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ON THE SOLUTION OF A SPECIAL KIND
OF SINGULAR INTEGRAL EQUATION

OLAF HANSEN

ABSTRACT. An explicit inversion formula for Cauchy sin-
gular integral equations is used to numerically approximate
the solution. We deal with the case where the solution is not
continuously differentiable but is in a special class of Holder
continuous functions. We get results for the order of conver-
gence in the supremum norm and for a weighted square norm.

1. Introduction. Let L be a simple, closed smooth curve in C
and ¢ € C*(L,C), o € (0,1). Here C*(L,C) is the space of Holder
continuous functions on L with the usual norm ||-||ce(z,c)- The solution
of the following singular integral equation

L[ el
(1) p— /L P dt = ¥(to), to€ L,
is given by
(2) o(to) = 1 40, dt, toel,

™ Lt*tO

and we have ¢ € C*([0,2n],C) [6, Section 27, formula (A)]. This
means that we only need a suitable quadrature formula to find an
approximation for ¢.

A typical example for the application of the above formula (2) is the
following:

Given a function ¢ € C*([0,27], R), periodic, with

(3) $(0) = $(2)

and

(4) " (e) dz = 0,
0
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392 0. HANSEN

then a solution ¢ of the singular equation

(5) gOWC"t(%z_x)so(w)dm:wwo), zo € [0, 2],

is given by

6)  o(wo) = —%/OZW cot <”’°2_”“">¢(x) do, @€ 0,2n).

™

The function ¢ is again an element of C*([0,27],R) and is the only
solution of (5) with

2
7) | e@ds=0

[6, formula (28.8)]. Again we see that it is only necessary to find an
efficient quadrature formula for the right side of (6) in order to get a
good approximation for the function ¢. If v € C2(]0,2x], R) it is easy
to find suitable quadrature formulas for (6). In the sequel we treat the
case where there exists one zg € [0, 27], where the derivative of ¢ does
not exist [1].

The results of this paper are mainly of theoretical interest. In addition
to the solution of the special equation (1), the studies are motivated
by the following:

The solution of “Symm’s integral equation”

1
——/log\to _tu(t)ds(t) = f(to), toeT,
T Jr
where T" is a closed, simple, plane curve, leads to an equation of the

form

L[ / _
®) —;/0 log [v(z) — v(zo)|[v'(z)|u(v(z)) dz = f(v(z0)),

zg € [0,2m7].

Here v : [0,27] — R? is a parametrization of the curve I'. If the curve
is smooth with the exception of the point v(w), it is known that the
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function |v'(x)|u(v(x)) is smooth for = € [0, 27]\{r}, if f is smooth and
v is suitably chosen [2]. This motivates the choice of the special function
space C2*([0,27], R), which we define in Section 2. The analysis of
(8) often considers the operator

u — (Ku)(zg) := —%/0 Flog [v(z) — v(zo)|u(x) dz

as a perturbation of the operator

™

2m
u — (Au)(zo) := —l/ log (26_1/2
0

The inverse of A is given by

(A~1u)(zo) = —% /:W cot (“’02_ “’)w(x) do
+ L " u(z) de, u € H),, (0,27])

2 0

[2]. Now we see that it may be of interest to calculate the Hilbert
transform for functions which are smooth with the exception of one
(or finitely many) point; see also the second example in Section 4.
For smooth solutions, numerical methods for a wider class of singular
integral equations can be found in [3] and [4].

To approximate ¢ in equation (6), we will interpolate ¢ with piecewise
linear functions and construct a quadrature formula for these piecewise
linear functions. The convergence of this method is based on the fact
that the piecewise linear interpolants converge to % in some Holder
norm.

In the next section we define the spaces of piecewise linear functions
which we use and the quadrature formula. The third section contains
the approximation results. In Section 4 some numerical examples
demonstrate the results of Section 3.

2. Definitions and notations. The function space C*([0, 27], R),
a € (0,1), consists of those continuous functions u on [0, 27] for which

u(s) — u(t)

sup |5 — t|a

s,t€[0,27],t#s

‘<oo
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holds. C*([0,27],R) together with the norm

[ullea(o,2mr) : = sup |u(s)|
s€[0,27]
—ul(t
b [0
s,t€[0,27],t#s ‘S - t|a

is a Banach space. The closed subspace Cp, ([0, 27], R) contains those

functions u € C*([0, 27], R) which fulfill
u(0) = u(2m).

For a function ¢ € Cg., ([0,27],R), @ € (0,1), we define the Hilbert
operator H by

© @) = g [ oot (25T ot ds
(10) . % 0 " ot (’”02’”>(¢(x) — b(ay)) de,
To € [0,27r].

The second equation follows from the fact that

2m _
(11) / cot <x0 x) dx =0,
0 2

where the principal value of the integral has to be taken. It is known
[5], that

(12) H e L(CY.,, ([0, 27], R), CS, ([0, 27], R)), a€(0,1),

per ) ~per

is a continuous linear operator, and that

(13) [H L(co (j0,27],R),Ce. ([0,27],R)) = L.

per per

We now define the function space, where we will approximate H.

Definition 2.1. The function space C2*([0, 27, R) C Cs.. ([0,27], R),
a € (0,1), is defined as the set of all such ¢ for which
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(a) ¥ € Cpe; ([0,271], R) N C*([0, ) N C*((, 2)).
(b) There exists a Cy = Co(¥):

(14) WP (x)| < Colz —7*7%, =z €[0,2n].

Remark. We will always assume that the constant Cy(u) also fulfills

(15) ¥ (@)| < Co,
(16) [ (@)] < Colw —w*™, @€ 0,27,
(17) [¥(z) — ¥(s)| < Colz — 5|, x € [0, 27].

In order to approximate functions in C2**([0, 27], R), we use piecewise
linear functions, which we define now.

Definition 2.2. For n € N, n > 2 and ¢ > 1, we define a partition
of [0, 27]
0= x(()"’q) < mi"’q) << glMD =or

by

o [HL- (2] = 0()n/2)
SO {vr[1+<1—2(n—j>/n>q1 J = [n/2 + 1, (1)n,

the step width

(ma) . (mg) (,q) -
(19) h; 7" =Y —w j=11)n,

j—1

and the weights for the trapezoidal rule

hgmq) + hg’h‘l)

(nq) . _
wO = 2
(n,q) (n,q)
(20) G I B s j=1(1)n — L
J ) 2 ’
(n,q) (n,q)
) B R

2
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The function space P2 C Coer ([0,27], R), @ € (0,1), of continuous,

piecewise linear functions is defined by
(21)
plra) .— {p e C per ([0, 2], )‘w‘[w(ln,q) z(:_,f)} linear, j = 0(1)n—1}.
J g

For ¢ € C2*(|0,27], R) the interpolant P9 e P(™9) is given in the
usual manner by

(22) (PrDy) (D) = (™), j=0(1)n.

Furthermore, we define two norms on R"™:

1/2
)z 2= (}:wﬂ>g
(23) -
|(%)]lc0,n = m§x|uj|
7=0
(uj)j = (uo,ug, ... ,un—1)" € R™

Remark. We have

e max (0"} = O, oo (1/m),

for a given g > 1.
To treat the singularity of the function cot(:), we define an auxiliary
function:

1 1 1
(25) S(x) '_E+x—7r+m+7r’ z € R\{-m,0,7}.

We get

(26) R(z) i= cot(z) — S(z) € C® ( [ - ;ﬂ', —W] >
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if we define R(0) := R(m) := R(—m) := 0. Then our approximation
H(a) for H on P9 is defined by

A6 = o [P0 (R(55 ) ) o)) ) e

L s(s 3 ””) (u(z) — u(s)) dz,

21 0

(27)

u € P(™9), All integrals on the righthand side of (27) can be calculated
explicitly, and the first term on the right side gives the trapezoidal rule
for the integral

(28) L R<5 — ””) (u(z) — u(s)) dz.

21 Jo 2

Finally we define the approximation # (™9 for H by
(29) H(a) .= p(na) 5 fr(na) o plna),

3. Results. The first lemma describes the approximation properties
of piecewise linear interpolants in our Hélder spaces.

Lemma 3.1. Let u € C2°([0,27],R). For o/ € (0,a) and ¢ > 1,
there exists a constant Cy = C1(Co(u), q, o, ') (see Definition 2.1) such
that
(30)

n 1/nae—2) g <(2-a)/(a—a’
b= Pl gy <€ { 1< (@2 a)/(aa)

1/n2¢ ¢>2-a)/

8
Q\

Proof. Tt is known that there exists a C' with
= [ 1/n9* gqa <2
1 _ p(m9) < .
B) - PO Vulosgoanm < 0110 1050
See [7]. We consider only the case n even. It is sufficient to prove

(P®Vu — w)(z) = (P Dy — w)(s)

|z — s’

(32) sup
z,8€[0,27],z#s
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where 71 = 71(Co(u)) is a constant not depending on n.

We first consider the case z,s > m, x,8 € [:vg-n’q),mg-ﬁ_’f)],

Jj €
{n/2,...,n —1}. In the sequel we will omit the upper index (n, q).
The following two cases are treated separately:

(a) T,s€ [xn/Qamn/}i-l] = [ﬂ-amn/2+1]-

(b) T,8€ [xn/2+-ramn/2+-r+1]7 TE {]-a cee 7n/2 - 1}

Case a. Here we have h := hy /941 = 72¢/n. We get

|[(Pu = u)(z) — (Pu—u)(s)|

r—T Tn/2+1 — T
u(wn/2+1)+/+T

S—T Tn — S
- (S ) + P ) ()

T—5 s—=x
3 u(Tp 241) + Tu(mnﬂ) +u(s) — u(z)

u(y,/2) — u(x)

|z — s

IN

|u(@n/241) = w(@n/2)| + [u(z) —uls)|
< Co(u)|z — s|h* ! + Co(u)|z — |
This implies
|(Pu —u)(z) — (Pu—u)(s)|

; < 2C0h~
|z — 5|
/ ’ 1
— a—a' gq(a—a’)
2007[' 2 nq(afa’)
B 1
= ’Y2ma
where 72 = 2C ' 2a(a—a’),
Case b. Now we have
4

_ .94
LTp/247 — T = T2 nd’

and we define

(1+ )7t

h = hn/2+‘r+1 < 7rq2q nd
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Using (14) an elementary calculation gives
(Pu— w)(z) — (Pu— u)(s)] < Co(w)e — slh(zangr — m)* 2,
which shows
|(Pu — u)(x) — (Pu—u)(s)|

[z — 8|

< Co(h* (224 — )2

(¢-1)(2—0)
< Cor 1) g2 e (1 . T)
T
1 /
g(a—a')+a’—2
" pala—an) T
1/nte=) g < (2-a))/(a~ o),
S Y3 , )
/¥ q>(2-a)/(a—d)

where 75 := Cp(u)re ' 2¢(@—a") 2= max {((1+7)/7)@ D@D,
Now the cases a) and b) show together with the symmetry of the
problem that inequality (32) is fulfilled for z,s € [zj,zj41], j €
{0,...,n —1} and 1 := max{vy2,7s3}.

Let z,s € [0,2n] be contained in different intervals [z;,z;41]. We
assume z < s and

T e [levmj1+1]a s € [$j2,$j2+1].

Then we get
|(Pu —u)(z) — (Pu—u)(s)|
|z — 5|’
< Pu—u)(@) - (Pfil— w) (@, 41)|
[(Pu—u)(s) — (Pu—u)(zj,)|
|z — 5|

(Pu —u)(z) — (Pu— u)(zj,41)|
& = @]
L |(Pu—w)(z) - (Pu - u)(xj,)|

|z — @, [
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by inequality (32). Here the facts

(Pu = u)(2j,+1) = (Pu —u)(z;,) = 0,

and , .
« «
T —Tj+1 T — Tj, <1
x—s z—s
have been used. This proves (32) with v; = 2max{v2,v3}. o

The next lemma shows that the quadrature formula in equation (27)
is sufficiently exact for our purpose.

Lemma 3.2. Let f € C%([0,27],R) and u € C2°([0,2n],R). Then
we have

(33) f( ) (P Du)(z) — PUD(f - (P Du)) (@) de| < Cofn),

0

where Cy = Cz(co(u),cb ||f/||007 Hf"||00)-

Proof. In the following we will omit the upper index (n,q). We have
2T
Fui= [ lf@Put@) = P(f - Pu)(@)] da
IJ+1
= Z/ z)| dz,

where
(34)
o0+ 16 (Bt + 2t
B <Ihj+x1ju($j+1)f(xj+1) + IJ}':TIu(IJ)f(IJ)>
(x — z;)(Tj41 — )

- h.+1 (u($3+1)h]+1f[l'3,x,wj+1]
J

(35) + flaj, @l (u(zjn) — u(z;)))-
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If 7 ¢ [x;,2;41], we further have
(36)
Aj(z) = (z—zj)(zj41 — @) (w(zj1) flz), o, Tja] + flzg, olule;, zj41]).

Now we consider only the case n even.

(a) j = n/2. Then it is easy to see, with the help of (35) and (17),
that there exists a constant 1 = 1 (Co(w), || f'|lco(jo,2x])s 1 |lco([0,277))
for which

(37) 18()| < M~y

(byj=n/2+7,7€{l,...,n/2 —1}. Then (36) and a simple cal-
culation show the existence of a constant v, = v2(Co(u), ||f'[|co([0,2x])s
1" llco(o,21)) With

(14 7)2@ D (14 r)sata=?
N O S
Here
14 7)1
(39) hj+1 S cst. %

and (14) have been used. This gives

F, < 2hn/2-|r1’71

q(a+1)
n/2—-1 2(q—1) atq—2
(14 71)% (14 7)2ete
+ 22 Zl P24t ( 2 2l

which shows together with (39) the existence of a constant v; =
¥3(72, 71) with

n/2—1
1 1 _
(40) F, < 73<7nq(a+2> + > (147)3e=Y
T=1

n/2—1

a+2) Z 1+ 7)9o+22 3>
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Because of ¢ > 1, we have

n/2-1
Z (14 7)%@Y < st p3772,
T=1
and
n/2—1
Z (1 4 7)2(@F2D=3 < ¢t pat2a—2,
T=1

Together with (40), this implies
1
F, <Gy (73)@-

Thus the lemma is proved. ]

Corollary 3.3. Let u € C2%([0,27],R). Then there exists a
constant Cs3(Co(u), o, q) for which we have

1
|H — HD) (P Dy (s)] < Csﬁ’ jef{0,...,n—1}, neN.

Proof. The statement follows from Lemma 3.2 with

fo(@) ::R(S;'>

vs(z) := u(z) — u(s)
instead of u(z). We have Cy(vs) < 2Ch(u) for all s € [0, 27], and (26)
implies

and

max {[|f{llco, [f{llco} <o0. O
s€0,27]

Theorem 3.4. Let u € C2*([0,27],R), a € (0,1) be given. For
o' € (0,a), there exists a constant Cy = C4(Cy(u), q,a,a’) for which

(41)  [[(Hu) (@) — (HODu) (2 ?)) o

1/nale=a) g < (2— o
o [1me as 2=
1/n?=2 qg>(2-d)

= =
e e
.
8. 9
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Remark. The number o’ does not appear on the left side of equation
(41) but only on the righthand side (for the reason, see the following
proof). This means that for ¢ big enough we get convergence for every
grid point faster than O,,_,,(1/n?) for every 8 € (1,2).

Proof. By Corollary 3.3 we have
(42) |(Hu)(@f™?) = (H"Du) (2] )]
< |(H(w = PO Du)) (")
+[(H = HD) (PO ()|
< H e o 2n ry I = PP ull g (0,2m1)

1
+C’3§.

The fact that ||H| 1 (co’ (0,201, R),0o" (0.271.8)) = 1 and Lemma 3.1 prove
the result. O

To study the error with respect to the || ||2,» -norm, we have to take
a closer look at H(u — P("9y).

Lemma 3.5. Let u € C2%([0,2n],R). Then there exists a constant
Cs = C5(Co(u), a, q) which fulfills

(43)  [I(((Hu) = (HP™Dw) (@S D))jl2,n,q
In(n)/nd@*t1/2) ¢ c1,4/(2a + 1)),

o mermt g=ayeat),
- In(n)/n? q € (4/(2a +1),2/a],
1/nf q>2/a,B € (1,2) arbitrary.

Proof. The inequality for ¢ > 2/« is a consequence of Theorem 3.4.
We will only consider the case n even, and we assume first that we have
proved the following inequality

(44)  |(Hu — HPDu) (27 /24,)]
< ) {T—q g€[1,2/(1+a)]

= paa



404 O. HANSEN

TE {17 s ,n/2 - 1}7 Yo = ’YO(CO(U)vaaq)'
We first deal with the case ¢ € [1,2/(1 + a)]. Because of symmetry,
we get

(45)  [|(Hu(z;) = H™Du(z)));l13 0,

n/2—1 _1 N
(1+7)2 In(n)r—1 1 1
n( X (M) e
with a constant y; > 0. Here
1+ 7)1
Wny24r < cst. %
and
Wry2 < 1/n4
have been used. Now (45) gives
2 n/2—1
[(Hu(zs) = HDu(5))513,0, < 72l n- 1+2a) Z (I4+7)"
In(n )2
=73 nQ(2C¥+1)

with
3 = Y2 Z(l +7)77 ! <00, because ¢ > 1.

This proves (43) in the case g € [1,2/(1 + a)] C [1,4/(2cc + 1)).
Ifge (2/(1+a),2/a] we get
(46) | (Hu(z;) = H™Du(z;));113 g

n/2—1

(1+7)27t (In(n)r9e=2 211
S ’74( Z nd nao + E n2qo

T=1

In(n)

fy q(20+1)

9 n/2-1
Z 1+T2qa+q 5
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Y4,75 > 0 independent of n.
The following three cases have to be considered:

(a) 2gqa+qg—5=-1<¢g=4/2a+1) >2/(1 + a). Then we have

n/2—1 n/2—1

1
1 qa+q—5 _
>, 147 PR
T=1 T=1
< cst. In(n).

(b) 2gqa+qg—-5<-1=q€ (2/(1+a),4/(2a + 1)). Here we have

n/2—1

o
Z(l+T2qa+q5 ZI+T2qa+q 5<OO
=1 T=1

(¢)2qa+qg—5>-1=qe (4/(2a +1),2/a]. Then we have

n/2—1
Z (14 7)29Fa=5 < cst, p2aata—d,

T=1

(46) and the three inequalities show (43) for ¢ € (2/(1 + a), 2/a].
Now we want to sketch the proof of (44) for j = n/2 4+ 71, 7 €
{1,...,n/2 —1}. We have

n—1

1
(47) H(u - Pu)(mn/ZJr‘r) = o Z In/2+-r,k7
k=0

where

Tri1 _
Lyjogrg = / cot (%) (u(s) — Pu(s)) ds.
E

n (47) the sum
n/2—1

Z ‘In/2+'r,k:|

k=0
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can be estimated by

n—1
(48) cst. Z | L /24 ks
k=n/2

because the singularity of cot((z 24+ — -)/2) lies between 7 and 2.
The sum in (48) is split into

n/2+7—1 n—1
(49) |In/2+'r,n/2| + Z |In/2+T,k| + Z |In/2+‘r,k )
k=n/2+1 k=n/2+T1

and we will treat only the second summand.

By equation (14) and an estimation for the cotangents we get a
constant g for which

(50) [ Tnjz4r il < yo(ak —m)*

Th+1 1 )
| /zk (m(s — k) (Tptr — s)> s,

ke{n/2+1,...,n/2+ 7 — 1} holds. The integral on the righthand
side of equation (50) is estimated by

I'(1)? 1 h
( ) 2F1 <172747 bt >hz+17
F(4) Tn/24+r — Tk Tn/24+r — Tk

(see [8, pp. 1, 20]) which is bounded by cst. A}, forall k < n/2+7—1.
The definition (18) of the z; implies, therefore,

1 at1)—3__1
(51) L j247k] < 77@(1 + )t 3”’

with a constant y; > 0 and k =n/2+ k, k € {1,...,7 — 1}. In the
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next step we estimate

(52)
a /2] o 1
an( +1)— —Tq"‘ ) q(a+1)
79 — K1 1- /<;/T)
1
+ —_

k=1 K= 1
T— ( > g(a+1)— 1 )
r=lr-n/2e TN L= s/m)e
[(t—1)/2] q(a+1)-3
1/k
< 4992 Bl
<03 (7

T—1 1 1
_—> )

r=[(r=1)/2]+1 T

1

The first term on the righthand side can be estimated directly or with

the help of the integral
1/2
/ 2@t =3 g
1/(27)

We get
(53)
r=1)/2l | /N alet1) =3 r2-aletl) g e [1,2/(14a))
;<;> <19 1+1In(r)) ¢=2/(1+a)
= 1 g€ (2/(1+a),2/a].

Because of the convexity of the function 1/(1 — z7), z € [0,1), we can
estimate the second sum in (52) by

1-1/(2r) 4
/ dz.
1/2 1— 9

This gives

= 1 1
<141
(54) n_[(,z;jmﬂ 71— (s/T)0 ™ (1 +In(r))

< 0(1 + In(n)).
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Now (53) and (54) together with (52) give

it [CERE < 0 In(n) (79972 q€[2/(1+a),2/a]
79 —kr?T T nid®

T4 g€ [1,2/(1+a))].

k=1

The other two terms in (49) can be estimated in a similar way. This
proves (44) and our lemma. o

Theorem 3.6. Let u € C2*([0,2n],R). There exists a constant
Cs(Co(u),a, q) for which

[(Hu({™) = HODu(@" D)) |2,

In(n) /n?+1/2) g € [1,4/(20 + 1))
<C In(n)3/2 /n? g=4/2a+1)
In(n)/n? g€ (4/(2a+1),2/q]
1/nf q>2/a, B€(1,2) arbitrary

holds.

Proof. This follows from

[(Hu(z{?) — HODu(zD)) 2,0

< [|(Hu(z{™?) — (HP™Du) (2D)) 2,0,

n, (n7‘Z) n, (nyQ) .
+ (PO Du) () = 1 Du(ai));

|2,n,q-

Corollary 3.3. and Lemma 3.5. ]

4. Numerical results. First we calculate for the function

i () 1= { (2(1 + cos(z)))Y*sin(z/4)  z € [0,7]
(201 + cos(z)) /4 cos(ar/4) = € (x,21]

the approximation H (™% w,. The function Hu, is known explicitly:
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TABLE 1. u().

qg=1 €IToo, ocC eIT2 . q ocC
n=10 [3.9x10°! 3.1x10°!
n=21 [25x1071|0.58|1.4x10"!]|1.05
n=40 |1.8x107!|049 |7.4x 1072 1.03
n=28l |1.2x10"!|0.55|3.6x 1072 | 1.02
n=160 9.1 x10"2|0.47 | 1.8 x 102 | 1.00
n=232116.2x10"2|0.54|9.0x 1073 | 1.01
q=2

n=10 |1.9x101! 7.4 %102
n=21 |9.2x10"%2|0.97 | 2.0x 1072 | 1.75
n=40 |4.6x1072|1.06 | 4.7 x 1072 | 2.20
n=81 [24x1072|0.96|1.4x1073|1.73
n=160|1.2x10"2|1.05|3.0x107% | 2.25
n=321159x10"2]0.96 | 9.1 x 1075 | 1.70
q=

n=10 |1.1x10"! 1.2 x 1071
n=21 [33x10"2|1.56|24x10"2]2.16
n=40 |[1.0x1072|1.83|6.2x 1073 | 2.08
n=28l [31x1072|1.69 |15x1073]|2.05
n=160|8.6x10"% | 1.88 | 3.7 x 107% | 2.01
n=2321[25x10"*|1.81|1.0x10"* | 1.89
q=>5

n=10 |1.1x10"* 1.8 x 101
n=21 [31x1072|1.76|3.6x10°2|217
n=40 |9.0x1072|1.90 | 9.2x 1073 | 2.10
n=28l |24x1073|1.88|2.2x1073|2.06
n=160|6.3x10"%|1.96 | 5.5 x 10~% | 2.03
n=2321|15x10"%|202|1.4x10"%|1.93
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cos(z)))4cos(z/4) — 1 =z -
Hul(w)_—{(2(1+ ()4 cos(z/4) — 1 @ € [0, 7]

(2(1 4 cos(z)))Y*sin(z/4) — 1 =z € (m,27).
We have uy € Co 1/2([0, 27],R). The errors

(Hu(z?) — (HDu) (@) ]| oo,
and
[(Hu(z?) — (HDu) (@),

are abbreviated by erro , and errs , ;. The order of convergence (oc)

is estimated by
€IToo,ny /1
eIToo,ny

and in exactly the same way for errs ,, ;. We get the results in Table 1.
The results show that, for the function u;, ¢ > 2 has to be chosen to get
the optimal order for the ||-||2,,q-norm and ¢ > 4 for the ||-||oc,»n-norm.

As an application we approximate the solution of equation (8) on the
interval [—, ] with the following data

o(@) = (@), € l-ml,
0 () = { —sin(z/2)(cos((2m + z)/4),sin((2r + z)/4))T z € [-~,0],
sin(x/2)(cos(z/4),sin(x/4))T z € [0, 7],
a) = { —m(1 —cos(z/2)) =€ [-m0],
m(1 —cos(z/2)) =z €[0,m7],
f=1L
The curve T is closed and smooth with the exception of v(0), and the

angle between v/, (0) and v’_(0) is 7/2. The solution uz(z) of this equa-

tion is in C?’l/s([—ﬂ,ﬂ'], R) (see [2, Section 5 ]). Therefore, we expect
q/3 or q(1/2 + 1/3), respectively, as order of convergence—assuming
stability, which I will study in a forthcoming paper. We compute the
approximation u(™% € P9 a5 the solution of the following linear
system

(I -H™DD(K — A) 4+ J(K — A))u™? = (=H™DD 4 J)f.



SINGULAR INTEGRAL EQUATION

TABLE 2. uy(-).

q=1.0 €IToo,n oc eIT2 . q ocC
n=10 |24x10*! 1.9 x 1071
n=20 [1.9x1071|0.33|1.1x10"']|0.83
n=40 |1.5x107!|0.33|6.1x1072|0.83
n=280 |1.2x107'|0.33|34x10"2|0.83
n=160]9.6x10"2|0.33|19x10"2|0.83
n=2320|7.6x10"2 033 |1.1x10"2|0.83
q=24

n=10 |14x101! 4.0 x 102
n=20 |7.9x1072|0.80 | 1.0 x 102 | 1.94
n=40 |4.5x1072|0.80|2.7x 1072 | 1.94
n=280 |2.6x1072|0.80|7.0x10"%|1.96
n=160|15x10"2|0.80 | 1.8 x 107* | 1.98
n=2320|8.6 x1072 | 0.80 | 4.4 x 1075 | 2.00
q=4.0

n=10 | 7.7 x 1072 5.6 x 1072
n=20 [3.1x10"2|1.31|13x10"2]211
n=40 |[1.2x1072|1.32|3.3x1073|1.95
n==80 |50x1072|1.33|85x10"%|1.97
n=160|2.0x10"%|1.33 | 2.1 x 1074 | 2.04
n=2320|7.8x107%*|1.33|4.5x107° | 2.22
q=206.0

n=10 |5.9x 1072 1.1 x 107t
n=20 [24x1072|1.30|28x1072]1.99
n=40 |6.3x1072|1.94|6.7x 1073 | 2.03
n=280 |1.6x1073|2.01 |1.8x 1073 |1.93
n=160|3.8x107%|2.04|4.5x10~* | 1.98
n=2320[89x107°|2.09|1.1x10"* | 2.04

411



412 O. HANSEN

Here the operator J is defined by

1 ™

Ju = —
“ 2r J_,

u(z) dz, u € C([-m, 7)),

and D is the differentiation operator. The kernels of the integral
operators D(K — A) and (K — A) are known, and we compute D(K —
Au(™9 and (K — A)u(™9 with the midpoint rule. The numerical
solution with ¢ = 6 and n = 1280 is used as a reference solution for the
results in Table 2.

The numerical results show that our estimates in Theorems 3.4 and
3.6 describe the order of convergence rather exactly.
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