i)

]
with

K̃i′j′,ij :=
{

Ki′j′,ij dist (Si′j′ , Sij) ≤ εn
i′i,

0 otherwise.

We solve the truncated linear system

(4.7) (En − K̃n)ũn = fn.

The truncation parameters are chosen so that (4.7) is a fast and
accurate collocation method for solving equation (4.2).

Orders of convergence and computational complexity of this fast
collocation method were proved in [11] under Hypotheses (I) (X)
described there. To close this section, we show that Hypothesis (VII)
in [11] is not necessary. The only role of Hypothesis (VII) in [11] is to
establish Lemma 4.1. We now prove the same conclusion of Lemma 4.1
without hypothesis (VII).

Proposition 4.1. Suppose that the following conditions hold.

(1) For any i, i′ ∈ N0, 〈�i′,j′ , wi,j〉 = δi′,iδj′,j, for all (i, j), (i′, j′) ∈
Un with n ∈ N, i ≤ i′.
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(2) There exists a positive constant c such that ‖�i,j‖ ≤ c, for all
(i, j) ∈ Un with n ∈ N.

(3) There exists a positive constant c such that for u ∈ W k,∞(Ω)

dist (u,Xn) ≤ cr−kn/d‖u‖k,∞,

where r denotes the number of contractive mappings used to subdivide
Ω at the initial step. Let Pn be the interpolation projection from L∞(Ω)
onto Xn. Then for v ∈ W k,∞(Ω), and Pnv =

∑
(i,j)∈Un

vi,jwi,j , there
exists a positive constant c such that

|vi,j | ≤ cr−ki/d‖v‖k,∞, (i, j) ∈ Un.

Proof. It follows from condition (1) that for (i, j) ∈ Un, vi,j =
〈�i,j ,Piv − Pi−1v〉. This with condition (2) yields

(4.8) |vi,j | ≤ c‖Piv − Pi−1v‖∞.

On the other hand, for v ∈ W k,∞(Ω), condition (3) leads to

‖Piv − Pi−1v‖∞ ≤ ‖Piv − v‖∞ + ‖v − Pi−1v‖∞ ≤ cr−ki/d‖v‖k,∞.

Combining the above inequality with (4.8) yields the estimate of this
proposition.

Note that the integer r = μd by our construction. We further
remark that conditions (1) and (3) are Hypotheses (II) and (X) in
[11], respectively, and condition (2) is a part of Hypothesis (IV) there.
Note that the basis functions and collocation functionals constructed
in the previous section satisfy Hypotheses (I) (VI) and (VIII) (X).
Employing Proposition 4.1 to replace Lemma 4.1 in [11], we have the
following theorem, which improves Theorems 4.4, 4.5, 4.6 in [11].

Theorem 4.2. Let u ∈ W k,∞(Ω) be the solution of equation (4.2),
and let ũn ∈ Xn be its approximate solution associated with the solution
of (4.7). If the truncation parameter εn

i′,i is chosen as (4.6) with b = 1,
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k/(2k − σ′) < b′ < 1, then there exist a positive constant c and a
positive integer N such that for all n ≥ N

‖u − ũn‖∞ = cf(n)−k/d log f(n)‖u‖k,∞,

N (En − K̃n) = cf(n) log f(n)
and

cond (En − K̃n) ≤ c log2 f(n),

where for a matrix A, N (A) and cond (A) denote the number of its
nonzero entries and condition number, respectively.

5. Error control of the quadrature rule. The entries of matrix
K̃n are all high-dimensional (nearly) weakly singular integrals due
to the singularity of the kernel K. In practice, they all have to be
computed numerically. In this section we derive a quadrature rule
for computing such singular integrals. We prove that the quadrature
rule has an optimal order of convergence. Based on this estimate, we
develop a strategy to control the quadrature error so that the overhead
error caused by the numerical integration is essentially in the same
order as the approximation error presented in Theorem 4.2 while the
computational cost to form the matrix K̃n is nearly in the same order
of the number of nonzero entries of K̃n. The design of the quadrature
rule presented in this section is influenced by the work [18, 23, 36,
39].

We now describe the quadrature rule. Suppose that Ω ⊂ Rd is a
bounded domain and s ∈ Ω is a fixed point. We consider a class of
functions f which have singular behavior near the point s. Specifically,
a function f is said to be in the class As if there exists a disjoint
decomposition of Ω

Ω =
⋃

j∈ZM

Ωj , int (Ωi) ∩ int (Ωj) = ∅ for i �= j,

such that for any j ∈ ZM , f |int(Ωj) ∈ C∞(int(Ωj)\{s}), and there
exists a positive constant σ ∈ [0, d) such that for any t ∈ Ω\{s}

(5.1) |f(t)| ≤ θ′
{

1/(|s − t|σ) 0 < σ < d,
log(1/|s − t|) σ = 0,
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and

(5.2) |Dαf(t)| ≤ |α|!θ′
|s − t|σ+|α| , α ∈ Nd

0

for some positive constant θ′. Here the parameter σ measures the
“degree” of the singularity of f at the point s. For a point s ∈ Ω, we
set rs := sup{|s − t| : t ∈ Ω}. For any γ ∈ (0, 1), let t0 = 0, tι = γm−ι,
ι = 1, 2, . . . , m. We subdivide the domain Ω by

Ω :=
⋃

ι∈Zm

⋃
τ∈Zμ(ι)

Dι,τ ,

which satisfies the following conditions.

(I) The interiors of the subdomains Dι,τ are disjoint, i.e., int (Dι,τ)∩
int (Dι′,τ ′) = ∅ for (ι, τ) �= (ι′, τ ′).

(II) For any (ι, τ) ∈ Vm := {(ι, τ) : τ ∈ Zμ(ι), ι ∈ Zm}, Dι,τ ⊂ Ωj

for some j ∈ ZM .

(III) For any (ι, τ) ∈ Vm, c1rstι ≤ dist (s, Dι,τ ) ≤ c′1rstι+1 for some
positive constants c1 and c′1, where

dist (s, D) := inf{|s− t| : t ∈ D}

for a domain D ⊂ Rd.

(IV) There is a positive constant c2 such that for (ι, τ) ∈ Vm,
diam (Dι,τ ) ≤ c2(tι+1−tι)rs, where diam (D) := sup{|t−t′| : t, t′ ∈ D}.

(V) There exists a positive constant c3 such that for ι ∈ Zm,
μ(ι) ≤ c3M(tdι+1 − tdι ).

A prototype of the above subdivision is the case that Ω is a ball centered
at the point s and we subdivide Ω into a collection of rings centered
at the same point s with radius rstι+1, ι ∈ Zm−1. Each ring is then
decomposed into subdomains with the number of subdomains in each
ring being proportional to tι. Through out this section, we assume that
such a subdivision of Ω is available.

For f ∈ As, to compute the integral of f on each subdomain Dι,τ ,
we select a set of points Xι,τ := {xl

ι,τ : l ∈ Zν(ι,τ)}, where ν(ι, τ) is a
positive integer depending on ι and τ . For each τ ∈ Zμ(0), we choose
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the weights al
0,τ to be 0, that is, we omit the integral of f in D0,τ ,

τ ∈ Zμ(0). For ι > 0 and for a positive integer kι, we find the weights
Aι,τ := {al

ι,τ : l ∈ Zν(ι,τ)}, such that∫
Dι,τ

f(t) dt =
∑

l∈Zν(ι,τ)

al
ι,τf(xl

ι,τ ) + Ekι(Dι,τ , Aι,τ , Xι,τ)

with

|Ekι(Dι,τ , Aι,τ , Xι,τ )| ≤ c4

kι!

∑
|α|=kι

|(Dαf)(ηα)|[diam (Dι,τ )]kιmeas (Dι,τ)

for some positive constant c4 with ηα ∈ Dι,τ . Hence, by introducing
the vector k := [kι : ι = 1, 2, . . . , m], we have the quadrature formula

Qm,k(f) :=
∑

(ι,τ)∈Vm

∑
l∈Zν(ι,τ)

al
ι,τf(xl

ι,τ ).

For ι ∈ Zm, we set

ει,τ :=
∫

Dι,τ

f(t) dt −
∑

l∈Zν(ι,τ)

al
ι,τf(xl

ι,τ ), τ ∈ Zμ(ι)

Em,k,ι(f) :=
∑

τ∈Zμ(ι)

|ει,τ | , and Em,k(f) :=
∑

ι∈Zm

Em,k,ι(f).

Clearly, Em,k(f) is an upper bound of the error between the integral
of f on Ω and the quadrature Qm,k(f). In the next lemma, we choose
the vector k and estimate an upper bound of the corresponding error
Em,k(f).

Lemma 5.1. Let ε > 0 and choose

(5.3) kι := �ει�, ι = 1, 2, . . . , m.

If f ∈ As, then there exists γ ∈ (0, 1) such that

(5.4) Em,k(f) ≤ cγ(d−σ)m

for some positive constant c independent of m.
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Proof. It follows from our quadrature rule that

Em,k,0(f) ≤
∫ c′1rs(t1−t0)

0

θ′t−σtd−1 dt =
θ′[c′1rs]d−σ

(d − σ)γd−σ
γ(d−σ)m.

For (ι, τ) ∈ Vm with ι > 0,

|ει,τ | ≤
c4

kι!

(
kι + d − 1

d − 1

)
kι!θ′(c1rstι)−(σ+kι)[c2rs(tι+1 − tι)]kιmeas (Dι,τ )

= c
−(σ+kι)
1 ckι

2 c4θ
′
(

kι + d − 1
d − 1

)
r−σ
s t−σ

ι

(
1
γ
− 1

)kι

meas (Dι,τ ).

It follows from Properties (I) and (III) that∑
τ∈Zμ(ι)

meas (Dι,τ) ≤ Vd[(c′1rstι+1)d − (c1rstι)d],

where Vd is the volume of the d-dimensional unit ball. Therefore,

Em,k,ι(f) ≤ Vdc
−(σ+kι)
1 ckι

2 c4θ
′
(

kι + d − 1
d − 1

)
r−σ
s t−σ

ι

(
1
γ
− 1

)kι

× [(c′1rstι+1)d − (c1rstι)d]

= Vdc
−(σ+kι)
1 ckι

2 c4θ
′
(

kι + d − 1
d − 1

)
rd−σ
s td−σ

ι

(
1
γ
− 1

)kι

×
[(

c′1
γ

)d

− cd
1

]
= Vdc

−σ
1 c4θ

′rd−σ
s

[(
c′1
γ

)d

− cd
1

](
kι + d − 1

d − 1

)(
c2

c1

)kι

× (1 − γ)kι

γkι+ι(d−σ)
γm(d−σ)

= c

[(
kι + d − 1

d − 1

)
γσι/2

] [(
c2

c1

)kι (1 − γ)kι

γkι+ιd

]
γσι/2γm(d−σ)

with

c := Vdc
−σ
1 c4θ

′rd−σ
s

[(
c′1
γ

)d

− cd
1

]
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independent of m and ι. It is easily observed that there is γ ∈ (0, 1) such
that (1 − γ)/(γ1+d/ε) < (c1/c2). By the definition of kι, we observe
that kιd/ε ≥ ιd. It follows that[(

c2

c1

)kι (1 − γ)kι

γkι+ιd

]
≤

[(
c2

c1

)kι (1 − γ)kι

γkι+kιd/ε

]
≤ 1

for any ι. When kι > d − 1,
(

kι+d−1
d−1

)
≤ kd−1

ι . Hence,
(
kι+d−1

d−1

)
γσι/2 is

bounded uniformly for all kι. Therefore,

Em,k,ι(f) ≤ cγσι/2γ(d−σ)m.

Summing up the above inequalities with respect to ι concludes the
lemma.

We next apply the quadrature rule to the computation of the entries
of the compressed matrix K̃n. We assume that the kernel K(s, t) has
the singularity property that for any s ∈ Ω, K(s, ·) ∈ As. Recall that
K̃n is obtained from the full matrix Kn by the truncation strategy with
the truncation parameters εn

i′i, i′, i ∈ Zn+1. For given εn
i′i, we introduce

an index set

Zi′j′,i := {j ∈ Zw(i) : dist (Si′j′ , Sij) ≤ εn
i′i}

for (i′, j′) ∈ Un and for � ∈ Zr define Z

i′j′,i := {j ∈ Zi′j′,i : j =

μ(e)r + �}. Observing that Z

i′j′,i ⊂ Zi′j′,i and for j1, j2 ∈ Z


i′j′,i with
j1 �= j2, meas (supp (wi,j1 )∩ supp (wi,j2 )) = 0, we define for � ∈ Zr and
(i′, j′) ∈ Un

w̄i′j′,i
(t) :=
{

wi,j(t) if t ∈ int (supp (wi,j)) for some j ∈ Z

i′j′,i,

0 otherwise,

and let h̄i′j′,i
(s, t) := K(s, t)w̄i′j′,i
(t). We next estimate the error of
the quadrature for computing the integral of h̄i′j′,i
.

Lemma 5.2. If k is chosen as (5.3), then there exists a positive
constant c such that for all i ∈ Zn+1, � ∈ Zr, (i′, j′) ∈ Un and s ∈ Ω,

|Em,k(h̄i′j′,i
)| ≤ cμk(i−1)γ(d−σ)m,

where k is the order of the piecewise polynomials in X0.
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Proof. Let

Δ := max
β∈Nd

0 ,
|β|<k,
l∈Zr

ess sup{|Dβw1,l(t)| : t ∈ Ω}.

Since w1,l is a piecewise polynomial of order k on Ω, Δ is finite. For
|α| = kι and t ∈ supp (wi,j), a direct computation gives

|Dαh̄i′j′,i
(t)| =
∣∣∣∣ ∑

β≤α

(
α

β

)
Dα−βK(s, t)Dβw̄i′j′,i
(t)

∣∣∣∣
≤ θ′

∑
β≤α

(
α

β

)
(kι − |β|)!|s − t|−(σ+kι−|β|)μ|β|(i−1)

× |Dβw1,l(φ−1
e (t))|

≤ θ′Δkι!|s − t|−(σ+kι)
∑
β≤α
|β|≤k

(
α

β

)
|s − t||β|μ|β|(i−1),

in which β ≤ α for two vectors α := (α0, . . . , αd−1), β := (β0, . . . , βd−1) ∈
Nd

0 means that βi ≤ αi for i ∈ Zd and
(
α
β

)
= Πi∈Zd

(
αi

βi

)
. Since

αi ≤ |α| = kι and βi ≤ k,
(
αi

βi

)
≤ kk

ι , and thus
(
α
β

)
≤ kkd

ι . For

τ ′ ∈ Zk+1, the number of β ∈ Nd
0 with |β| = τ ′ is

(
τ ′+d−1

d−1

)
. Hence,

|Dαh̄i′j′,i
(t)| ≤ θ′Δkι!kkd
ι |s−t|−(σ+kι)

∑
τ ′∈Zk+1

(
τ ′ + d − 1

d − 1

)
[|s−t|μ(i−1)]τ

′
.

Noting that c1rsγ
m−ι ≤ |s − t| ≤ rs and

(
τ ′+d−1

d−1

)
≤ (k + d − 1)d−1,

there holds

|Dαh̄i′j′,i
(t)| ≤ cθ′Δkι!kkd
ι (k + d − 1)d−1(c1rsγ

m−ι)−(σ+kι−k)μk(i−1).

Similar to Lemma 5.1, we conclude that there exists a positive constant
c independent of m and i such that

Em,k(h̄i′j′,i
) ≤ cμk(i−1)γ(d−σ)m.
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Utilizing the properties of the multi-scale basis and collocation func-
tionals and similar arguments in [13] we conclude that there exists a
positive constant c such that for all i′, i ∈ Zn+1,

‖K̃i′i − ˜̃Ki′i‖∞ ≤ cμ(i−1)kγ(d−σ)m,

where ˜̃Ki′i is the block K̃i′i when its entries are computed numerically
using the proposed quadrature rule. To ensure that the numerical in-
tegration will not ruin the convergence order of the collocation scheme,
we have to carefully choose the value of m in the computation of the
matrix elements. We choose different integers mi′i, i′, i ∈ Zn+1 for
the numerical integration of the entries in different blocks K̃i′i. With
nearly the same arguments in [13], we obtain the following theorem.

Theorem 5.3. Let u be the solution of equation (4.2). For i′, i ∈
Zn+1, let mi′i satisfy

(5.5) mi′i ≥
−k log μ

(d − σ) log γ
(2i + i′ − 1).

Suppose that the kernel K(s, t) as a function of t satisfies (5.1) and
(5.2), and we apply the quadrature rule to the computation of the
blocks K̃i′i with m := mi′i and k defined by (5.3). Let ˜̃un denote the
corresponding approximate solution. If u ∈ W k,∞(Ω), then there exists
a positive constant c and a positive integer N such that, for all n > N ,

(5.6) ‖u − ˜̃un‖∞ ≤ c(f(n))k/d(log f(n))τ‖u‖k,∞,

where τ = 1 if b′ > k/(2k − σ′) and τ = 2 if b′ = k/(2k − σ′).

Now we turn to analyzing the computational complexity for gener-

ating the matrix ˜̃Kn in terms of the number of functional evaluations.
For i′, i ∈ Zn+1, we denote by Mi′i the total number of functional

evaluations for computing the entries of ˜̃Ki′i. Then the total number

of functional evaluations used for computing all the entries of ˜̃Kn is
given by

Mn :=
∑

i′∈Zn+1

∑
i∈Zn+1

Mi′i.
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The following theorem gives an estimate of Mn.

Theorem 5.4. Suppose that the number of points used in the
quadrature rule is of order kd

ι , i.e., ν(ι, τ) ≤ ckd
ι for some positive

constant c, mi′i, i′, i ∈ Zn+1 are chosen to be the smallest integer
satisfying (5.5), and the truncation parameters εn

i′i are chosen as (4.6)
with b′ ≤ 1, b ≤ 1. Then, there exists a positive constant c such that
for n ∈ N

(5.7) Mn ≤ cf(n)(log f(n))d+2.

Proof. For i′, i ∈ Zn+1, we let Mi′i,j′ denote the number of functional

evaluations used in computing the j′th row of the block ˜̃Ki′i. Recalling
that there are no more than μd(i′+1) rows in this block, we obtain

Mi′i ≤ μd(i′+1) max
j′

Mi′i,j′ .

For a function h, we use M(h) to denote the number of functional
evaluations in the numerical integration of h. It follows from the
definition of h̄i′j′,i
 that
(5.8)

Mi′i,j′ ≤ c
∑

j∈Zi′j′,i

M(K(s, ·)wi,j) = c
∑

∈Zr

∑
j∈Z�

i′j′,i

M(K(s, ·)wi,j)

= c
∑

∈Zr

M(h̄i′j′,i
),

where the constant c is the upper bound of the number of the points
involved in the functionals �i′,j′ , which is independent of n, i′ and i.
By our assumptions on the quadrature rule, there holds

M(h̄i′j′,i
) ≤ c
l∑

ι=1

kd
ι

[
c3rs(γd(mi′i−ι−1) − γd(mi′i−ι))μd(i−1)

]
for some l ≤ m. We remark that if the truncation strategy is not
applied, then l = m. Since kι < ει + 1, we obtain that

Mi′i,j′ ≤ c

[
c3rs

(
1
γ
− 1

)d

μd(i−1)
l∑

ι=1

(ει + 1)dγd(mi′i−ι)

]
.
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FIGURE 5. The numbers of nonzero elements (left) and computational costs (right)
of the coefficient matrices.

According to the truncation strategy,

γmi′i−ι ≤ εn
i′i + di + di′ , for all ι ≤ l,

where di is the upper bound of the diameter of the support of the basis
functions at level i. By our choice of εn

i′i and mi′i, there is a positive
constant c such that

Mi′i,j′ ≤ c

[
ndμd(i−1)

(
μ−n+b′(n−i′)+b(n−i) + μ−i+1 + μ−i′+1

)d
]

.

Therefore,

Mn≤c
∑

i′∈Zn+1

∑
i∈Zn+1

[
ndμd(i+i′)

(
μ−n+b′(n−i′)+b(n−i) + μ−i+1+μ−i′+1

)d
]

.

A simple computation leads to Mn ≤ cnd+2μdn, proving the theorem.

6. A numerical experiment. In this section we present a
numerical experiment of solving equation (4.2) on a three-dimensional
simplex by the fast collocation method. Consider the equation

(6.1) u(s) −
∫

Ω

K(s, t)u(t) dt = f(s),
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where Ω := {t = (x, y, z) : 0 ≤ x ≤ y ≤ z ≤ 1} and K(s, t) :=
1/|s− t|, s, t ∈ Ω. The righthand side function f is chosen to be
f(s) = |t|2 −

∫
Ω
|s|2/|s − t| dt so that the solution of (6.1) has the form

u(s) = x2 + y2 + z2.

We use the three-dimensional linear basis and the corresponding
collocation functionals to discretize equation (6.1). The compressed
coefficient matrix of the resulting linear system is obtained by using
the choice (4.6) of the truncation parameters with a = 0.125, b = 1,
b′ = 0.9, ρ = 1.01. The resulting linear system with a sparse matrix
is solved by the multilevel augmentation method developed in [12]
with the initial level 2. We denote by ũ2,n−2 the approximate solution
obtained from the multilevel augmentation method at level n with the
initial level 2.

The numerical experiment is done in a Pentium 4 personal computer
with 3GHz CPU and 512M memory.

We report in Table 3 the error of the approximate solution ũ2,n−2,
convergence order (conv. order), the number of nonzero entries of the
matrix K̃n, compression rate (comp. rate), computational time (CT)
measured in seconds for computing the entries of the matrix K̃n, and
computational time (ST) for solving the linear system. The convergence
order α is computed according to the formula

α := log
‖u − ũ2,n−3‖∞
‖u − ũ2,n−2‖∞

/ log
f(n)

f(n − 1)
.

Note that the theoretical convergence order is α = 2/3 up to a
logarithm factor, because k = 2 and d = 3. We observe that the
computed convergence order is approximately equal to 2/3.

The compression rate is defined as the ratio of the number of the
nonzero entries of the compressed matrix K̃n and that of the full matrix
Kn, i.e., N (K̃n)/f(n)2. For n = 4, the compression rate 0.069176
tells us that the truncation strategy saves our time by ignoring the
calculation of more than 93% entries of Kn. The theoretical estimate
for the nonzero entries of matrix K̃n reveals that

N (K̃n) = O(f(n) log f(n)).

In order to confirm this estimate, we plot in Figure 5 (left) four points
(n, logN (K̃n)) for n = 1, 2, 3, 4, marked with the mark ‘∗’. Since
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f(n) = 4 · 8n, the points should match the graph of the function
y = log(4ρ ·8x log(4 ·8x)) for some positive constant ρ if our theoretical
estimate matches the computed result. We let ρ = 1 and plot the graph
in dotted curve. It shows that the data points match the curve very
well.

Recall that the total number of functional evaluations in generating
the matrix K̃n is given by

Mn = O(f(n)(log f(n))5).

The value Mn is asymptotically proportional to the total time spent
for generating the matrix K̃n, which are shown in the “CT” column.
We utilize the data in column “CT” to plot four points (n, CTn) with
‘∗’ marks in Figure 5 (right) and compare them with the dotted curve
of the graph of the function y = log(4 · 8x) + 5 log(log(4 · 8x)) − 7.5.

The last column “ST” records the time for solving the resulting linear
system via the multilevel augmentation method. We observe the high
efficiency of the algorithm by noticing that it spends only 0.156 seconds
to solve a linear system of dimension 16384.
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