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A TIME DEPENDENT PARABOLIC INITIAL
BOUNDARY VALUE DELAY PROBLEM

PAOLA VERNOLE

1. Introduction. In this paper we use the theory of analytic semi-
groups in a Banach space to solve the following second order parabolic
initial-boundary value problem with a discrete and a continuous delay

term:
up = A(t, v)u(t, ) + A(t, w)u(t — r,x)

0
+ / a(o)A(t, z)u(t + o,x) do

—-Tr

+ f(t, x) for (t,z) € Qr
u(t,z) = k(t, x) for (t,z) € [-7,0] x Q

(1) B(t,x)u(t,x) = g(t, ) for (t,z) € [-r,T] x T

where ) is an open bounded set of R" with a smooth boundary I’
r and T are positive numbers, Q7 = [0,7] x Q and f,k,g and a are
functions belonging to suitable Banach spaces. The operator

(1.2)  Altw)= Y ay(t,2)DY + 3 bi(t,z)D' + el
ij=1

i=1

for every t € [0,T] is elliptic, and the boundary operator

h
i=1
is nontangential.

First we study the autonomous case, i.e., the case where a;j, b;, ¢, 8;
and v do not depend on the variable t. We obtain a maximal regularity
result in a suitable interval [0, ¢1] contained in [0, r], then we repeat the
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same procedure on interval [t1,ts] and, using a step-by-step method,
we get a solution in the whole interval [0, T).

To solve the nonautonomous case, we use a standard perturbation
method. In [12] we studied the autonomous case where the boundary
operator is I and (1.1) is a Cauchy-Dirichlet nonhomogeneous problem.

This is the structure of the paper. In Section 2 we give notations, and
we recall some known regularity theorems which we use later. Section
3 is devoted to the existence and regularity of the solution of (1.1) in
the autonomous case. In Section 4, finally, we treat a nonautonomous
problem and we get results analogous to those of [5] for linear parabolic
problems without delay.

2. Notation. Let F be a Banach space with norm || - ||, and
let A: Dy C E — E be a linear operator verifying the following
assumption:

there exist ¢ € |n/2,7[ and M > 0 such that, if
(H) Sy ={z € C;z#0|argz| < ¢} then p(A) D Sy and
for all A € Sy, |[AR(N, A)|| < M.

Here, as usual, p(A) is the resolvent set of A and R(\, A) = (A —A)~%
A is not necessarily densely defined in F; nevertheless, A generates a
bounded analytic semigroup {4} in E in the sense of [10], and D4 is
a Banach space with the graph norm.

For 0 € ]0,1[, we define the real interpolation space

D4(0,00) ={xz € E,[x]g = sup ||t179AetAx|| < oo}
t>0

which is a Banach space under the norm ||z|| + [z]y.
Now we introduce some spaces of vector valued functions.

If I is a closed interval in [0, co[ and E is a Banach space, for 6 € |0, 1]



INITIAL BOUNDARY VALUE DELAY PROBLEM 429

and k € N, we set
B(IE) = {u: I — E;sup||u(t)||p < oo}
tel

C(I; E) ={u: I — E,u is continuous} with the supremum norm
CULE)={u:I— F;[ulg = sup |[u(t) —u(s)]|/|t — s|° < 00}
t;;;ESI
with norm ||ullgp = ||ullc + [u]e
CM(I;E) = {u: I — E,uis k-times continuous differentiable}

CHLE)={u:I— E;uec C* and u® e C'(I; E)}.

If  is a bounded set in R™ with boundary I' of class C?1%, we recall
the following definition (see [5, 9]).

Definition 2.1. CY?!(Qr) is the Banach space of the functions
u : Qr — C such that u is continuous with all the derivatives of the
form D} D? for 2r + |s| < | where s is a multiindex s = $1,82,... ,8,
and |s| = s1 + $2 + -+ - s, with norm

ulliyza = > 1D D3ulleqn
2r+4|s|<l
+ > sup[DID3ult, ) emg,
2r-+s|=[1]

+ Z SuB[DtDwu(-,x)]c(zf\s\fzrr)/z([o,T]).
1—2<2r4]|s|<l T€Q

In an analogous way, the space CY/2!([0,T] x T') is defined.

In [9] a characterization of these spaces is given.

Proposition 2.2. u € CY?4(Qr) if and only if setting u(t,-)
u(t) for t € [0,T] we have u € C'2([0,T],C(Q)) and u®
B([0,T); C'=2(Q)) for k = 0,...[l/2] and the norm [ullcir2a(q) is

equivalent to

m |l

[1/2]

k
Il e o.rse @y + D 1™ g r1,0m-20@)-
k=0
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Moreover, u € CU=M/2([0, T]; C*(Q)) for h =0,1,...[l].

Later on we will use the space C%/2(Qr), CU+2/1H+a(Qr),
Cl1te/224e(Qr) where o € ]0,1[; from the previous definition and
proposition C*/% is the Banach space of functions u : @ — C such
that u is continuous in Qr and sup[u(t, -)] o g, and sup,cq[u(-, )lc (o,

are finite; C1+®)/214e(Qr) is the Banach space of the functions
u : Qr — C such that w is continuous, there exist u,, for i =
1,2,...,n and u,, belong to C*/2%(Qr); the space C1to/22+2(Qr)
is the space of the functions u : @Qr — C such that there exist
U, Uz, Ug,e; fOT 4,5 = 1,2,... ,n and vy and ug,,; € C/%(Qr) and
Ug, c C(1+a)/271+o¢(QT).

Moreover, from Proposition 2.2, it follows that

u € CETI([0, 7], C(Q)) N CH2((0, TT;
CH(@) N C2([0,T]; C*(@)).

We now recall some regularity theorems for abstract evolution equa-
tions which we will use in the following sections.

Theorem 2.3. Let A: Dy C E — E be a linear operator verifying
assumption (H). Consider problem

(2.1) u'(t) = Au(t) + f(t) fort€0,T), u(0) ==z
if f € C(0,T];E) N B([0,T]; Da(f,00)) for some 6 € ]0,1] and
x € Dy, Ax € Dy(0,00). Then problem (2.1) has a unique solution

u € C([0,T);Da) N CL[0,T); E) given by the variation of constants
formula

t

(2.2) u(t) = eta + / =A% (s)ds
0

Moreover,

u' € B([0,T); DA(#,0)), Au € C°([0,T]; E) N B([0, T]; DA(#, o))
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and
(2.3)
[|Au]| B([0,77:DA(0,00)) < cLUIfl B0, 1104 (0,00)) T M| AZ|| D, (6,00))

: Hu/HB([O,T];DA(O,oo))
< (1 +CO)IfllBo,1:Da(0,00)
+ M||Az||p, 6,00))-

For the proof, see [10, Theorem 5.5].

Theorem 2.4. Let A verify (H), and let 8 and 0 € ]0,1[ be such
that 0 + 3 > 1. Then, if f € C%([0,T), Da(3,0)) and f(0) = 0, the

function
t

(2.4) ()= A / DA f(e)ds  tel0,T]
0

is continuously differentiable, z(t) + f(t) € Da for every t € [0,T] and
2'(t) = A(z(t) + f(t)) fort € [0,T).

Moreover, z' belongs to B([0,T]; Da(6 + 8 —1,00)), and there exists
co > 0 such that

(2.5) 12| B(10,77:D4(6+8-1,000) < 21 fll00(10.77:D.4(8.00))-

For the proof, see [8, Proposition 1.3].

Finally we give a characterization of the interpolation spaces in a
special case, and a Holder regularity property for elliptic equations.

If E = C(Q), where Q is a bounded set in R" with C?*® bound-
ary, a;;,bi,c € C* and Dy = {w € W?P(Q) with p > n, Aw €
C(Q), Bw/T = 0}Aw = Aw, then for each a € 0,1[, Da(a/2,00) =
C*(Q) and C1(Q) — D4(1/2,0), see [1].

If we set D = {f € W2P(Q); Af € CY(Q); Bf € C'T(T), then
Da C C?T%(Q) and there exists c3 > 0 such that

(2-6) Hf||c2+a(§) < 03(||Af||ca(§) + Hf”c(ﬁ) + ||Bf‘|01+°‘(1—‘))7
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see [2].

3. The autonomous case. We consider the initial boundary
problem (1.1) when the coefficients are time independent.

ue(t, x) = Au(t, z) + Au(t — r, )
0
—|—/ a(o)Au(t + o, z) do

&y Lfe). (e ean
u(t, z) = k(t, z), (t,x) € [-r,0] x Q
Bu(t,x) = g(t, z), (t,x) € [-r,T] x Q.

We make the following assumptions

Q is a bounded set in R"™ with C?T* boundary T,

(32) Qr =1[0,T] x Q,

h
(3.3) A= " a;(x) ”]+Zb 2) Dy, + c(2)1,

ij=1

is an elliptic operator in Q with coefficients aij,bi,c € C¥ (Q),
(3.4) Zﬂj 2)Dy; + (@)1,

is a boundary differential operator with coeflicients 3;, v € cte(Q)
satisfying the nontangentiality condition

h
(3.5) > Bie)ng(z) #0
j=1

where n(x) is the unit exterior normal vector to §2 at the point z.
(3.6)

a€ LY([-r,T)); f € C%([0,T] x Q); g € CU+)/21Fe([—p T|xT)
{ ke CY2([-r,01 x Q) withk, and Ak e C%%([-r,0] x Q)
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(3.7) Bk(t,x) = g(t, ), Y (t,x) € [-r,0] x .

We solve the problem (1.1) by a step-by-step method; we first consider
the problem in the interval [0,r] so that we can replace u(t — r) by
k(t — r) and look for a solution in this interval. Then, using u(t) as a
new initial datum we solve the same problem in the interval [r, 2r], and
so on, until we get a solution in the whole interval [0, T| after a finite
number of steps.

We want to solve the prolbem (1.1) by reducing it to an abstract
evolution equation in the Banach space X = C(Q) of the continuous
functions in Q. If g = 0 problem (1.1) is equivalent to the abstract
evolution equation:

' (t) = Au(t) + Ak(t —r) + f ) Au(t + ) df
(3.8) +f(@t), te(o,r]

u(t) = k(t) te[-r0]
where we have set u(t) = u(t,-), k(t) = k(t,-), f(t) = f(¢,-) and
A:DiCcX =X

(3.9)

Dy = {weW??(Q); Aw € X; Bw = 0}, Aw = Aw VYweDy.
It was proved by Stewart [11] that the linear operator A defined in
(3.6) generates an analytic semigroup {e'“};>0. But, because of the
nonhomogeneous boundary datum g we cannot make direct use of
the theory of abstract parabolic equations. In order to overcome this
problem, we consider a suitable linear mapping N already used in [8]
and in [9].

Theorem 3.1. Under the assumptions (3.2),(3.3),(3.4) and (3.5)
there exists a continuous linear mapping N : C(T') — CY(Q) such that

N € L(C*(T),C7H(Q)) N L(CH(T), 0?0 (1))
V0 €]0,q], BNg=g Vge C).

For the construction of N, see [9]. Under assumption (3.6) on g we
deduce by the characterization of C(1+®)/21+a([—p T] x T') that

e CUFI2([—r, T; C(1) N B([-r,T7;
CH(r) NCYA ([, I, CHI))



434 P. VERNOLE

and

Ng e C(Ha)/z([—r, T];C*(Q)) N B([-r,T);
C*r(Q)) N C*([—r, T); C*(Q).

If  is a solution of (3.1) and N is sufficiently regular, then the function
v(t) = u(t) — Ng(t) satisfies

V'(t) = Av(t) — ANg(t) + Ak(t —r)
0

(3.10) a(0)A[v(s + o) + Ng(s + 0)] do

-r

_|_
+ f(t) — (Ng)s, for t € [0, 7]
v(0) = k(0) — Ng(0)

so that v has the following representation formula:

v(t) = e [k(0) — Ng(0)]
+ / =94 f(s) + Ak(s — r) + ANg(s)] ds
0

(811 te(tfs)A Oaa v(s+o s+ o0)|dods
+ [ [ o) Aluts +0) + No(s + ) dod

—/ e =)4(Ng)(s) ds.

0
Integrating the last integral by parts, we get
v(t) = " [k(0) — Ng(0)]
t
A f(s) + Ak(s — ) + ANg(s)] ds

(3.12) A
3.12 t
J

+
0
1 =94 / a(o)Alv(s + o) + Ng(s + o) do ds
¢
— Ng(t) + €4 Ng(0) - A/ "= Ng(s) ds
0

which makes sense even if Ng is not differentiable with respect to ¢ but
it is only Hoélder continuous. So, if (3.1) has a solution u, we get the
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following representation formula:
u(t) = e"4[k(0) = Ng(0)]
t
4 / =IAf(s) + Ak(s — 1) + ANg(s)] ds
0
3.13 t 0
(3.13) —|—/ e(t_S)A/ a(o)Au(s + o) do ds
0 —r

- Ng(0)— 4 / =9[N g(s) — Ng(0)] ds.

Now we use the contraction principle in a suitable Banach space to
prove that (3.13) indeed has a solution u, which satisfies (3.1).

Before giving such a result we prove a proposition on the continuous
delay term.
Proposition 3.2. Let 0 < T° <r, a € L*(—7,0); and set for
u € B([-r,T°];Da(a+1,00)) N C([—r,T°]; Da)

0
I(u) = / a(o)Au(t + o) do,

-

then l(u) € B([0,T°]; Da(a,00)) N C([0,T°]; E) and

[l Bjo,701:Da()) < lallzr (=m0l ullB(=r0);D 4 (a+1,00))

(3.14)
+ llallzr—ze o llull B0, 721D A (a+1),00))
Proof.
0

[[lul| B(j0,7°1:D 4 (a,00)) = SUP ‘/ a(o)Au(t + o) do

t€[0,7°] -r D 4 (cr,00)

—T°
= sup [H/ a(o)Au(t + o) do
te[0,7°] —r D 4 (ct,00)

[ doraat s ori

DA(a7oo):|
<allpr(=r,—ro)|tl| B(=r0): D4 (a1,00))

+lal| 1 (=7e,0)|[ul| B0, 70:D A (a41,00))- O
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Now we can prove our basic result.

Theorem 3.3. If assumptions (3.2), (3.3), (3.4), (3.5) and (3.6) hold,
then problem (3.13) has a unique solution u € C*2([0,T] x Q) with u;
and Au € C%2([0,T] x Q), and there exists ¢4 > 0 such that

(3.15) ||U‘HB([O,T];CZ+“(§)) + ||“/HB([07T];C“(§))
< C4(Hf||3([0,T];C(§)) + ||kHB([—r,O];CQ+“(§))

+ llgllca+erzqo,m;cy) + 119l Bo.m:cr+e @)

Proof. For each u € C([0,T]; C*(Q)) N B([0,T]; C*t*(2)), we set

a6t) = {u(t) if t € [0,

(3.16) k(t) ifte[-r0]

and

Fa(t) = f(t) + Ak(t — r) + ANg(t) + / i a(o)Ad(t + o) do.

b

From the assumptions (3.6) and the properties of the mapping N, we
can conclude that F; € C%([0,T] x Q). If we set

(3.17) uy (t) = e [k(0) — Ng(0)] + /Ot e AF,(s)ds

then wu; is the solution of the problem

(3.18) { uy(t) = Auy(t) + Fa(t), te€[0,T]
' u1(0) = k(0) — Ng(0).

Taking into account that k(0) — Ng(0) € C%(Q); A[k(0) — Ng(0)] €
C*(Q) and B[k(0,r) — Ng(0,z)] = 0 for all #+ € T (because of
the assumption (3.7)), we have that k(0) — Ng(0) € D4, A[k(0) —
Ng(0)] € Da(a/2,00); hence, applying Theorem 2.3 we conclude that
up € C([0,T);Da) N CY[0,T],E) and u; € B([0,T]; Da(a/2,00)),
Auq € Ca/Q([O,T];D;A) N B([0,T]; Da(a/2,00)) and, therefore, u} and
Auy € Co’a([O,T] X Q)
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Now we consider the last term in formula (3.9).

We set
t
(3.19) ()= A / c=A[Ng(s) — Ng(0)] ds.
0
Since g € CF)/2([0,T]; C(Q)), it follows that Ng € C1+)/2([0, T7;

C*(Q)) N CO+)/2(10,T); Da(1/2,00)), and, from Theorem 2.4, we get
2 € CY[0,T]; E), 2(t) g(t) — Ng(0) € D4 for each t € [0,T],

_|_
2 € B([0,T); Da(1/2 + a/2+1/2 — 1,00)) = B([0,T]; C*(Q)),
2'(t) = Alz(t) + Ng(t) — Ng(0)]

and

(3.20) 2" B0, 1304 (a/2,00)) < clINGllc+er/2((0.77: D4 (1/2,00))

< allgllearerrzom;cmy)-

Since the map s — Ng(s) belongs to C([0,T];C(Q)) N B([0, T];
Da(a/2,00)), it follows that z € B([0, T]; D a(a/2,00))NC([0, T]; C(£2)).
From (3.15) we have that B(z(t) — Ng(t) + Ng(0)) = 0, hence Bz(t) =
—B(Ng(t) — Ng(0)) = —g(t) + ¢(0), i.e., z € B([0,T7; C’1+O‘(Q)) From
the Holder regularity results for elliptic equation we can conclude that
z € B([0,T); C*(Q)).

Fix ¢; € [0,7] (to be precise later) and denote by Y the follownig
subset of B([0,t1]; C?T(Q)):

Y = {ve C([0,4]; C*()) N B([0,1:]; C*F*(Q));
v(0) = k(0); Bu(t,z) = g(t,z) Vo € T}
For each u € Y, we define Su by

Su(t) = e [k(0) = Ng(0)] + (e * F2)(t) + Ng(0)
— Ale + (Ng — Ng(0))(1)]

where (e? * f)(t fo (t=5)Af(s)ds

We will prove that S maps Y into itself and that it is a contraction in
Y for the norm ||u||y = ||u|\B([07t1];CQ+a(§)). Since Su = u3 —z+ Ng(0)
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we deduce from the previous properties that, for every u € Y, Su €
C2(0,T] x Q) and that Su, (Su)’ € B([0,T],C*()); moreover,
Su(0) = k(0) — Ng(0) + Ng(0) = k(0) and BSu(t,xz) = Bui(t,z) —
Bz(t,z) + BNg(0) = BNg(t,x) — BNg(0,z) + BNg(0,z) = g(t,x) for
allz € T,

Therefore, Su € Y.

Take u; € Y, i = 1,2, and define 4; according to (3.16). Then, setting
w = u1 — ug, we have for ¢t € [0,]

Sy (t) — Sug(t) = (e * lw)(t)

where lw is defined as in Proposition 3.2. From this proposition we
deduce that lw € B([0,t1]; Da(a/2,00)) N C([0,%1]; E)), and since
lw(0) =0, from (2.3) we get:

1Sur = Suallpo,1,),02+0 @) < cxlllwllpoutipacasz.o0-
Since w = 0 in [—7, 0], we get

[Su1 — Suz|| < erllal[r(—, 0w B(0,611:D4 (a/2,00)) -

Now we choose 1 in such a way that ci||al|p1(—s 0) < 1. Then S is a
strict contraction in Y, so that there exists a unique u € Y such that
Su = u.

Let us prove that u verifies (3.1), using the splitting v = u3 —z+Ng(0)
(see (3.17) and (3.19)). Taking into account (3.18) and (3.20), we get

W(t) = ui(t) — 2'(t) = Auy + Fa(t) — Afz(t) + Ng(t) — Ng(0)]
= Au(t) + Fu(t) — ANg(t)
= Au(t) + f(t) + Ak(t — ) + ANg(t) — ANg(t)

+ /O a(o)Au(t + o) do;

u(0,z) = u1(0,z) — 2(0,z) + Ng(0, x)
=k(0,2) — Ng(0,2) + Ng(0,z) = k(0,x);
Bu(t,z) = Blui(t,x) — z(¢t,z) + Ng(0, x)]
= BNy(t,x) — BNg(0,z) + BNg(0, z)
= g(t,x) Vzel
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i.e., u is a solution of problem (3.1) in the interval [0, 1].
The estimate (3.15) is a consequence of the estimates (2.3), (2.5) and
(3.14). We have
el p((0,41);024= @)y < CLUIS I B(0,00,02(2)
R g opozte@) 1l o 0o @)
+ 1911 B((0,t1);:c1+e () Tl csorr2(o,07:000 1
and by virtue of (3.11),

(L= ct)lull p(0.4,):c2+e @)
< Al pota1s00 @) + Ikl p(—r 0020 @)
+ 19l B((0,e11;c1+ () + llgllca+tarrz (o100 -

If t; < r we can extend the solution in the interval [—r, ¢ + t3] (where
to = min{ty,r — t1}) and prove that (3.12) holds with T replaced by
t1 +1t2. We repeat the same procedure n times where n is the minimum
integer such that nt; > r. Once we have a solution of (1.1) in [0, 7] we
repeat the same argument in [r, 2r] and so on until we get a solution in
[0,T]. O

In the next theorem we prove that if the data are more regular, the
solution itself is more regular.

For this aim we need a lemma (for the proof, see [9]).

Lemma 3.4. If u € B([0,T];C?*"*(Q)) such that v € B([0,T];
C*(Q)), then u € Cte=M/2([0,T); C"(Q)) for h = 0,1,2, and there
is a C > 0 such that

(3.21) IIUHCO/Q([O,T];Cz(ﬁ)) + ||U|\C(Ha)/?([o,T];Cl(ﬁ))

< Cllull p(po ryscz+= @y + 10l o 1100 @)

For the proof, see [9, Theorem 2.2].

Theorem 3.5. If (3.1),(3.2),(3.3),(3.4) and (3.5) hold and
a € L'(=r,0); f € CY/>%([0,T] x Q); g € CUF/ 2 ([, T] x T),
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E e Ccl1te/22ta([—r 0] x Q) satisfy compatibility condition (3.22)
Bk(t,z) = g(t,z) for (t,x) € [-r,0] x T, then the solution of prob-
lem (3.1) belongs to C1+e/2:2+2([0,T] x Q).

Proof. The assumptions (3.22) are stronger than (3.6); so we can
use Theorem 3.3 to prove the existence of a solution of problem (3.1)
u € CY2([0,7] x Q) with v’ and Au € C%([0,7] x Q). Since
k € C1ra/224e([—r 0] x Q) from Theorem 2.2, it follows that

ke CYe2([—r,01;C(Q)) N CHH 2 ([—r,0]; C1(Q))
N C2([=r, 05 C*(@)),

and therefore keCa/Q([— ] C(Q)NB([—r,0]; C*(Q)) =C*/%([0,T]
xQ). Since v/ € B([0,T);C*(Q)) and u 6 B([0,T); C***(2)) using
Lemma 3.4 we get that u € C*/2([0,T7; C2(_)). This implies that
u € C*/%%([0,T] x Q). Then the right hand side of (3.1) belongs to
C/%2([0,T] x Q) and therefore u; € C*/2<([0,T] x ) which implies
that u € C1+2/2.2+2([0, T x Q). o

Remark. In the same way it is possible to prove the existence of a
solution of a problem similar to (3.1) with initial time ¢y # 0

u(t, ) = Au(t, ) + Au(t — r, z)

—i—/o a(s)Au(t + s,x) ds

,T) for (t,z) € [to,T] x Q

u(t,z) = k(t, x) for (t,x) € [to — r,to] x Q
) for (t,x) € [to —r,T) x T

(3.17)

with the same assumptions on the regularity of the data and the
analogous compatibility conditions

BEk(t,x) = g(t,x) for (t,x) € [to — 7, to] x T

4. The time-dependent coefficient case. Now we consider the
problem (1.1) in the general case, i.e., when the coefficients of the
differential operators depend on ¢ and .



INITIAL BOUNDARY VALUE DELAY PROBLEM 441

We make the following assumptions:
(4.1)  agbi,c e CO([0,T] x Q); 8;,y € CL/2H/21He([o T] x T).

Also in this case we write the problem (1.1) in an abstract form in the
Banach space C(9).

u'(t) = A(t)u(t) + At)u(t —r)

(4.2) + ' a(o)Au(t + o) do + f(t) for ¢ € [0, T

u(0) = k(0) B(t)u(t) = g(t) for t € [-r, T
where A(t)v = > i j=1@ij(t, ) DiDjv + bi(t, ) Div + c(t, -)v, t € [0,T],
v € C%(Q) and ( = s Bilt,)Div + y(t,)v for t € [0,T],
v e C%Q).

We will prove the following existence and uniqueness theorem for
problem 4.2.

Theorem 4.1. Let (4.1) hold, and let f, g,k and a verify (3.4). Then
problem (1.1) has a unique solution u belonging to C*([—r, T]; C(Q))N
B([=r, T]; C***(Q)) N C*/3([-r, T]; C*(Q2)).

Proof. We will prove that there exists a § > 0 such that if 0 <{p <
t; < rand t; —ty < § then, for every k(to,-) € C?*T%(Q) such that
B(to,x)k(to, ) = g(to, x) for € T, the problem

V' (t) = A(t)v(t) + Akt — 1)
0
(4.3) + / a()At)u(t + o) do + f(t), t€ [to,t1]

-

v(to) = k(to), — B(t)v(t) =g(t) ¢ € fto,t1]
has a unlque solution v € C([to, t1]; C*(Q)) N B([to, t1]; C*T*(£2)), such
that v’ and Av € C%%([to, 1] x Q).

Let usset Y = {w € C([to—r, t1]; C*T*(Q))NC*([to—r, t1]; C(Q))w' €
B([to — r, t1]; C*(Q)); w(t) = k(t), w'(t) = K'(t) for t € [to —r,t0]}. ¥
is a complete metric space with the distance

d(wy, wa) = [[wr = wall gy -y, c2 00 @) 10 =02l pay—r, .00 )
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For each w € Y, we consider the perturbed problem
(4.5)
V' (t) = A(to)v(t) + A(t)k(t—r)

+ / a(o)A(to)v(t+o)do + f(t) + [A(t)— A(to)]w(t)

-

+ / a(o) A —A(to)Jw(t + o) do,  t € [to, 1]

v(to) = k(to),
B(to, z)v(t) = g(t, x)+[B(to, ) —B(t, z)]jw(t, x), (t,x) € [to, t1] x I
Setting for each t € [tg — , 1],
(4.6) .

Fult) = F(0) + [A0) - Aol + | alo)lAW®-Alto)}u(t+0) do
Gu(t) = g(t) + [B(t) — B(to)|w(?)

from the assumptions (4.1) it follows that F,, € C%%([tg—r,t;]x Q) and
G € CUFT/214e [ty — 4] x T and also the compatibility condition
(3.7) is verified in fact B(to, 2)k(t,x) = G4 (t, x) for (t,x) € [to—r, to]xT
since w(t) = k(t) for t € [to — 1, to]. So we can apply Theorem 3.3 and
find that, for each w € Y, (4.5) has a solution v € C%2([tg, ;] x Q] such
that v; and Av € C%%([tg, 1] x Q).

Let us define S : Y — Y, Sw = v where v is the solution of (4.5).

We will prove that S is a contraction on Y for t; — ty sufficiently
small.
Let w; € Y for i = 1,2. From estimate (3.15) we get

[[Sw1 — Swa|ly < cf|[Fu, — sz||B(t0_r,t1;ca(ﬁ))

(4.7) F1Guw, = Gualloa+arz(iy—rt0m)
+1Gur = Gus | B((to—r,t1],01+) (1))
Let us set || - || g1y —rtsjico@y = || - IBCo),
[[Fuy, — FuyllB(coy < |[A(E) — A(to)][wr — wal|lB(cw)
H / Alto)]fwn (¢ + o)

—wo(t+o)]do

B(C=)
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It is easy to see that
|| Fuwy — sz”B(CQ) < |tsu|p s I[A(t) — A(S)Hg(cz(ﬁ),c(ﬁ))
—s|<
x [1+lal[1(—s5,0)]
llws = w2l yq,0,1,024w @)
+2[1 + [lal|z1(~s,0)]

x sup [JA@®)||z(cove@):cn@
relory £(C2e ()0 (@)

a/2
X [[wr = wall g c2) 0™

In an analogous way, we get
(4.9)
||Gw1 - Gw2HC(HQ)/?{to,tl];C(F)) < 2||B(')||c(1+a)/2([o,T];L(CQ(ﬁ);Cl(F))
~ (1 +5(1+a)/2)6a/2
w1 = wallgararsa (e ;01 @)
and

(4.10)

Gy = Gl Blto, )01+ (1)) < S 1B() = B(s)ll 22 @).c0n ry)
—s|<

X |Jwy — TUQHB([tO,tl];CH"(ﬁ))

+2 sup ||B(t (B e
2 1B ¢osve o0y

X |Jwn = wallgars (.6, 1:02(2)) 0%

Using (4.8), (4.9), (4.10) and the estimate (3.20) of Lemma 3.4, we
deduce that

(4.11) [[Swi — Swally < cg(6)|[wr — waly

where ¢ : R; — Ry is a continuous function such that ¢(0) = 0.

Therefore, for t; —tg sufficiently small, S is a strict contraction; hence,
it has a unique fixed point v € Y, which is the unique solution of
problem (1.1) in the interval [tg, ¢;]. This implies that the statement of
Theorem 4.1 holds, since we can choose tg = 0 and obtain a solution in
[—7, 6] xQ: if § < r, taking o = & we extend the solution to [—7, 28] x Q.
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After a finite number of steps we obtain an extension of the solution to
the whole interval [—r, T). o
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