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SECOND ORDER LINEAR VOLTERRA EQUATIONS
GOVERNED BY A SINE FAMILY

HIROKAZU OKA

ABSTRACT. Let A be a closed linear operator in a Banach
space X. This paper is concerned with the second order linear
Volterra equation in X when A is the generator of a sine family
on X.

1. Introduction. In this paper we study the second order linear
Volterra equation in a Banach space X with norm || - ||

(SEf) {u”(t) = Au(t) + fot B(t — s)u(s)ds + f(t) fort e [0,T]
w(0) =z and «'(0)=y.

Many authors considered (SE') in the case where A generates a cosine
family on X (see [4], [10] and [16]).

It is, however, well known that the Laplacian A on the space LP(RY)
does not generate a cosine family when p # 2 and N > 1 (see [9]).

As a generalization of cosine families, the theory of sine families
(for the definition, see Section 2 below) was initiated by Arendt and
Kellermann [2] to investigate the wave equation on the spaces like
LP(R?) or LP(R?) (1 < p < o0) (see also Hieber [6], Kéyantuo [8],
Rhandi [13] and Serizawa [15]).

The purpose of this paper is to study (SE) when A is the generator
of a sine family on X.

To solve (SEf) we consider the integral equation

(SE1) u(t) :tm+A/0t /Osu(r)drds—f-/OtB(ts) /0 /Oru(n) dn dr ds

and construct the strongly continuous family {R(¢) : t > 0} C B(X)
which gives the solution of (SE):
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(rl) Forallz € X, R(-)z € C([O 00) : X).
(r2) Forallz € X, [; fo r)zdrds € C([O ) :Y).

(r3) R(t)z—tz = Afo Jy R(r)zdr ds+f0 -s) [y Jo R(n)z dndrds
for all z € X and ¢t > 0.
(r4) R(t)z—tx = fo fo r)Az dr d5+f0 fo fo —n)B(n)z dndrds

forallxeYandtZO

Here denote by Y the Banach space D(A) endowed with the graph
norm of A and by B(X) the set of all bounded linear operators on X.
We call {R(t) : t > 0} a solution family for (SE1).

In the previous paper [11], the author studied (SEf) when A satisfies
the cosine resolvent condition without assuming the density of D(A)
in X, i.e., A generates a locally Lipschitz continuous sine family on
X, and investigated the solution family {R(t) : ¢ > 0} for (SE;) and
proved the following:

A solution family for (SE;) is unique if it exists and the solution u of
(SEf) is then given by

u(t) = %(R(t)z + ROy + (RO « 1)(1),

where R (t)z = fo s)zds for t > 0 and z € X, and “+” denotes

the convolutlon Moreover in the case p(A) (the resolvent set of A)

# ¢, there exists a unique classical solution u of (SEf ) if and only if

upy) € C3([0,T] : X) where ujy) is defined by

(1.1) upy(t) = R(t)z + RU(t)y + (RM « £)(2)

for t € [0,7]. In this case, u = u,.
In the present paper we aim to construct a solution family {R(¢) : ¢ >

0} for (SE;) assuming that A is the generator of a sine family on X and

that the appropriate conditions for a family {B(t) : ¢ > 0} of bounded

linear operators from Y into X. Our approach to (SEf ) is different from
[3] where the Laplace transform technique was used to study first-order
Volterra equations for generators of integrated semigroups. The result
obtained can be applied to the wave equation with the memory term:
e (t, ) = Ault, z)
+f0 (t — s)Au(s,z)ds + f(t,z), (t,x) €[0,T] x RN
u(0,2) = up(z), u(0,7) = uy(z) xRN
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on the spaces LP?(RN), N = 2,3.

2. Main results. First we recall the theory of sine families. Let
A be an operator in X for which (2.1) below holds for some strongly
continuous, exponentially bounded operator family {S(¢) : ¢ > 0} C
B(X) satisfying [|S(¢)]] < Me**:

(2.1) (A2 A) 1z — / e NS (t)z dt

0
for all z € X and A > w. Then {S(t) : ¢ > 0} is called a sine family
on X and A its generator. The following properties of sine families

are well known [2, Lemmas 1.4, 1.5 and 1.7] and are used later in our
discussion.

Proposition 2.1. Let A be the generator of a sine family {S(t) : t >
0} on X. Then the following hold:

(i) For every x € D(A) we have S(t)z € D(A), AS(t)x = S(t)Ax
and

(2.2) S(t)r =tx + /t /s S(r)Azdrds fort > 0.
0o Jo

(ii) For every x € X we have fot [y S(r)zdrds € D(A) and

(2.3) A/Ot/OSS(r)xdrds:S(t)w—tm fort>0.

(iii) Let f € LY(0,T : X) and put v(t) = (S * f)(t) for t € [0,T).
Then [ [ v(r)drds € D(A) and

(2.4) A/Ot/osv(r)drds:v(t)/Ot/osf(r)drds for t € [0, 7).

(iv) Let f € LY0,T : X). Ifu € C([0,T] : X) satisfies u(t) =
Afot Jy u(r)dr ds—i—fot [y f(r)drds fort € [0,T], then u(t) = (S* f)(t)
fort € 0,T].
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We turn to the second order Volterra equation (SEf)

Suppose the following conditions for the operator A in X and the
family {B(t) : t > 0} of bounded linear operators from Y into X:

(H1) A linear operator A in X is the generator of a sine family
{S(t) : t > 0} on X and densely defined in X.

(H2) For z € Y, the function B(-)z is strongly measurable and there
exists a function b € L (RT : RT) such that

(2.5) IB(t)z|| < b(¢)||z|ly for a.e. t>0.
(H3) For t > 0, sup{|| fg B(t —s)S(s)zds||:z €Y, |z|| <1} < oo.
Here recall the property of a solution family {R(¢) : t > 0} of (SE;)
proved in [11].

Lemma 2.2. Let f € L*(0,T : X). Then we have [; [; (R «
f)(r)drds € C([0,T]:Y) and

A/Ot/OS(R[”*f)(r)drds
(RM s £)(t ///f )dndr ds
_ (B* /0 /0 (R « f)(r)drds)(t)

fort e [0,T].

Note that this lemma holds good if (rl), (r2) and (r3) are satisfied
(see the proof of [11, Lemma 2.5]).

Now we are in a position to state the main result in this paper:

Theorem 2.3. Suppose (H1)-(H3). Then there exists a unique
solution family {R(t) : t > 0} in B(X) for (SEy).

Proof. Set

Ut)y = (B*S()y)(t) fort>0andycY.
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Since Y is dense in X, the assumption (H3) shows that U(t) can be
extended to a bounded linear operator on X and denote it by the same
symbol U(t) for t > 0. Then U(-)z € C(]0,00) : X) for z € X.

For convenience we use the abbreviation: if {V;(¢) : t > 0}, 1 < i < 4,
are strongly continuous families in B(X), the equation Vi = Vo+ V3%V,
means that

t
Vl(t)x:VQ(t)a:—l-/ Vi(t — s)Va(s)zds fort >0 and z € X.
0

Let Ry be the resolvent kernel of U, i.e.,

(2.7) Ry=U+Ux*Ry=U+ Ry *U.

Define a strongly continuous family {R(t) : ¢ > 0} in B(X) by
(2.8) R=5+Sx*Ry.

Noting (2.3) and (2.4), in view of (2.8) we see that [ [ R(r)zdrds €
D(A) and

A// mdrds-A//S Yz drds
—i—A// (S * Ry)(r)xdrds

(t)x —tx + (S * Ry)(t)z

//RU )drds

= R(t)z — tzx

—/0 /0 Ry (r)zdrds

for z € X and ¢ > 0, which proves (r2).
We also have, by (2.7) and (2.8),

R+U=(S+S*Ry)*U
=S*U+Sx*(Ry —U)
:S*RU
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and this together with (2.8) yields
(2.10) R=S+RxU.

Put St J;—fofo r)rdrds fort >0and z € X. Fory € Y, we

have
/Ot/OSU(r)ydrdSZ/t/S(B*S(.)y)drds
(B*//S s ) @)

=(Bx*S 2]
From the density of Y in X, we deduce

(2.11) U = B« S0P,

where we put Ul(t x—fo JyU(r)zdrdsfort>0and z € X.

Let RPl(t)z = fo fo r)zdrds for t > 0 and x € X. Then the
integration of (2.10) glves

(2.12) R = B4 RIZ U

and so by (r2) and (2.3) we find R x U € C([0,00) : Y). Convolving
B to the equation (2.12) from the left-hand side, we have by (2.11)

* R =B« Sl 4 BxRE U

2.13
(2.13) =UZ + BxRE«U.

On the other hand, integrating (2.7) twice and setting Rgl () =
fot Jo Ru(r)zdrds for t > 0 and € X, we have
R[Z] 2] +R[2 « U

Combining this with (2.13) we have R[UQ] = B« R, which implies with
(2.9) that (r3) is satisfied.

To prove (r4), let z € Y and put

—tac—}-// A:vdrds+/// (r — w)B(w)z dwdr ds
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for t > 0.

Then by Fubini’s theorem we have y(t) — tz = fo Iy R )(Az +
[y Bw)zdw)drds = fo RUI(t — s)( A:v + [y B acdr) ds. So the
equation (2.6) in Lemma 2.2 with f(¢t) = Az + fo s)x ds gives

y(t) —tz = (RN « f)(t)

_A// ) —rz)drds
/Bt—s// ~ ) dydr ds
L L (o e

_A// r)drds
fren [ [ o

for t > 0. Then putting z(t) = y(t) — R(t)z and v( fo [y z(r) drds
for ¢ > 0, and using the closedness of A, we have

A// drds—i—// (B *xv)(r)drds

for ¢t > 0. Since A is a generator of a sine family {S(¢) : ¢ > 0} on
X, we have from Proposition 2.1 (iii) and (iv) that v = S * B * v and
v € C([0,00) : Y). Hence Bxv = Bx S+« Bxv =U % B*v. The
estimation of this equality gives that for ¢ € [0,T],

(B *v)(@)]] < /0 [U(E = $)IlI(B *v)(s)] ds
<sup{[[U(r)||: 7 € [O,T]}/O [(B *v)(s)]| ds,

which implies by Gronwall’s inequality that B * v = 0. Thus we have
v=S8%Bxv=0and so z=0. This proves (r4). O
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Next we consider the sufficient condition for (H3) to be satisfied in
the special case where B(t) = b(t)A. Then we obtain the following
theorem.

Theorem 2.4. Suppose (H1), and b € AC,.(RT : RT), V/ €
BVipe (RT : RT) and b(0) = 0. Then the condition (H3) is satisfied.

Proof. Let © € Y. Integrating by parts, and noting that 5(0) = 0 and
(2.3), we have

/bt—sAS wds-/b't—s/AS Yz drds

=0(0)(S(t)x — tx)
+/0 de(t — s)(S(s)x — sx),

where we put ¢ = b’ and the second term in the above equation denotes
the Stieltjes integral. This implies (H3). i

To prove the existence and uniqueness of classical solutions of (SEf),
we use the next result proved in [11]:

Theorem 2.5 [11, Theorem 2.3]. Suppose that the solution family
{R(t) : t > 0} for (SE1) ezists and that p(A) # &. Then there exists

a unique classical solution u of (SEf) if and only if the function up,

defined by (1.1) in Section 1 is of class C3. In this case, u = uh].

By virtue of Theorem 2.5 we obtain the following:

Theorem 2.6. Suppose that the assumptions of Theorem 2.4 are
satisfied. If x € D(A?), y € D(A) and f € C([0,T] : Y), then there
exists a unique classical solution u of (SEf) and u satisfies

(2.14) [lu(@)] SC(I@“IIJrIIyH/0 (L+5(s)l|Az] ds+ | ||f(8)||d8>

fort € [0,T], where C is a constant independent of x,y and f.
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Proof. Theorems 2.3 and 2.4 show that the solution family {R(¢) :
t > 0} for (SE;) exists. We shall show uj;) € C*([0,7] : X). By using
the property (r4) we differentiate (1.1) to get

(2.15) uy(t) = =+ RM(t) Az + (R« b(-) Az) (t)
+ R(t)y + (R * f)(8);
(2.16) upy(t) = R(t)Az + (R + b(-)Az)(t) + y

+ RU(t) Ay + (R % b(-) Ay) (¢)
+ (1% f)(t) + (RM = Af)(2)
+ (R[l] * DA * f)(t).

In view of equation (2.16), from the assumption we get the desired
conclusion. The estimation of the equation (2.15) yields the estimate

(2.14) of a classical solution u of (SEf) o

Let X = LP(RN) (N =2o0r 3; 1 < p < c0), and A = A with
distributional domain. It is known that A generates a sine family on X
(see [8, Theorem 3.1]). Thus, Theorem 2.6 gives an operator-theoretical
approach to the wave equation with the memory term:

u(t, x) = Au(t,x) + fg b(t — s)Au(s,x)ds
+fit,2)s (t,z) € [0,T] x RN
(0, ) = up(z), u(0,2) = uqg () zeRN

on the space LP(RY).
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