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ABSTRACT. We consider the problem to reconstruct the
location and shape of an unknown number of sound-soft ob-
stacles from the far field pattern of scattered acoustic waves.
First, the point source method is used to generate an estimate
for the area where the obstacles are located. In its simplest
form the point source method will provide the convex hull of
the set of obstacles. Then, we investigate a novel evolutionary
Newton algorithm which integrates the Newton scheme with
elements of an evolutionary approach. The Newton method is
an efficient local method to find obstacles if the number, ap-
proximate location and shape of all obstacles is known. With-
out this knowledge the method quickly runs into local minima
or diverges. The evolutionary algorithm is capable of finding
the number of obstacles, their location and shape. However,
in its typical form the algorithm is not appropriate for inverse
scattering problems due to the expensive evaluation of the for-
ward scattering map. Evolutionary algorithms usually use a
large number of target function evaluations on a population
of solutions and converge slowly. We will employ principles
of both algorithms to formulate a novel evolutionary Newton
scheme which does combine the strength of both evolutionary
methods and the Newton scheme and does avoid their partic-
ular limitations. This shows that a combination of statistical
and deterministical reconstruction methods can be used to
significantly extend the range of the algorithms of both areas.
In our last part we illustrate the feasibility of the scheme by
numerical examples.

1. Introduction. Shape reconstruction problems are important ba-
sic problems for many applied sciences, for example in nondestructive
testing, medical imaging and geophysical exploration. The mathemat-
ical area of inverse scattering problems investigates the reconstruction
of the location and shape of objects from the knowledge of the Cauchy
values or far field pattern, respectively, of scattered acoustic or elec-
tromagnetic waves. For a description of the state-of-the-art of inverse
scattering theory we refer to [1] and the survey article [16].
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Evolutionary methods are a popular branch of optimization meth-
ods. They are part of the statistical optimization approach and employ
the principles of evolution for finding the minimum of some function
depending on several variables. As a basic difference of evolutionary
methods in contrast to numerical iteration schemes evolutionary meth-
ods

• do not only consider one iterate or a sequence of iterates to generate
a new approximation to the true solution, but they employ a whole
collection of approximate solutions, called a population,

• they create a new and ‘better’ population (called child population)
from a previous population (called parent population) using stochasti-
cal mutation, splitting and recombination steps. Mutation steps change
the parameters of the parent population. Splitting leads to the creation
of new individuals with different properties. Recombination combines
different features of different individuals into a new individual imitating
inheritance observed in biological parentship.

For inverse scattering problems evolutionary methods have not been
widely used due to two crucial disadvantages of the evolutionary ap-
proach. First, since it works with many objects, it needs to solve a
large number of forward problems for inversion. If the forward map
is time consuming, this leads to large reconstruction times. Second,
since the transition from one population to another is driven by ‘blind’
mutation, the properties of the forward problem (like gradients, deriva-
tives etc.) are not taken into account. This leads to slow convergence
and, together with the first disadvantage, to even more time consuming
algorithms.

On the other hand, in the deterministic theory of inverse scattering
rather efficient iterative algorithms have been developed in recent years.
The Newton scheme employs superlinear convergence, compare [14,
15]. But usually a good initial guess of the shape is necessary for
convergence, and its use is limited to the case where we know the
number of unknown domains. To work around this problem, the level
set method can be used, see for example, [3], which defines a function
in the whole space such that the objects are described as level sets of
this function. It has the key feature that it is able to split and create
domains.
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Here, we choose an alternative route. We use the evolutionary ap-
proach to introduce splitting and merging of domains and combine it
with the classical Newton method to enhance its convergence proper-
ties. To this end, we first describe the direct and inverse problem under
consideration in Section 2. Then, we use Sections 3 and 4 to describe
the evolutionary approach and the classical Newton method. A new
evolutionary Newton method will be formulated in Section 5. Finally,
numerical examples are given in Section 6.

2. Shape reconstruction in inverse obstacle scattering prob-
lems. We will consider inverse scattering by an impenetrable obstacle.
The following boundary value problem will serve as a generic problem
for the methods under consideration. We will restrict our presentation
to scattering of acoustic waves.

We consider scattering of some incident wave ui by some inhomogene-
ity D with support D ⊂ Rm, m = 2, 3. The incident field ui, which is
assumed to satisfy the Helmholtz equation in some set containing the
inhomogeneity, generates a scattered field us. The total field ui + us is
denoted by u. We will assume that the scattering region D is bounded
and has boundary of class C2 such that Rm \ D is connected.

Dirichlet scattering problem. Assume that the total field u solves the
Helmholtz equation

(2.1) �u + κ2u = 0

with wave number κ (where Im κ ≥ 0) in the exterior Rm \ D, the
scattered field us satisfies the Sommerfeld radiation condition

(2.2) r(m−1)/2

(
∂

∂r
− iκ

)
us(x) −→ 0, r = |x| → ∞

uniformly for all directions x̂ = x/|x| and on the boundary ∂D of D
we have the Dirichlet boundary condition

(2.3) u|∂D = 0.

Then, we say that u solves the Dirichlet scattering problem. The
solution to the Dirichlet scattering problem in two or three dimensions
is well known and can be found for example in the monograph of Colton
and Kress [1].
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The scattered field us asymptotically behaves like some outgoing
spherical wave multiplied by a factor which is usually known as far
field pattern or scattering amplitude. In particular, we have

(2.4) us(x) =
eiκ|x|

|x|
(m−1)/2{

u∞(x̂) + O

(
1
|x|

)}
,

for |x| → ∞ uniformly for all directions x̂ = x/|x|. We denote the
mapping which maps the boundary values ui of the incident field onto
the far field pattern u∞ by F , i.e., we have

(2.5) u∞ = Fui.

The mapping F is a compact linear operator. It is a basic result
known as Rellich’s lemma that the scattered field us ∈ C2(Rm \ D)
is determined by the knowledge of the far field pattern u∞ on some
open subset of the unit circle or sphere, respectively.

For the following presentations we need to consider the scattered field
for incident plane waves and for incident point sources. A point source
is modeled by the fundamental solution

(2.6) Φ(x, y) :=

{
(i/4)H(1)

0 (κ|x − y|) m = 2,
eiκ|x−y|/4π|x − y| m = 3,

of the Helmholtz equation in two or three dimensions. Here, H
(1,2)
n

denotes the Hankel function of order n of the first or second kind.
An incident plane wave is given by ui(x, d) := eiκx·d with direction of
incidence d ∈ S := {x ∈ Rm : |x| = 1}. When ui has one argument,
we consider it to be an arbitrary incident wave, with two arguments it
denotes an incident plane wave.

The direct problem under consideration is to calculate us or u∞ from
the knowledge of the scatterer D with its boundary condition and the
knowledge of the incident wave ui.

There are several inverse problems which might be of interest, com-
pare [15]. We will restrict our main attention to the reconstruction of
the support D of D.

3. Evolutionary algorithms. Evolutionary algorithms have been
developed in the area of computational optimization. Their main idea is
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to employ concepts of biological evolution like recombination, mutation
and selection to achieve the approximate solution of optimization
problems. As the main difference to conventional optimization methods
they use stochastic components for iteration and they perform a parallel
search on a whole population of solutions.

Different main categories of evolutionary algorithms (EA) have been
developed independently from each other. The most common form of
EA are genetic algorithms (GA) developed by Holland [9] followed by
evolutionary strategies (ES) by Rechenberg [17] and Schwefel [18] and
evolutionary programming (EP) by Fogel, Owens and Walsh [5]. Also
genetic programming (GP) by Koza [10] is considered as a separate
concept even if it was developed on the basis of GA. The concepts of
these approaches differ by the representation of the solutions, notations
and the focus of each technique. Following the general terminology we
will speak of the category of the evolutionary algorithm when referring
to these differences. From a mathematical viewpoint, they all employ
the same principles and ideas; the differences are mainly on the level
of implementation and software technology.

Our main idea here is to merge classical iteration technique with
an evolutionary algorithm. We will first describe the basic elements
of evolutionary algorithms, where we focus on the elements which are
used in our numerical scheme, compare Figure 1.

3.1. Principles and notation. As evolutionary algorithms are inspired
by natural principles the notations which are used are taken from
their biological equivalent. First an individual is a representation of
a possible or approximate solution to the given problem. Depending
on the category of the EA it is represented in a form which is adequate
to the method under consideration.1 A set of individuals is called a
population. Evolutionary algorithms, in contrast to iterative schemes,
do not only consider one solution at each time but a population of
several solutions/individuals. To each individual the algorithm assigns
a fitness value, which is usually assumed to be constructed such that it
leads to a well-ordered set of individuals within some population.

EAs are iterative methods. Starting with an initial solution the same
steps are repeated until an individual requires a given criterion. In each
iteration the individuals of an existing population are used to generate
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FIGURE 1. Flow diagram for the evolutionary Newton method. We work with two
populations An and Bn. On population An we carry out a classical evolutionary
algorithm (left column). Population Bn is called the Newton population, here we
employ Newton steps for mutation and stochastical steps for the variation of the
degrees of freedom for the shape representation (right column). Exchange between
these populations is obtained using migration (rolling arrows).

individuals of a new population. The existing population is then called
parents, the resulting population children. The outcome of an iteration
step is called generation. The typical main steps which are executed
in one iteration are recombination, mutation and selection. The left
column of Figure 1 shows the main principle of an EA.

Second, we need to select the stochastic elements of our evolutionary
algorithm. It is the goal that the next generation is better than the
previous one such that those individuals which have been created by
a good recombination and have undergone a good mutation will be
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selected for the next generation whereas those with a bad recombination
and mutation will not be taken.

In the following we will summarize the realization of recombination,
mutation and selection.

3.2. Recombination. The creation of a new individual from two or
more existing individuals by combination of their properties is called
recombination.3 In nature recombination is realized by the process
where a child inherits properties of both of its parents.

Depending on the representation form of an individual one can dis-
tinguish between discrete and intermediate recombination. Discrete
recombination can be done for any representation form of the indi-
viduals. It means that the resulting individual inherits for each vari-
able/property the value of one of the initial individuals. A special form
of discrete recombination, which is only used in genetic algorithms, is
the so-called ‘crossover’ which requires a vector representation of the
solutions.

Intermediate or continuous recombination can be done only if the
properties are represented by real values and means that the resulting
value is taken as the weighted mean of the initial values where the
weights are randomly chosen such that the sum over all weights has to
be 1 for each variable. If the weighting is the same for all variables this
is also called ‘line recombination.’

3.3. Mutation. Mutation means an, at least partially, stochastic
change of an individual. It is applied on each newly created individual
after recombination or replication. The possible forms of mutation
depend on the representation of an individual. In its easiest form,which
is mainly used in genetic algorithms, mutation is the addition of
relatively small random real numbers to the values of each variable.
This number can be totally random or it can be restricted to be a
multiple of a given stepsize which corresponds to a certain discretization
of the process. In GA the solution is often represented as a binary
vector. In this case mutation means the inversion of randomly selected
bytes.
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In evolutionary strategies the solution is not always represented as a
vector of values. Thus, we have to generalize the notion of mutation
and understand it just as a change of the solution which involves a
stochastic component at at least one point. This also means that in
ES the mutation can change the solution significantly and is usually
the main operation in the creation of a new generation4, whereas it is
much less important in genetic algorithms.

3.4. Selection. In biology selection occurs if there are more individ-
uals than resources which can aliment them. In this case only those
individuals which are the best adapted to the environment survive.
Also in EAs we use selection to reduce the size of the population and
to sort out the individuals with a bad fitness function in order to find
a good solution to the given problem. For this reason it is necessary
in any form of EA that in each generation new individuals are cre-
ated such that we have more individuals than before the execution of
recombination and mutation. So selection is executed at the end of
each generation step to determine the parent population for the next
generation.

The most simple case of selection is the deterministic rank-based
selection which will be used in our algorithm. We denote the size
of the parent population by μ, the size of the children population by
λ. Depending on the question whether the parents can be re-selected
we speak of a (μ, λ) selection if only the children can be selected for
the next generation and a (μ, μ + λ) selection if also the parents can
be selected.5 The (μ, μ + λ) selection avoids that the solution can get
worse but increases the chance of getting stuck in a local optimum. Note
that for the (μ, λ) selection it is necessary that λ > μ as otherwise no
individual would be sorted out.6

Beyond this simple selection model there exist more sophisticated
stochastic models which can also be fitness-proportional instead of
rank-based so that in the creation of the next generation the selected
individuals with a better fitness function are also more likely to produce
offspring. Stochastic selection models are for example roulette-wheel
selection, stochastic universal sampling, local selection or tournament
selection. For more information see for example [11].

Finally note that if there is more than one population selection can
also incorporate individuals or properties from other populations, which
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is called migration. This concept will be employed for our evolutionary
Newton method.

3.5. Further development of evolutionary algorithms. The consider-
able increase of computational power in recent years made it possible
to extend the classical concept of one population with a once given defi-
nition of recombination, mutation and selection. So several extensional
concepts for EA have been developed.

One of these new concepts which will also be applied in our case
is the concept of multiple populations which have different rules from
each other.7 This might be necessary if for example one has several
optimization criteria which are equally important. In this case for each
criterion a separate population is created where the fitness function of
each individual is defined according to this criterion. Another reason for
using this concept can be that one wishes to consider only individuals
which fulfill certain restrictions and let them develop independently for
a certain time. This is also the motivation in our case.

Obviously multiple populations only make sense if also a certain
exchange between them is allowed, at least under certain conditions.
Corresponding to biological terms, this exchange is called migration.

Another important concept is the so-called meta evolution. This
means that the parameters of the EA itself8 are submitted to an opti-
mization process which can itself be again an evolutionary algorithm.
The idea has already been pronounced by Rechenberg in 1973 (see [17])
as a learning population but could not be reasonably realized at that
time due to limited computer power. Note that if the method for the
meta evolution is an EA we also have to consider several populations
which are then considered as individuals of the Meta-EA. We will use
the concept of meta evolution to control the degree of polynomials in
our domain representations but realize it within one population on the
parameter level. We call this impure meta evolution.

For the sake of completeness note that there also exists the concept of
co-evolution following the biological principle of parasitism introduced
in [6]. This basically means that both the problem instances and the
solution concepts are evaluated. A solution concept is good if it solves
as many problem instances as possible whereas a problem instance is
good if there are many solution concepts that fail to solve it. This
competition leads then to more difficult problem instances and more
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sophisticated solution concepts. The concept of co-evolution is mainly
used in genetic programming.

4. The classical Newton scheme. The Newton method is a well-
known classical method for the search of zeros of a function or the
solution of operator equations. Newton’s method has also been applied
to inverse problems, compare the literature in [1, 4]. The solution to
the nonlinear operator equation

(4.1) L(x) = 0

is found by iteratively solving the linearized equation

(4.2) L′(xn)rn = −L(xn)

with some iterative solution xn for the update rn. Starting with some
first guess x0 we define xn+1 = xn + rn. For ill-posed problems the
inverse of the operator L is unbounded. In this case, also the Fréchet
derivative L′(xn) is a linear unbounded operator. Thus, the solution of
(4.2) needs to be regularized. In the following reasoning the operator L
will be given by the operator F , defined in (2.5), applied to some fixed
incident field ui, i.e., we have

(4.3) L : ∂D �−→ F (∂D)ui.

Here, we use the setup as described in [14, 15]. In a neighborhood
of a reference domain ∂D0 we parametrize a set of C2-domains by a
vector field r : ∂D0 → Rm. It is well known, see the literature cited
in [14], that the Fréchet derivative of the Dirichlet scattering problem
can be calculated via

(4.4) L′(∂D)r = L

(
r⊥

∂u

∂ν

)
,

where ∂u/∂ν is the normal derivative of the total field u for the domain
∂D and

(4.5) r⊥(x) := ν(x) · r(x), x ∈ ∂D.
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A classical Newton step can be carried out as follows. We use a basis

(4.6)
{
r(j) : j = 1, . . . , N

}

of vector fields on the boundary of the iterate ∂Dn. Then we search
for the coefficients βn,j , j = 1, . . . , N of

(4.7) rn =
N∑

j=1

βn,jr
(j),

via equation (4.2). We discretize the righthand side using colloquation
points x̂k, k = 1, . . . , N for the far field pattern on the unit sphere or
unit circle, respectively. This leads to the N ×N discrete linear system

N∑
j=1

(
L(∂Dn)

(
r(j) ∂u

∂ν

))
(x̂k)βn,j = −(L(∂Dn)ui)(xk),(4.8)

k = 1, . . . , N,

which we will abbreviate by

(4.9) Anβn = fn.

A regularized inverse can be obtained for example via Tikhonov regu-
larization

(4.10) β(α)
n = (αI + A∗

nAn)−1A∗
nfn.

Alternative realizations have been proposed by Potthast [14]. For
iteratively regularized Newton schemes we refer to Hohage [8]. The
convergence of the Newton scheme for exponentially ill-posed problems
is still an open problem, where some convergence results can be found
in [14] or the work of Hohage [7, 8].

In the next section, we will use the Newton step described by
equation (4.8) or (4.9), respectively, as an ingredient of the evolutionary
algorithm and couple it via a multi-population approach with the power
of the stochastical update technology.
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5. An evolutionary algorithm with Newton updates. The goal
of this section is to describe a novel approach to the inverse scattering
problem by a combination of the Newton method and the evolutionary
approach. The scheme allows the reconstruction of several separate
objects from the far field pattern for scattering of one incident time-
harmonic wave without any a priori knowledge about the number and
location of objects under consideration. The methods are not just taken
in turns, but we incorporate the Newton update as update technique
into an evolutionary algorithm and further develop this technique by a
two-population approach.

For the development of this method, we first tested a standard
Newton scheme and a standard evolutionary algorithm. Both have clear
disadvantages: the Newton scheme diverges if we do not start with the
right number of domains close to the true solution. The evolutionary
algorithm is very slow. We also tested first the use of the evolutionary
algorithm and then refined the search via the Newton method after a
threshold criterion was reached. But it is difficult to define a reasonable
threshold which works for a larger set of unknown scatterers. This
leads to the natural choice of two parallel populations, one for the
EA search and a second where the Newton scheme is used. Exchange
between these populations is carried out by a migration strategy. The
population with the pure EA search is used to find the number and the
approximate location of the obstacles. The Newton population serves
to find the exact location and shape of the obstacles. We will denote
them by population A and population B.

5.1. Definition of an individual and of the fitness function. An
individual is always a possible approximation to the given problem.
So in this case an individual is a set of domains which lie inside the
given search area. In population A an individual is a set of ellipses
which are given by the coordinates of their centers (m1, m2) and their
axes a and b. In population B the numbers (a, b) are replaced by two
radial functions

(5.1) ρi(t) :=
ni∑

k=0

aik cos(kt) +
ni∑

k=1

bik sin(kt), i = 1, 2, t ∈ [0; 2π]

with polynomial degrees n1 and n2. The fitness function of an individ-
ual is then defined as the norm of the difference to the measured far
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field

(5.2) F(D) := ||u∞(D) − u∞
meas||.

Here, we do not add any regularization to the fitness function. For the
evolutionary part we obtain regularization by discretization, since we
limit our interest to ellipses, i.e., to low-dimensional ansatz spaces.
In the Newton part of the algorithm we employ regularization via
Tikhonov regularization in equation (4.8) for the Newton updates.

5.2. Definition of one iteration step. As described in Section 3, the
iteration step describes how to generate the child populations An+1

and Bn+1 from the parent populations An and Bn. Following the
classical scheme for an EA we split the iteration into the creation step,
where populations A′

n and B′
n are created. Then, corresponding to

the mutation in the general scheme, we change the individuals in the
populations A′

n and B′
n leading to modified populations A′′

n and B′′
n.

For population A′
n this is done by a classical mutation, and we will

call this part the evolution step, whereas for population B′
n we will

incorporate the Newton method, and we will call this part the Newton
step. Finally, we use a selection step to reduce these populations to
the child populations An+1 and Bn+1. Migration, i.e., the exchange of
elements between A and B, can occur both in the creation step and
in the selection step, where in both cases we will use some asymmetric
migration.

5.2.1. The creation step: Replication and recombination. The indi-
viduals in population A′

n are either created

1. by replication of a parent individual from population An or by
migration of a parent individual from population Bn or

2. by recombination of two parent individuals of population An.

For A′
n we generate λ new individuals with λ ≥ μ. The probability

that an individual is replicated from population An is set to p1, for
population Bn the migration probability is p2 with numbers 0 ≤ p1,
p2 ≤ 1.

The individuals defined in population Bn are defined by polynomials.
Thus, if they are migrated into the population A′

n, then they need to be
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reduced to appropriate ellipses. This is carried out by a least-squares
approximation.

Second, recombination of individuals is carried out by an arbitrary
selection of their connected components. We first select two individuals
I1 and I2, then for each of them choose a subset of their connected
components and create a new individual which has both the selected
components from individual I1 and individual I2. Note that it is
possible that after recombination some domains (components) intersect
leading to a nonvalid approximation. In this case we need to carry out
a resolution step described in subsection 5.2.4.

For population B′
n the creation step is always performed by replica-

tion of the parents of Bn and by migration of the parents of An, such
that we have 2μ individuals.

5.2.2. Mutation of population A: Classical evolution. The mutation
of an individual from population A′

n is carried out either by parameter
changes like shifts, dilation or by splits. The following list summarizes
the possible mutation steps used in our algorithm.

(M1) Create a random vector (dm1, dm2, da, db) ∈ R4, and mutate
the ellipse

(5.3) D = (m1, m2, a, b)

to the new component

(5.4) D′ = (m1 + dm1, m2 + dm2, a + da, b + db).

We have experimented with different probability measures on the space
R4, leading to shifts in x or y-direction, dilation and a combination of
shifts with dilation.

(M2) Vertical split: the ellipse (5.3) is split vertically into two ellipses
defined by

D′
1 =

(
m1 − a

2
, m2,

a

2
− ε, b

)
,(5.5)

D′
2 =

(
m1 +

a

2
, m2,

a

2
− ε, b

)
with some small parameter ε > 0.
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(M3) Horizontal split: the ellipse (5.3) is split horizontally into

D′
1 =

(
m1, m2 − b

2
, a,

b

2
− ε

)
,(5.6)

D′
2 =

(
m1, m2 +

b

2
, a,

b

2
− ε

)

with some small parameter ε > 0.

The probability distribution for (dm1, dm2, da, db) should be according
to the principle that, in a purely random search, small changes should
be more likely than big ones. Again, it is possible that after these
operations some domains (components) intersect, such that we need to
carry out again a resolution step described in subsection 5.2.4.

5.2.3. Mutation of population B: Classical Newton and meta evolu-
tion. For the ‘Newton-population’ Bn we work with mutations based
on Newton steps and with meta evolution changing the degree of the
polynomials under consideration.

First, for each domain the polynomial degrees of n1 and n2 are
increased with a probability of p3 ∈ (0, 1) independently for n1 and
n2 or decreased with a probability of p3.9 If they are decreased the new
coefficients are determined by the least-squares solution.

Experiments with the algorithm show that a large speed-up can be
achieved when the probability to increase the polynomial degree is
increased with decreasing error functional.

Second, a classical Newton step as described in Section 4 is executed
on the whole individual. The coefficients for the new radial functions
are then determined by least-squares from the discretized new domain.
It is possible that two domains intersect. In this case they are reduced
to ellipses and treated like in population A, compare subsection 5.2.4.

5.2.4. Resolution for domain intersections. Recombination and
mutation of domains can lead to the intersection of some of the
components of scatterers. In this case a resolution step is necessary
to generate an admissible individual in our population A or B. We
worked with two types of resolution steps.

Consider two domains D and G which intersect.
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1. Union of the two domains. We take the union of the two
components and replace it by an appropriate ellipse via a least squares
fit.

2. Diminishment or split of a domain. We keep one of the domains
fixed, for example G. The other domain is either diminished or split
such that we obtain two or three admissible components. A split is
carried out if the domain D \ G consists of more than one component.
Otherwise a diminishment of the domain D is carried out by a least
squares fit for an ellipse on D \ G.

5.2.5. The selection process. For the selection process for population
A, we employ the μ + λ-selection, i.e., we use a union of the parent
population An with the intermediate population A′′

n. Therefore, we
obtain a monotonously decreasing error functional. The deterministic
best μ solutions for population An+1 are chosen using the fitness
function 5.2 as selection criterion.

To keep the diversity of the population, we use the following well-
known measure: If the fitness functions of two individuals differ only
by a small constant ε, we consider them as equal and choose only one
of them and continue with the next solution instead.

For the selection of population Bn+1, we compare the parents Bn,
the children B′′

n, the parents An and the λ children A′′
n. So the best

individual of population Bn+1 is always the best of both populations.
The asymmetric use of migration in the selection process is motivated
by the strength of Newton’s method to work in a larger space than the
stochastic search on ellipses in the evolutionary branch of the algorithm.

5.2.6. The calculation of a starting solution. In the introduction we
identified the point source method introduced in [12, 13] as a good
scheme to calculate a starting solution. In general, the point source
method reconstructs the scattered field in the exterior of some test
domain. Then, the unknown shape is found as the zero curve of the
sum of the incident and scattered fields. However, it is computationally
difficult to construct test domains such that the scattered field can be
calculated in regions between different components of a scatterer, i.e.,
in the interior of the convex hull of the scatterer under consideration,
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FIGURE 2. Reconstruction of the total field for scattering by two objects via the
point source method (PSM). The field is well reconstructed outside of the convex
hull of the scatterers. The reconstruction in the region between the scatterers leads
to difficult algorithmical problems.

compare Figure 2. Thus, we used the point source method to determine
the convex hull of the scatterers in a preprocessing step. The convex
hull is then circumscribed with a rectangle which is taken as our initial
search area.

We divide the initial search area into a grid of 
√μ�2 rectangles of
equal size such that the x and y axes of the search area are divided
into 
√μ� parts. Into each of these rectangles we put a large ellipse
and create an individual which consists of this ellipse as the domain
set. This way we get at least μ different individuals which are equally
distributed over the search area and we take them as our starting
solution. If μ is not square, i.e., we get more than μ individuals, this
way we select the best μ of them as our starting solution for both
populations.

6. Numerical realization and results. We realized the evolu-
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FIGURE 3. Reconstruction of an object with two components for the wave
number κ = 2. The original obstacles and the reconstructions (dotted line) by
the evolutionary Newton method are shown in the right image. Here the result was
obtained by 32 iterations.

tionary Newton scheme using boundary integral equations. For the
numerical solution of the forward Dirichlet scattering problem we used
a combined single- and double-layer approach [2]

(6.1) us(x) =
∫

∂D

{
∂Φ(x, y)
∂ν(y)

− iΦ(x, y)
}

ϕ(y) ds(y), x ∈ R2 \ D

with density ϕ ∈ C(∂D) and the fundamental solution (2.6) to repre-
sent the scattered field us. This leads to the integral equation

(6.2) (I + K − iS)ϕ = −2ui

with the double-layer boundary integral operator

(6.3) (Kϕ)(x) := 2
∫

∂D

∂Φ(x, y)
∂ν(y)

ϕ(y) ds(y), x ∈ ∂D,

and the single-layer boundary integral operator

(6.4) (Sϕ)(x) := 2
∫

∂D

Φ(x, y)ϕ(y) ds(y), x ∈ ∂D,

on the boundary ∂D of the scatterer under consideration. This ap-
proach is solvable for all wave numbers κ > 0. We used the Nyström
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FIGURE 4. Population after 5 iterations. The images in the first row show a
selection of population B, the images in the second row are taken from population A.

method described in [1] splitting off the singularity. It is exponen-
tially convergent for smooth domains and provides a quick and reliable
scheme for the calculation of the scattered field. The far field pattern
for the double-layer potential is calculated by

(6.5) (K∞ϕ)(x̂) :=
eiπ/4

√
8κπ

∫
∂D

∂e−iκx̂·y

∂ν(y)
ϕ(y) ds(y), x̂ ∈ S.

For the single-layer operator the far field pattern is given by

(6.6) (S∞ϕ)(x̂) :=
eiπ/4

√
8κπ

∫
∂D

e−iκx̂·yϕ(y) ds(y), x̂ ∈ S,

where the constants in front of the integrals are those for two dimen-
sions.

For the realization of Newton’s scheme, we need to calculate the
normal derivative ∂u/∂ν of the total field at the boundary of the
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scatterer. This leads to the representation

(6.7)
∂u(x)
∂ν(x)

=
1
2
T − i

2
(K ′ − I)ϕ

with the adjoint K ′ of the operator K and the strongly singular
operator T given by

(6.8) (Tϕ)(x) := 2
∂

∂ν(x)

∫
∂D

∂Φ(x, y)
∂ν(y)

ϕ(y) ds(y), x ∈ ∂D.

For simplicity, we approximated the calculation of T by some numerical
differentiation of the double-layer potential. Alternatively, we tested a
single-layer potential approach which is calculated by solving the first-
kind integral equation

(6.9) Sϕ = −2ui

on ∂D via Tikhonov regularization. This is reasonable due to the fact
that we work with approximate solutions to the inverse problems within
a stochastic algorithm and we do not need to calculate a precise normal
derivative on the approximation surface. Numerically, for the single-
layer approach the normal derivative is approximated by

(6.10)
∂u(x)
∂ν(x)

≈ 1
τ

((Sϕ)(x + h · ν(x)) − (Sϕ)(x + (h + τ) · ν(x)))

where h, τ > 0 needs to be chosen appropriately. This turned out to
be sufficient for the examples under consideration and can be realized
flexibly for any number of scattering components. Then, the solution
to the equation (4.8) is calculated with some appropriate set of basis
functions. A further alternative is to use a weakly singular integral
equation of the second kind like the equation

(6.11) (I + K ′ − iS)
∂u

∂ν
= 2

∂ui

∂ν
− 2iui,

whose solution density coincides with the searched normal derivative,
compare [1, page 58].
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FIGURE 5. Population after 10 iterations. The images in the first row show a
selection of population B, the images in the second row are taken from population A.

Parameter choices, control of algorithm and stopping rule. We need
to choose all different parameters, splitting and mutation probabilities
for the evolutionary algorithm and the Newton scheme. For our
realization of the evolutionary search via population A we restricted
the parameters of the ellipses to multiples of a given step-size s. In our
examples we used s = 0.2. This also means that the components of the
mutation vector (dm1, dm2, da, db) are only allowed to be a multiple
of s. As small changes should be more probable than big ones, the
probability that the change is ±N · s is set to 2−N for N ∈ N.

When splitting an ellipse we set the distance parameter ε between
the two new ellipses to s/2. The probability p1 that an individual is
replicated from population An is set to 1/4, the probability p2 that it
is migrated from Bn is set to 1/16. For the mutation of population A
the probability for a split is set to 1/4, otherwise the domain will be
randomly mutated.
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FIGURE 6. Population after 20 iterations. The images in the first row show a
selection of population B, the images in the second row are taken from population A.

For the Newton-branch B of the evolutionary Newton algorithm we
need to determine the probability p3 of a change of the polynomial
degree. We used the dynamic choice

(6.12) p3 =
1/F(D)

10 + (1/F(D))

i.e., p3 depends on the fitness function. We limited the maximum
polynomial degree to 10. We used five individuals for the parent
populations and twenty individuals for the child population A′

n, i.e., we
worked with μ = 5 and λ = 20. For the Newton population Bn, we used
μ = 5 and λ = 10. Here, the child population B′

n is composed by the
five parent individuals from population An and those from population
Bn.

We stopped the iteration if there was no improvement of the best
individual in three successive steps (stopping rule).
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FIGURE 7. Reconstruction of a scatterer with only one component. We show the
reconstruction for iteration 19. One component is easily identified and found rather
quickly.

Reconstruction time. For the evolutionary Newton method we need
to solve the scattering problem for a rather high number of settings. For
the two-dimensional problem under consideration, the solution of each
scattering problem can be performed within seconds or even quicker.
Thus, the evaluation of the fitness function of 20 individuals takes
about 20 30 seconds. Each iteration step in the evolutionary Newton
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FIGURE 8. Reconstruction of a scatterer with two components. The reconstruction
shows the 41st iteration.
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FIGURE 9. Reconstruction of a scatterer with two components, where one compo-
nent is in the shadow of the second component. Here we needed 35 iterations and
clearly see that the shadow regions are more difficult to reconstruct.

scheme needs 30 60 seconds. Twenty iterations correspond to 10 20
minutes. This is much more compared to the reconstruction of the
point source method, which takes less than 5 seconds. But the point
source method in the basic form only reconstructs the convex hull of the
obstacles under consideration. With our evolutionary Newton scheme,
we obtain high-quality reconstructions of multiple obstacles without
any knowledge of the number of components.

Examples. We first show reconstructions of an object with two
components as shown in Figure 3. We demonstrate examples of the
populations after 5, 10 and 20 iterations in the Figures 4, 5 and 6.
The examples show that the reconstruction works very well. After five
iteration steps the algorithm has identified the number of components.
After 10 iterations, the shape of the objects is already rather well
established. After 20 iterations the reconstruction is nearly perfect.
Since we worked with simulated data without additional errors, in
principle full reconstructions are possible. However, the true curve
is not in the ansatz space for the polynomial shape representation.
The polynomial degree of the ansatz for the domain is found by the
algorithm itself, which also takes time and effort and explains the role
of the iterations 10 to 20.

Further examples with scatterers consisting of one, two or three
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FIGURE 10. Reconstruction of a scatterer with three components. We needed 56
iterations for this example. For three or more components the reconstruction times
go up considerably.

components are shown in Figures 7, 8, 9 and 10. Here, we kept the wave
number κ = 2 and tested different numbers of components and different
locations of the scatterers. It is more difficult to reconstruct the shadow
regions of scatterers, as can be seen in Figures 9 and 10. For each
example, we give the iteration after which the algorithm terminated,
i.e., there was no improvement in the last three steps. Usually, a good
reconstruction is already obtained after less than half of the terminating
number of iterations, compare Figure 5.

Further work. Clearly, the algorithm under consideration leaves
space for a number of different realizations and improvements. For ex-
ample, in our examples we did not incorporate the rotation of ellipses
in the evolutionary algorithm, which would be a natural further step.
Also, the extensive testing with noisy data is of practical importance.
Here, we have used the discretization of the ellipses (location of their
centers, maximal degree and values of polynomial coefficients for radial
functions) as regularizing quantities. This corresponds to regulariza-
tion by projection onto finite dimensional subspaces. The relation and
influence of these parameters in comparison to the regularization pa-
rameter of Newton’s method is an interesting open theme of study.
Further investigation is to be carried out in future work.
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ENDNOTES

1. This means, e.g., that in GA it has to be represented as a vector of
variables or in GP as a parse tree. Other forms like ES do not require
a special form.

2. This means that if we have more than one optimization criterion
we need to define a priority to get the population well-ordered.

3. If an new individual is created as a copy of another individual this
is called replication or cloning.

4. The first ES introduced by Rechenberg did completely omit the
recombination.

5. There can be also a mixture as for example a (μ, λ + 1) selection
where only the best parent individual can be re-selected.

6. Also for the (μ, μ+λ) selection it is advised that μ > λ to decrease
the probability that certain individuals of the parent population are not
reproduced at all. The fact that in the first ES Rechenberg set λ to 1
was more a tribute to limited resources.

7. In biology this corresponds to different environment conditions
which require other qualities from an individual.

8. Like size of the population, definition of the selection or the
parameter setup.

9. It is possible that only n1 is changed or only n2 is modified.
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