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FAST NUMERICAL SOLUTION
OF SINGULAR INTEGRAL EQUATIONS

P.P.B. EGGERMONT AND CH. LUBICH

ABSTRACT. We study a fast method for the numerical so-
lution of Cauchy singular integral equations. The method is
based on fast inversion of the principal part, and on multi-grid
methods for the resulting Fredholm integral equation of the
second kind. The inversion of the principal part is done via
an approximate Wiener-Hopf factorization using FFTs. Un-
der suitable smoothness assumptions, the algorithm requires
O(n log n) operations to achieve an accuracy comparable to
that of the trigonometric collocation method with n colloca-
tion points, which is known to give quasi-optimal approxima-
tions.

1. Introduction. We consider fast algorithms for the approximate
solution of Cauchy integral equations over closed curves in the plane.
We may write such equations as

(1.1) c(ζ)u(ζ) +
d(ζ)
πi

∫
Γ

u(z)
z − ζ

dz +
1

2πi

∫
Γ

k(ζ, z)u(z)
dz

z
= f(ζ)

over the unit circle in the complex plane Γ = {ζ ∈ C : |ζ| = 1}, with
integration direction counterclockwise. We will assume that c, d, k and
f are fairly smooth functions. We write (1.1) in operator notation as

(1.2) (A+K)u = f,

where A = cI+dS, with S denoting the singular integral operator, and
where K is the above integral operator with kernel k. The operator
A + K can be invertible in its natural setting only if A is invertible,
which is why A is called the principal part. The algorithm proposed in
the present paper is actually a discretization of the “preconditioned”
equation, a Fredholm integral equation of the second kind:

(1.3) (I +A−1K)u = A−1f.
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The proposed fast solution method is based on a collocation method
combined with trigonometric interpolation and achieves its speed by
an approximate Wiener-Hopf factorization using FFTs to approximate
A−1 and a multi-grid method to solve (1.3). The fast Wiener-Hopf
factorization was proposed and analyzed in a different context in our
paper [3].

For the special case of constant coefficients c, d ∈ C in (1.1), a fast
solution algorithm was previously proposed by Hackbusch [6, p. 272].
He noted that the collocation discretization of (1.2) then leads to a
linear system (An + Kn)un = fn where An is a circulant matrix and
is therefore readily inverted using FFT. The preconditioned equation
(I + A−1

n Kn)un = A−1
n fn, which can be viewed as a discretization of

(1.3), is then solved by Hackbusch’s multigrid method of the second
kind. The algorithm of the present article reduces essentially to
Hackbusch’s method in the case of constant coefficients. The main
contribution of the present paper is that it shows how to obtain similar
computational efficiency in the general case of variable coefficients in
(1.1).

We describe the algorithm in Section 2 and work out its error analysis
in Section 3. As it turns out, by using n function evaluations and
O(n · log n) arithmetical operations, we get a solution approximation
with a pointwise error bound that is asymptotically equivalent to that of
the trigonometric collocation method. In our numerical experiments we
actually observed errors of the same magnitude for both methods. The
(fully discrete) trigonometric collocation method was recently studied
by McLean et al. [7]. Our error analysis takes up some of their
techniques.

2. The algorithm.

2.1. An inversion formula for the principal part. As usual in
the analysis of singular integral equations, we rewrite A = cI + dS as

(2.1) A = aP + bQ,

where a = c + d, b = c − d and P,Q are the projectors defined by
P = (I+S)/2, Q = (I−S)/2 = I−P . We recall that P is the operator
which cuts the coefficients with negative indices of an arbitrary Laurent
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series:

P

( ∞∑
ν=−∞

fνζ
ν

)
=

∞∑
ν=0

fνζ
ν .

When A is invertible (e.g., as a linear operator on a Hölder space), then
its inverse can be expressed by an explicit formula which involves the
Wiener-Hopf factorization of a/b. This is known from Gohberg and
Fel’dman [4]. We discuss this for the moment in an informal manner.

The operator A in its natural setting is invertible if and only if (see,
e.g., [4, 8])

(2.2)
a(ζ) �= 0, b(ζ) �= 0 for |ζ| = 1,

arg(a/b)(eit)|πt=−π = 0.

The second condition says that the closed curve (a/b)(ζ), |ζ| = 1, does
not encircle the origin. Then a/b can be factored as

(2.3) a/b = c+c−,

where the Fourier coefficients c±ν of c±(ζ) vanish for negative, respec-
tively nonnegative, subscripts ν. The factors c±(ζ) are obtained by
computing the Fourier coefficients of log(a/b)

(2.4)
∞∑

ν=−∞
lνζ

ν = log
a(ζ)
b(ζ)

,

and setting

(2.5) c±(ζ) := exp(l±(ζ)),

where

(2.6) l−(ζ) =
−1∑

ν=−∞
lνζ

ν , l+(ζ) =
∞∑

ν=0

lνζ
ν .

The solution v = A−1f of the equation Av = f is then given by the
formula

(2.7) v =
(

1
c+
P + c−Q

)
f

b · c− ,
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see Gohberg and Fel’dman [4, Chapter V.2]. This is readily verified
upon noting that (1/c+)P + c−Q is the inverse of c+P + (1/c−)Q.

2.2. Approximate inversion of the principal part. The
following algorithm is a finite analog of the above procedure, which
works with sequences of length n (typically a power of 2), such as
x = (xν)n−1

ν=0 , which are extended n-periodically to arbitrary integer
subscripts. We let rn denote the restriction operator which evaluates
a function on the unit circle at n equidistant points and collects the
values in an n-vector. Thus, rn : C(Γ) → Cn is defined by

[rnf ]ν = f(ων), ν = 0, 1, . . . , n− 1,

where ω = e2πi/n. We let Fn denote the discrete Fourier transform of
length n:

[Fnx]ν =
n−1∑
μ=0

ωνμxμ, ν = 0, 1, . . . , n− 1,

with its inverse F−1
n given by

[F−1
n y]μ =

1
n

n−1∑
ν=0

ω−νμyν , μ = 0, 1, . . . , n− 1.

Further, we introduce the cutting operator Π by setting

[Πx]ν =
{
xν , ν = 0, 1, . . . , n/2 − 1,
0, ν = −n/2, . . . ,−1.

Finally, we let Pn = FnΠF−1
n and Qn = I − Pn.

In the following algorithm, all operations on vectors, such as multi-
plication, division, taking the logarithm, and exponentiation are com-
ponentwise.
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Algorithm 1. Approximate computation of v = A−1f

Approximate Wiener-Hopf factorization [3]:

an = rna,

bn = rnb

cn = an/bn

ln = log cn
l+n = Pnln

c+n = exp l+n ,
c−n = cn/c

+
n .

Approximate inversion:

fn = rnf

gn = fn/(bn · c−n )
g+

n = Pngn,

g−n = gn − g+
n ,

vn = g+
n /c

+
n + g−n c

−
n .

Then vn is the approximation to rnv. This algorithm requires n
evaluations of the data a, b, f and O(n logn) arithmetical operations
using FFT. We write Algorithm 1 in shorthand as

(2.8) vn = Bnrnf,

thus defining the matrix Bn ∈ Cn×n.

2.3. Discretization of the full equation. By means of the
trapezoidal rule we approximate rnKg for smooth g by Knrng ≈ rnKg
where

(2.9) [Kn]ν,μ =
1
n
k(ων , ωμ), ν, μ = 0, 1, . . . , n− 1.

We get an approximation un ∈ Cn to rnu by solving the system of
linear equations

(2.10) un +BnKnun = Bnrnf.
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(We use in this paper the convention that a variable name with a
superscript n denotes a continuous function, and the same variable
name with subscript n refers to a related n-vector.) A continuous
approximation un = pnun ∈ C(Γ) to u is obtained via the trigonometric
interpolation operator pn : Cn → C(Γ) defined for data y ∈ Cn as

[pny](ζ) =
n/2−1∑

μ=−n/2

xμζ
μ, ζ ∈ Γ,

where x = (xμ)n−1
μ=0 is determined by trigonometric interpolation:

[pny](ων) = yν for all ν. This interpolation condition amounts to
Fnx = y, i.e.,

x = F−1
n y.

If the standard multi-grid method of the second kind is used to solve
(2.10), see Hackbusch [5, 6], then each iteration still requires O(n2)
operations because of multiplications with the matrix Kn. In the case
where the kernel k is smoother than f or a or b, the operation count
can be brought down to O(n logn) without significant loss of accuracy
through the following scheme (cf. Brandt and Lubrecht [1] for a related
approach). In this scheme the n × n matrix Kn is replaced by its
m ×m dimensional approximation Km with m =

√
n (assumed to be

an integer, e.g., for n a power of 4; otherwise m proportional to
√
n

would also do it):

(2.11) (I +BnpnmKmqmn)un = Bnrnf, with m =
√
n.

Here, pnm : Cm → Cn is the coarse-to-fine grid mapping defined by
trigonometric interpolation as

(2.12) pnm = rnp
m,

and qmn : Cn → Cm is the fine-to-coarse grid mapping, defined by
duality as

(2.13) 〈pnmx, y〉Cn = 〈x, qmny〉Cm ,

for all x ∈ Cm, y ∈ Cn, where 〈·, ·〉Cn denotes the scaled Euclidean
inner product on Cn,

(2.14) 〈x, y〉Cn =
1
n

n−1∑
ν=0

xνyν , x, y ∈ Cn.
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The actions of pnm and qmn can be computed in O(n logn) operations
by FFT: pnmx is obtained by n/m FFTs of length m, and qmny is
composed of every (n/m)th entry of the discrete convolution c ∗ y,
where c = pnmd with d = (m, 0, . . . , 0)T ∈ Cm. A multi-grid method
applied to (2.11) should reduce n by a factor of 4, and m by a factor
of 2 in every coarsening step. It is reasonable to use trigonometric
interpolation and pointwise restriction as grid transfer operators. For
concreteness we formulate the two-grid version, cf. [6, Chapter 5]. For
a given iterate u(k)

n , the improved iterate u(k+1)
n is obtained via

vn = Bnrnf,

ũn = −BnpnmKmqmnu
(k)
n + vn,

dn = (I +BnpnmKmqmn)ũ− vn,(2.15)
en = pnN (I +BNpNMKMqMN )−1rNndn,

u(k+1)
n = ũn − en,

with N = n/4, M = m/2. In the multigrid version, the solution of the
coarse-grid equation in the computation of en is replaced recursively
by two iterations of the multigrid method on the coarser level. It will
be seen that two iterations of the algorithm are sufficient to get an
approximate solution of (2.11) whose error is below the approximation
error of un.

The overall computational work is then O(n logn) for the approxi-
mate solution of problem (1.1) using n values of the right hand side f .
The following section shows that the approximation obtained in this
way is quasi-optimal.

3. Error analysis.

3.1. Analysis in Hölder-Zygmund spaces. Following the work of
McLean et al. [7], Prössdorf and Silbermann [8], and reference therein,
we find it appropriate to study equation (1.1) and its discretization in
the framework of Hölder-Zygmund spaces Hs, s > 0. We recall that for
noninteger s = m+α (m = 0, 1, 2, . . . , 0 < α < 1), the space Hs is just
the space Cm,α of (periodic) functions whose mth derivative satisfies a
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Hölder condition of order α. A norm on Hs is given by

(3.1) ||f ||s = ||f || + sup
t;h �=0

|f (m)(ei(t+h)) − f (m)(eit)|
|h|α .

Here and in the following || · || denotes the sup norm. For integer
s = m + 1, the space Hs consists of functions in Cm(Γ) whose mth
derivative satisfies the Zygmund condition. A norm on Hm+1 is defined
by
(3.2)

||f ||m+1 = ||f || + sup
t;h �=0

|f (m)(ei(t+h)) − 2f (m)(eit) + f (m)(ei(t−h))|
|h| .

Hölder-Zygmund spaces have several properties which make them an
attractive setting for the numerical analysis of equation (1.1). One of
these is their characterization as approximation spaces (see DeVore and
Lorentz [2, Theorem 7.3.3]):

(3.3) Hs = {f ∈ C : En(f) = O(n−s)},

where En(f) = min ||f −ϕ||, with the minimum taken over all trigono-
metric polynomials ϕ of degree ≤ n. Moreover,

(3.4) ||f ||(s) = ||f || + sup
n
nsEn(f)

defines an equivalent norm on Hs. This implies that Hs is actually a
Banach algebra with identity. In particular, multiplication is continu-
ous:

(3.5) ||f · g||s ≤Ms · ||f ||s · ||g||s.

(This is obtained by taking ϕ, ψ as the best approximation polynomials
of f, g in the identity fg−ϕψ = (f −ϕ)g+ f(g−ψ)+ (f −ϕ)(g−ψ).)
A consequence of (3.5) is that

(3.6) exp : Hs → Hs is continuous.

(This follows with the power series of the exponential function.) It is
known from Prössdorf and Silbermann [8, assertion (iv), p . 239], that
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the spectrum of f ∈ Hs equals the image of the unit circle under f .
Consequently, the usual symbolic calculus yields that

(3.7) log : {f ∈ Hs : f(ζ) �= 0 for |ζ| = 1,
arg f(eit)|π−π = 0} → Hs is continuous.

Finally, from [8, p. 238], we have:

(3.8) The projectors P,Q : Hs → Hs are bounded linear operators.

These properties show that the procedure of Section 2.1 is well-defined
on Hs and indeed provides the unique solution of the equation Av = f
posed in Hs. We summarize this as follows.

Proposition 2. Let a, b ∈ Hs satisfy condition (2.2). For f ∈ Hs,
the equation Av = f has a unique solution v ∈ Hs, which is given by
(2.3) (2.6), and

(3.9) ||v||s ≤ C · ||f ||s,

where the constant C depends only on the Hs-norms of a, b, 1/a, 1/b.

In other words, the operator A : Hs → Hs is bounded and invertible,
and

(3.10) ||A−1||L(Hs) ≤ C.

Proposition 2 is actually a special case of Theorem 6.26 of Prössdorf
and Silbermann [8], which also shows that condition (2.2) is necessary
for the invertibility of A = aP + bQ.

For the error analysis that follows, we need bounds for the trigonomet-
ric interpolation operator In = pnrn in various settings. If f ∈ C(Γ),
then Inf denotes the trigonometric polynomial

∑n/2−1
μ=−n/2 xμζ

μ that in-
terpolates f at the points ων , ν = 0, 1, . . . , n−1. We have from McLean
et al. [7, Section 5], that

(3.11)
(i) ||Inf || + ||PInf || ≤ C log n||f ||,
(ii) ||f − Inf || + ||P (f − Inf)|| ≤ Cn−s log n||f ||s,
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(3.12) ||Inf ||s + ||PInf ||s ≤ C log n||f ||s,
and from Prössdorf and Silbermann [8, pp. 76 77], for r < s, that

(3.13)
(i) ||Inf ||r ≤ C||f ||s,
(ii) ||f − Inf ||r ≤ Cnr−s log n||f ||s.

3.2. Error bounds for the principal part. Let v = A−1f , and let
vn = Bnrnf be the result of Algorithm 1. We will prove the following
error bounds in the discrete and continuous maximum norms, both
denoted by || · ||.

Theorem 3. Let a, b ∈ Ht satisfy condition (2.2), and let f ∈ Hs.
If t > s > 0, then

||Bnrnf − rnA
−1f || ≤ C · n−s log n · ||f ||s,

||pnBnrnf −A−1f || ≤ C · n−s(log n)2 · ||f ||s.
For t = s, such estimates still hold with one more factor of log n. The
constant C depends only on s, t and on the Ht-norms of a, b, 1/a, 1/b.

Proof. We begin with a reformulation of Algorithm 1 that involves
functions on the unit circle rather than n-vectors. From the properties
of the trigonometric interpolation operator pn, we see that

Pn ≡ FnΠF−1
n = rnPp

n.

We can now reformulate Algorithm 1 in the following way: vn = Bnrnf
is obtained from

(3.14)

cn+ = exp(PIn log(a/b)),
cn− = exp(QIn log(a/b)),

gn
+ = PIn f

b · cn−
,

gn
− = QIn f

b · cn−
,

vn
+ = gn

+/c
n
+,

vn
− = gn

− · cn−,
vn = vn

+ + vn
−,

vn = rnv
n.
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We note that cn± ∈ C(Γ) are such that rncn± = c±n of Algorithm 1.
We define the functions c±, g±, v±, v ∈ C(Γ) by analogous formulas in
which the interpolation operator In is replaced by the identity operator.
Then v = A−1f by Proposition 2. We now use the estimates in (3.11)
to obtain that

||cn+ − c+|| ≤ Cn−t log n,

and the same bounds for the errors in cn−, 1/cn+, 1/cn−. Together with
(3.11) and (3.5), this implies

||gn
+ − g+|| ≤

∥∥∥∥PIn

{
f

b

(
1
cn−

− 1
c−

)}∥∥∥∥ +
∥∥∥∥(PIn − P )

f

bc−

∥∥∥∥
≤ Cn−t(log n)2||f || + Cn−s log n||f ||s,

and the same for gn
−. We then get that the errors of vn

+ and vn
− are

bounded in the same way, and consequently we get the desired bound
(3.7) for vn = vn

+ +vn
− and hence also for vn = rnv

n. The claimed error
bound for the interpolating polynomial pnvn then follows upon writing

pnvn − v = pn(vn − rnv) + (Inv − v),

and using the above estimates for vn − rnv, the bound ||pn|| ≤ C · logn
(see (3.11.i)) as well as the bound from (3.11.ii)

||Inv − v|| ≤ Cn−s log n||v||s ≤ C ′n−s log n||f ||s,
the last estimate coming from (3.9).

Corollary 4. For the matrix Bn, we have the bound

||Bnx|| ≤ C · log n · ||x||, x ∈ Cn.

Remarks. (a) Under the assumptions of Theorem 3, we have the
additional error bound in Hölder-Zygmund spaces for 0 < r < s:

(3.15) ||pnBnrnf −A−1f ||r ≤ C · n−(s−r)(log n)2 · ||f ||s,
and also the bound

(3.16) ||pnBnrnf ||s ≤ C · (log n)2 · ||f ||s.



346 P.P.B. EGGERMONT AND CH. LUBICH

This is obtained similarly to Theorem 3, by using properties like
(3.5) (3.8), and instead of (3.11) the bounds in (3.12) and (3.13).

(b) If a, b, k and f are analytic in an annulus around the unit circle
(k analytic in both variables) and condition (2.2) is satisfied, then
Algorithm 1 converges exponentially:

(3.17) ||pnvn − v|| ≤ C · e−cn,

with a c > 0. Compare [3, Theorem 8.3].

3.3. Error bounds for the discretization of the full equation.
Combining Theorem 3 with techniques from Fredholm integral equa-
tions of the second kind, we will obtain the following error bounds.
We assume throughout that (1.3) is uniquely solvable in C(Γ) (and
therefore also in Hs under our smoothness assumptions on the data).

Theorem 5. Let f ∈ Hs and a, b ∈ Ht with t > s > 0. If
k ∈ H2s(Γ × Γ), then the scheme (2.11) has a unique solution un for
sufficiently large n which satisfies

(3.18)
||un − rnu|| ≤ C · n−s log n · ||f ||s,
||pnun − u|| ≤ C · n−s(log n)2 · ||f ||s.

If k is only in Hs, then this holds for the solution of (2.10).

Proof. The proof uses approximation and stability lemmas given
below. We first prove the error estimate for the solution un of (2.10),
assuming that k ∈ Hs(Γ × Γ). We set T = A−1K, Tn = BnKn. From
(1.3) and (2.10) we get that the error vector en = un − rnu satisfies

en + Tnen = dn

with
dn = −(Tnrn − rnT )u+ (Bnrn − rnA

−1)f.

By Theorem 3, the last term is bounded in the maximum norm by
C · n−s log n · ||f ||s. By Lemma 6 and because ||u||s ≤ C ′ · ||f ||s, the
maximum norm of (Tnrn − rnT )u is bounded in the same way. The
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stability result, Lemma 7, then shows that ||en|| is again bounded in
this way, thus proving the first of the bounds (3.18) for the scheme
(2.10). The second bound then follows as at the end of the proof of
Theorem 3.

The proof for the solution of (2.11) is analogous, using the corre-
sponding properties of T̃n = BnpnmKmqmn with m =

√
n instead of

Tn.

Lemma 6. If k ∈ Hs(Γ × Γ), then Tn = BnKn satisfies

||Tnx|| ≤ C · ||x||, x ∈ Cn,(3.19)
||pnTnrnf ||s ≤ C · (log n)3 · ||f ||, f ∈ C(Γ),(3.20)

||(Tnrn − rnT )g|| ≤ C · n−s log n · ||g||s, g ∈ Hs,
(3.21)

where T = A−1K. If k ∈ H2s(Γ × Γ), then T̃n = BnpnmKmqmn with
m =

√
n satisfies the same bounds.

Proof. (a) Let πn : Cn → C(Γ) denote the piecewise linear
interpolation operator. We have

Tnx = (Bnrn)(pnKnrn)πnx.

Obviously we have ||πnx|| ≤ ||x||, and Lemma 9 below shows that for
r < s,

||(pnKnrn)πnx||r ≤ C · ||πnx||.
Theorem 3 gives us for f ∈ Hr

||Bnrnf || ≤ ||Bnrnf − rnA
−1f || + ||rnA−1f || ≤ C · ||f ||r,

and hence (3.19) follows by combining the above inequalities.

(b) We have

||pnTnrnf ||s ≤ ||pnBnrn||L(Hs) · ||pnKnrnf ||s,

and (3.20) follows from (3.16) and Lemma 9.
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(c) We write

Tnrng − rnTg = Bn(Knrn − rnK)g + (Bnrn − rnA
−1)Kg.

Using subsequently Theorem 3 and Lemma 9, we get (with 0 < r < s)

||Bn(Knrn − rnK)g|| ≤ C · ||(pnKnrn −K)g||r
≤ C ′ · n−s log n · ||g||s.

Since K is a bounded operator on Hs, Theorem 3 gives us the same
bound for ||(Bnrn − rnA

−1)Kg||, and (3.21) follows.

(d) The results for T̃n are obtained in the same way, using the
properties of K̃n = pnmKmqmn stated in Lemma 9.

Lemma 7. Under the assumptions of Theorem 5, the matrices I+Tn

and I+T̃n are invertible for sufficiently large n, with uniformly bounded
inverses when Cn is equipped with the maximum norm.

Proof. Let again πn : Cn → C(Γ) denote the piecewise linear
interpolation operator. Then I + rnTπ

n is the matrix of the piecewise
linear collocation scheme for (1.3), which is known to have a uniformly
bounded inverse for sufficiently large n, see, e.g., [6, Chapter 4]. We
have

(Tn − rnTπ
n)Tn = (Tnrn − rnT )pnTn − rnT (πnrn − pnrn)pnTn,

and Lemma 6 now shows that

||(Tn − rnTπ
n)Tn|| → 0, n→ ∞.

A well-known argument from the numerical analysis of Fredholm inte-
gral equations, see, e.g., [6, p. 148], then shows that I+Tn is invertible
for sufficiently large n, and

(I+Tn)−1 = (I−(I+rnTπn)−1(Tn−rnTπn)Tn)−1(I−(I+rnTπn)−1Tn).

As ||Tn|| is uniformly bounded by (3.19), the result follows. The result
for T̃n is proved in the same way.
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3.4. Convergence of the multigrid method. Our previous
estimates also give us the tools for showing convergence of the multigrid
method.

Theorem 8. Under the assumptions of Theorem 5, the multigrid
method of the second kind for (2.10) or (2.11), with trigonometric inter-
polation and pointwise restriction as grid transfer operators, converges
in the maximum norm with a rate of O(n−s(log n)5).

Proof. The result follows by using the estimates of Lemmas 6 and 7,
and the bound (3.11) for trigonometric interpolation (and the triangle
inequality and little else) in the multigrid convergence analysis of
Hackbusch [6, Chapter 5]. In particular, the two-grid iteration matrix
corresponding to (2.15) is (with N = n/4)

{I−pnN (I+T̃N )−1rNn(I+T̃n)}T̃n

= {(I−pnNrNn)+pnN (I+T̃N )−1[T̃NrNn−rNnT̃n]}T̃n

= rn{(I−IN )+pN (I+T̃N )−1[(T̃NrN−rNT )+rNn(rnT−T̃nrn)]}
· (pnT̃n).

Using subsequently the bounds (3.11)(ii) and (i) for trigonometric
interpolation, the stability estimate of Lemma 7, the approximate
estimate (3.21) twice and the smoothing property (3.20), we obtain
that the norm of this matrix is bounded by O(n−s(logn)5). The
generalization to the multigrid method is then obtained as in [6, Section
5.5.3].

3.5. Estimates for the trapezoidal rule. It remains to give the
lemma for the (modified) trapezoidal rule approximation of the integral
operator K to which we referred in the proof of Lemma 6.

Lemma 9. If k ∈ Hs(Γ × Γ), then Kn = pnKnrn satisfies

(3.22) ||Knf ||r ≤
{
C · log n · ||f ||, for r = s,

C · ||f ||, for r < s,

(3.23) ||(Kn −K)g||r ≤ C · n−s log n · ||g||s, for r < s,
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for all f ∈ C(Γ), g ∈ yls.

If k ∈ H2s(Γ × Γ), then the operator K̃n = pnK̃nrn, where K̃n =
pnmKmqmn with m =

√
n, satisfies the same bounds.

Proof. We give an outline of the proof for K̃n, which concerns the
more interesting part of the lemma. The basic identity to observe is

K̃nf = Imκn

with

(3.24) κn(ζ) =
1

2πi

∫
Γ

In(f(∗)[Imk(ζ, ·)](∗))(z)dz
z
,

where again In = pnrn and Im = pmrm are the trigonometric inter-
polation operators on C(Γ). This identity is seen from the definition
(2.13) of qmn by duality, which gives for μ = 0, 1, . . . ,m− 1

(3.25) [K̃nf ](ωμ
m) =

1
n

n−1∑
ν=0

f(ων
n)[Imk(ωμ

m, ·)](ων
n),

where ωm = e2πi/m. This trapezoidal sum equals

[K̃nf ](ωμ
m) =

1
2πi

∫
Γ

In(f(∗)[Imk(ωμ
m, ·)](∗))(z)

dz

z
,

and hence (3.24) follows by noting Im = pnpnmrm. From (3.24),
(3.25) and from the bounds (3.11) of the interpolation operators one
deduces immediately bounds for K̃nf and (K̃n −K)g in the maximum
norm, which are of the type (3.22) and (3.23). Taking finite differences
of κn, which act only on the first argument of k in (3.24) whereas
the interpolation operators act on the second argument, and then
estimating as before, gives bounds of κn in the H2s-norm. The bounds
(3.12) and (3.13) for Im finally yield the result (even without the factor
log n in (3.22) for K̃n).
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