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ABSTRACT. A direct function theoretic method is em-
ployed to determine the closed form solution of the general-
ized Abel integral equation. The present form of the solu-
tion involves only weakly singular integrals to be evaluated
finally as opposed to the known form that requires evaluation
of strongly singular integrals of the Cauchy type.

1. Introduction. The generalized Abel integral equation

(1) a(x)
∫ x

α

φ(t) dt
(x − t)u

+ b(x)
∫ β

x

φ(t) dt
(t− x)u

= f(x),

(0 < μ < 1) (α ≤ x ≤ β)

where the coefficients a(x) and b(x) do not vanish simultaneously, is
solved in closed form, under the specific assumptions on the functions
a, b, f and φ, though not stated explicitly, which will be clear from the
form of the solutions derived later on.

The generalized Abel equation (1) was examined in Gakhovs book
[1], under the special assumptions that the coefficients a(x) and b(x)
satisfy Hölders conditon in [α, β], whereas the forcing term f(x) and
the unknown function φ(x) belong to those classes of functions which
admit representations of the form

f(x) = [(x− α)(β − x)]ε f∗(x),

and φ(x) =
φ∗(x)

[(x− α)(β − x)]1−μ−ε

⎫⎪⎬⎪⎭ (ε > 0)(2)
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where f∗(x) possesses a Hölder continuous derivative in [α, β] and φ∗(x)
satisfies Hölders condition in [α, β].

The method of solution, as explained in Gakhov [1], requires the
solution of a Riemann - Hilbert problem for the determination of the
sectionally analytic function of the complex variable z (z = x+iy, i2 =
−1), belonging to the complex z-plane, cut along the segment [α, β] of
the real axis, as defined by

(3) Φ(z) =
1

R(z)

∫ β

α

φ(t) dt
(t− z)μ

,

with

(4) R(z) = [(z − α)(β − z)]
1
2 (1−μ) ,

so that

(5) Φ(z) = 0
(

1
z

)
, as |z| → ∞,

and the associated Riemann - Hilbert problem is finally solved by uti-
lizing the Plemelj -Sokhotski formulae involving Cauchy-type singular
integrals.

As a particular example of the equation (1) the method of Gakhov
[1] gives rise to the solution of the integral equation

(6)
∫ β

α

φ(t) dt
|x− t|μ = f(x), (α ≤ x ≤ β)

as given by

(7) φ(x) =
sin(μπ)

π

d

dx

[∫ x

α

g(t) dt
(x− t)1−μ

]
,

where

(8) g(x) =
1
2
f(x) − cot(μπ/2)

2π
R(x)

∫ β

α

f(t)
dt

R(t)(t− x)
.
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We observe that the form of the solution φ(x) of equation (6), as
given by the expressions (7) and (8), needs the evaluation of a singular
integral of Cauchy type that involves stronger singularity than what
Abel’s integral equation actually requires. Thus, the method of Gakhov
has a particular disadvantage in the sense that while solving a singular
equation that involves integrals only with weak singularity of the type
(t−x)−μ(0 < μ < 1), occurrence of strongly singular integrals involving
Cauchy type singularities of the type (t− x)−1 has to be permitted.

In the present paper we have followed a straightforward and direct
method to solve the original integral equation (1). The final form of the
presently determined solution involves only weakly singular integrals
of the Abel type and thus Cauchy type singular integrals are avoided
altogether.

2 The detailed method. We set

(9) Φ(z) =
∫ β

α

φ(t)dt
(t− z)μ

(0 < μ < 1)[
≡

∫ x

α

φ(t)dt
(t− z)μ

+
∫ β

x

φ(t)dt
(t− z)μ

]
,

and find that as z tends to a point x ∈ [α, β], from above (z =
x + iy, y −→ o+) and below (z = x + iy, y −→ o−)(i2 = −1) ,
respectively, the sectionally analytic function Φ(z) (see Gakhov [1])
as given by (9), tends to the following limiting values:

(10) Φ±(x) = e±μπi(A1φ)(x) + (A2φ)(x)

where

(A1φ)(x) =
∫ x

α

φ(t) dt
(x − t)μ

,

and (A2φ)(x) =
∫ β

x

φ(t) dt
(x− t)μ

,

⎫⎪⎪⎬⎪⎪⎭(11)

The relation (10) can also be expressed as

(A1φ)(x) =
1

2i sin(μπ)
[Φ+(x) − Φ−(x)],(12)

and (A2φ)(x) =
−1

2i sin(μπ)
[e−μπiΦ+(x) − eμπiΦ−(x)],
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By using the relations (12) in the given integral equation (1), we obtain:

(13) [a(x) − e−μπib(x)]Φ+(x) − [a(x) − e+μπib(x)]Φ−(x)
= 2isin(μπ)f(x), (α ≤ x ≤ β)

The above relation (13) represents the special Riemann-Hilbert type
problem as given by the relation

(14) Φ+(x) +G(x)Φ−(x) = g(x), (α ≤ x ≤ β)

with

G(x) = −
[
a(x) − eμπi b(x)
a(x) − e−μπi b(x)

]
(15)

= −exp
[
−2i arctan

{
b(x)sin(μπ)

a(x) − b(x)cos(μπ)

}]
and

(16) g(x) =
2 i sin (μπ) f(x)
a(x) − e−μπi b(x)

.

We shall next explain a method of solution of the new Riemann-
Hilbert type problem (14), for which the unknown sectionally analytic
function Φ(z), given by equation (9), satisfies the following condition
at infinity:

(17) Φ(z) = O

(
1
zμ

)
, as |z| → ∞

We first solve the homogeneous problem (14), satisfying the relation

(18) Φ+
0 (x) +G(x)Φ−

0 (x) = 0,

giving

(19) Ψ+
0 (x) − Ψ−

0 (x) = G0(x),

where
Φ0(z) = exp [Ψ0(z) ]
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and

(20) −G(x) = exp[G0(x) ]

Now, by utilizing the first of the two relations in (12), we find that we
can express the function Ψ0(z), satisfying (19), as :

(21) Ψ0(z) =
∫ β

α

ψ0(t)dt
(t− z)μ

where

(22) ψ0(x) = [2i sin(μπ)]−1(A−1
1 G0)(x),

with

(23) (A−1
1 G0)(x) =

(
sinμπ
π

)
d

dx

∫ x

α

G0(t) dt
(x− t)1−μ

.

Next, by utilizing (19) in (14), we obtain

(24)
Φ+(x)
Φ+

0 (x)
− Φ−(x)

Φ−
0 (x)

=
g(x)

Φ+
0 (x)

,

where

(25) Φ±
0 (x) = exp [ Ψ±

0 (x) ]

with Ψ±
0 (x) being obtainable by using the relations (21)- (23), giving

rise to results of the type (10).

Then, by utilizing the first of the formulae (12), we can determine
the solution of the Riemann-Hilbert type problem (24), as given by :

(26)
Φ(z)
Φ0(z)

=
∫ β

α

λ(t) dt
(t− z)μ

,

where

(27) λ(x) =
1

2πi
· d
dx

[ ∫ x

α

g(t) dt
Φ+

0 (t)(x − t)1−μ

]
.
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The relation (27) takes the equivalent form, obtainable by integrating
by parts, given by

(28) λ(x) =
1

2πi

[
p(α)

(α − x)1−μ
+

∫ x

α

p′(t) dt
(t− x)1−μ

]
,

with

(29) p(t) =
g(t)

Φ+
0 (t)

, p′(t) =
dp

dt
,

under the special assumptions on the behaviour of the functions a,
b and f , which admit the existence of the derivative of the function
p(x)(α < x < β).

Next, we obtain the following limiting values of the function Φ(z), as
z approaches the point x ∈ [α, β] : [see (10)]:

(30) Φ±(x) = Φ±
0 (x)

[
e±μπi(A1λ)(x) + (A2λ)(x))

]
giving

(31) Φ+(x) − Φ−(x) = h(x)(say),

where

(32) h(x) =
[
e+μπiΦ+

0 (x) − e−μπiΦ−
0 (x)

]
(A1λ)(x)

+
[
Φ+

0 (x) − Φ−
0 (x)

]
(A2λ)(x),

Finally, by utilizing the first formula in (12), once again, we obtain
the required solution of the given integral equation (1) in the form:

(33) φ(x) =
1

2πi
d

dx

[ ∫ x

α

h(t) dt
(x − t)1−μ

]
.

The result (33) can also be expressed in the equivalent form [see (27)
and (28)]:

(34) φ(x) =
1

2πi

[
h(α)

(x− α)1−μ
+

∫ x

α

h′(t) dt
(x− t)1−μ

]
,
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under the special assumptions on the functions a, b and f , which admit
the existence of the derivatives of the function h(x).

An alternative form of the solution φ(x) can be derived as explained
below :

We find that if we solve the Riemann-Hilbert problem (14), by first
solving a different homogeneous Riemann-Hilbert problem, as given by
the relation

(35) Φ+
0 (x) + e−2μπiG(x)Φ̂−

0 (x) = 0,

instead of the homogeneous problem (18), we obtain the following
alternative representation of the sectionally analytic function Φ(z) :

(36) Φ(z) = Φ̂0(z)
∫ β

α

λ̂(t) dt
(t− z)μ

.

with

(37) λ̂(x) =
e−μπi

2πi
d

dx

∫ β

x

g(t) dt

Φ̂+
0 (t)(t− x)1−μ

,

or,

(38) λ̂(x) =
e−μπi

2πi

[
p̂(β)

(β − x)1−μ
−

∫ β

x

p̂′(t) dt
(t− x)1−μ

]
,

with

(39) p̂(t) =
g(t)

Φ̂+
0 (t)

,

whenever p̂(x) is differentiable.

Then, utilizing the limiting values Φ±(x) of the function Φ(z), as
given by the formula (36), along with the second formula in (12), we
obtain an alternative representation of the unknown function φ(x) [the
solution of the integral equation (1)] as given by

(40) φ(x) =
1

2πi
d

dx

[∫ β

x

ĥ(t) dt
(t− x)1−μ

]
,
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where

ĥ(x) = e−μπiΦ+(x) − e−μπiΦ−(x)(41)

=
[
Φ̂+

0 (x) − Φ̂−
0 (x)

]
(A1λ̂)(x)

+
[
e−μπiΦ̂+

0 (x) − eμπiΦ̂−
0 (x)

]
(A2λ̂)(x).

We note that we have used above, the well-known formula

(42) (A−1
2 f)(x) = − sin(μπ)

π

d

dx

[∫ β

x

f(t) dt
(t− x)1−μ

]
,

The result (40) can also be expressed in the equivalent form

(43) φ(x) = − 1
2πi

[
ĥ(β)

(β − x)1−μ
−

∫ β

x

ĥ′(t) dt
(t− x)1−μ

]

whenever the function ĥ(x) is differentiable.

We emphasize that though the exact assumptions on the class of
functions a, b and f, for which the solution formulae (36) and (37) hold
good are not stated explicitly, it is clear that these formulae are valid
for a wide range of choices of the functions involved.

In particular, when either a = 0, b = 1 or a = 1, b = 0, we get back the
known solutions of Abel’s integral equations, by utilizing the solution
formula (33) or (40).

We find that no Cauchy type singular integrals occur in the above
analysis.

In the particular case, when a = b = 1, we obtain the integral
equation (6), and many results derived above simplify a lot giving

Φ+
0 (x) = exp(−iπ/4)

[
1 − (1 − x)1/2

1 + (1 − x)1/2

]1/4

,(44)

if α = 0, β = 1 and μ = 1/2.

We obtain the solution of (6), as given by either of the two formulae
(35) and (36), which is different from the known (see Gakhov [1]) result
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(8), where a Cauchy-type singular integral is needed to be evaluated,
which is in sharp contrast with the formula (31). A similar conclusion
holds for the particular case, when a = b = −1, for which we obtain

Φ+
0 (x) = exp(+iπ/4)

[
1 + (1 − x)1/2

1 − (1 − x)1/2

]1/4

,(45)

if α = 0, β = 1 and μ = 1/2.

We observe that the final results obtained here are all in computable
forms and dealing with specific examples will be the subject matter of
future work.

The major findings of the present work can be expressed in the form
of a theorem as stated below :

Theorem : The generalized Abel integral equation

(1*) a(x)(A1φ)(x) + b(x)(A2φ)(x) = f(x), (α ≤ x ≤ β)

where the two Abel operators A1 and A2 are given by the relations :

(A1φ)(x) =
∫ β

α

φ(t) dt
(x− t)μ

,(2*)

(A2φ)(x) =
∫ β

x

φ(t) dt
(x− t)μ

(0 < μ < 1)

with a(x), b(x) and f(x) representing known functions of sufficiently
general class as dictated by the various formulae occurring below, can
be solved in closed form which requires evaluation of only weakly
singular Abel type integrals as given by the following formula:

either

(3*) φ(x) =
1

2 i sin (μπ)
(A−1

1 h)(x), (α ≤ x ≤ β),

or

(4*) φ(x) =
−1

2 i sin (μπ)
(A−1

2 ĥ)(x), (α ≤ x ≤ β),
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with A−1
1 and A−1

2 representing the well-known Abel’s inverse oper-
ators, where the functions h(x) and ĥ(x) are given by the following
relations.

h(x) = [e+μπiΦ+
0 (x) − e−μπiΦ−

0 (x)](A1λ)(x)(5*)
+ [Φ+

0 (x) − Φ−
0 (x)](A2λ)(x),

and

ĥ(x) = [Φ̂+
0 (x) − Φ̂−

0 (x)](A1λ̂)(x)(6*)

+ [e−μπiΦ̂+
0 (x) − e+μπiΦ̂−

0 (x)](A2λ̂)(x)

with

λ(x) =
1
2i

(
(A−1

1

( g

Φ+
0

))
(x),

λ̂(x) =
−eμπi

2i
(
(A−1

2

( g

Φ̂+
0

))
(x)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (α ≤ x ≤ β)(7*)

where the functions Φ+
0 (x) and Φ̂+

0 (x) are the limiting values of the
functions Φ0(z) and Φ̂0(z), (z = x + iy, y → 0+), as given by the
formulae :

Φ0(z) = exp

[∫ β

α

ψ0(t) dt
(t− z)μ

]
,

Φ̂0(z) = exp

[∫ β

α

ψ̂0(t) dt
(t− z)μ

]
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

(8*)

with

ψ0(x) =
1

2i sin (μπ)
(A−1

1 G0)(x) ,

ψ̂0(x) =
1

2i sin (μπ)
(A−1

1 (G0 − 2μπi))(x) ,

⎫⎪⎪⎬⎪⎪⎭(9*)

the functions g(x) and G0(x) being given by the relations :

(10*) g(x) =
2 i sin (μπ)f(x)
a(x) − e−μπib(x)
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and

(11*) G0(x) = −2 i arctan
[

b(x) sin (μπ)
a(x) − b(x) cos (μπ)

]

The related references to the present work are the papers of Gakhov
[2], Lundgren and Chiang [3] and Sakalyuk [4].
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