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PSEUDOSPECTRA AND SINGULAR VALUES
OF LARGE CONVOLUTION OPERATORS

ALBRECHT BÖTTCHER

ABSTRACT. This paper is an introduction to C∗-algebra
methods for studying the spectral behavior of large truncated
Wiener-Hopf operators. We compute the limit of the norms
of the inverses of truncated Wiener-Hopf operators and we
show that the pseudospectra (in contrast to the spectra) and
the singular values of large truncated Wiener-Hopf operators
mimic the pseudospectrum and the singular values of the
original operator.

1. Introduction. Given a function k ∈ L1(R) and a finite interval
(α, β) ⊂ R, we consider the convolution operator on L2(α, β) defined
by

(Wα,βϕ)(x) =
∫ β

α

k(x− t)ϕ(t) dt, α < x < β.

What can be said about the spectrum

Λ0(Wα,β) := {λ ∈ C : Wα,β − λI is not invertible}

if τ = β − α is a large number? In that case one might try one’s luck
by replacing Wα,β with the operator M given on L2(−∞,∞) by

(Mϕ)(x) =
∫ ∞

−∞
k(x− t)ϕ(t) dt, −∞ < x <∞,

or since clearly Λ0(Wα,β) = Λ0(W0,τ ), one could also substitute for
Wα,β the operator W acting on L2(0,∞) by the rule

(Wϕ)(x) =
∫ ∞

0

k(x− t)ϕ(t) dt, 0 < x <∞.
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The spectra of M and W are available: Λ0(M) is the closed continuous
curve which consists of the origin and the range of the Fourier transform

k̂(ξ) =
∫ ∞

−∞
k(t)eiξt dt, −∞ < ξ <∞

of the kernel k, while Λ0(M) is the union of the curve Λ0(M) and the
set of all λ ∈ C whose winding number (index) with respect to the curve
Λ0(M) is nonzero. The hopes one has are that the spectrum Λ0(Wα,β)
mimics, in some way, either Λ0(M) or Λ0(W ). To be more precise,
given a family {Eτ}τ>0 of sets Eτ ⊂ C, we denote by limτ→∞ Eτ the
set of all λ ∈ C for which there are τ1, τ2, . . . and λ1, λ2, . . . such that

0 < τ1 < τ2 < . . . , τn → ∞, λn ∈ Eτn
, λn → λ,

and our question then is whether limτ→∞ Λ0(W0,τ ) coincides with
Λ0(M) or Λ0(W ).

Let us consider two examples. First take k(t) = e−|t|. Then
k̂(ξ) = 2/(1 + ξ2), hence Λ0(M) = Λ0(W ) = [0, 2], and one can indeed
show that limτ→∞ Λ0(W0,τ ) = [0, 2]. Secondly, suppose k(t) = et for
t < 0 and k(t) = 2e−t for t > 0. Now k̂(ξ) = (3 + iξ)/(1 + ξ2), so
Λ0(M) is the ellipse

{
x+ iy ∈ C :

(x− 3/2)2

(3/2)2
+

y2

(1/2)2
= 1

}
,

whereas Λ0(W ) consists of this ellipse and all points in its interior.
However, it results that limτ→∞ Λ0(W0,τ ) is the union of the circle
{λ ∈ C : |λ−1/2| = 1/12} and the interval [3/2−√

2, 3/2+
√

2] (see [1]
and [7]). Thus, while in the first example Λ0(Wα,β) = Λ0(W0,τ ) mimics
both Λ0(M) and Λ0(W ) very well, there is absolutely no relation
between Λ0(Wα,β) and Λ0(M) or Λ0(W ) in the second example.

In the two examples we have examined, the function k̂(ξ) is rational,
and one can show that in this case the limit set limτ→∞ Λ0(W0,τ ) is
always a “thin” set (namely, a finite union of analytic arcs) that is
contained in the spectrum Λ0(W ) of W and that “tries to stay away”
from the boundary of Λ0(W ) (see [19] and [7]). Consequently, if the
interior of Λ0(W ) is not empty, which is the case in the second example,
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then we cannot expect any relation between that limit set and Λ0(W )
or Λ0(M). On the other hand, if, as in the first example, Λ0(W ) itself
is “thin,” then there is nothing that might prevent the limit set from
being equal to Λ0(W ).

Things are less clear in case k̂(ξ) is not rational. However, it turns
out that whenever we have to deal with self-adjoint operators, there is a
close relationship between the limit set of the spectra of the “truncated”
operators and the spectrum of the original operator. Here are a few
examples that illustrate this observation.

If k is a Hermitian kernel, i.e., if k(−t) = k(t), then k̂ is real-valued,
W0,τ and W are self-adjoint, and one can show that

(1) lim
τ→∞ Λ0(W0,τ ) = Λ0(W ) =

[
inf
ξ∈R

k̂(ξ), sup
ξ∈R

k̂(ξ)
]
.

Of course, this equality would also hold with Λ0(M) in place of Λ0(W ).
That W is the preferable operator can be motivated as follows. Let us
drop for a moment the assumption that k is in L1(R) and consider
instead the kernel k(t) = 1/(πit). Then W0,τ is the Cauchy singular
integral operator on L2(0, τ ),

(W0,τϕ)(x) =
1
πi

∫ τ

0

ϕ(t) dt
t− x

, 0 < x < τ,

and the role of the Fourier transform of k is played by the function
k̂(ξ) = −sign ξ. It is well known that in the case at hand Λ0(M) =
{−1, 1}, Λ0(W ) = [−1, 1], and Λ0(W0,τ ) = [−1, 1] for all τ > 0 (see
[12, pp. 50 51, 84 55] or [6, p. 416] for the latter equality). Hence,
again (1) is valid, but now we cannot replace Λ0(W ) by Λ0(M) in (1).
Let finally k be an arbitrary kernel, but consider the singular values of
W0,τ and W instead of their spectra. Recall that the singular values of
an operator T are defined as the points in the spectrum of (T ∗T )1/2.
The circumstance that (T ∗T )1/2 is self-adjoint nourishes the hope that
for large τ the singular values of W0,τ mimic the singular values of W .
This is indeed the case: as will be shown below, we have

lim
τ→∞ Λ0((W ∗

0,τW0,τ )1/2) = Λ0((W ∗W )1/2) ∪ Λ0((WW ∗)1/2).

But what about the case where k̂(ξ) is neither rational nor real-
valued? In this situation no general results on the limiting behavior
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of Λ0(W0,τ ) are available. However, Reichel and Trefethen [18] have
shown us an astonishing way out of the labyrinth. When studying
discrete convolution operators, they made a fascinating discovery:
the pseudospectra of discrete convolution operators mimic exactly the
pseudospectra of an appropriate limiting operator. For ε > 0, the ε-
pseudospectrum Λε(T ) of an operator is defined as the set

Λε(T ) = {λ ∈ C : λ ∈ Λ0(T ) or ||(T − λI)−1|| ≥ 1/ε}.

We will show that for a large class of kernels k

lim
τ→∞ Λε(W0,τ ) = Λε(W )

for each ε > 0. Thus, passage from spectra to pseudospectra simplifies
things drastically: for large τ the pseudospectrum of W0,τ mimics the
pseudospectrum of W , which is in general not true for the “usual”
spectrum.

2. Wiener-Hopf operators. The operator W that played a
crucial role in the Introduction is a member of the class of Wiener-Hopf
operators. The Wiener-Hopf operator W (a) generated by a (complex-
valued) function a ∈ L∞(R) is the bounded operator on L2(0,∞)
defined by

(W (a)ϕ)(x) =
1
2π

∫ ∞

−∞
e−ixξa(ξ)

∫ ∞

0

eitξϕ(t) dt dξ, 0 < x <∞.

If a is of the form a(ξ) = c+ k̂(ξ) with c ∈ C and k ∈ L1(R), then the
action of W (a) may also be given by the formula

(W (a)ϕ)(x) = cϕ(x) +
∫ ∞

0

k(x− t)ϕ(t) dt, 0 < x <∞.

The truncated Wiener-Hopf operator Wτ (a), where 0 < τ < ∞, is the
compression of W (a) to L2(0, τ ), that is, Wτ (a) = PτW (a) | L2(0, τ ),
where Pτ denotes the orthogonal projection of L2(0,∞) onto L2(0, τ ):

(Pτϕ)(x) = ϕ(x), 0 < x < τ, (Pτϕ)(x) = 0, τ < x <∞.
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With these notations, the operatorsW0,τ andW of the Introduction are
just Wτ (k̂) and W (k̂), respectively. Standard references to the theory
of Wiener-Hopf operators are the books [13, 11, 12, 6].

The function a is usually referred to as the symbol of the operator
W (a) and its truncations Wτ (a). It is not the “kernel” k but rather
the properties of the symbol a in terms of which one can most easily
study the properties of W (a).

Let C denote the collection of all bounded continuous functions a
on R which have finite limits a(−∞) and a(+∞) at infinity satisfying
a(−∞) = a(+∞). The set of all functions a ∈ L∞(R) possessing finite
one-sided limits a(ξ − 0) and a(ξ + 0) at each ξ ∈ R and having finite
limits a(−∞) and a(+∞) at infinity is denoted by PC. If a(ξ) = c+k̂(ξ)
with c ∈ C and k ∈ L1(R), then clearly a ∈ C, but it is well known
that not every function in C is of this form. The Cauchy singular
integral operator on the half-line is the operator W (−sign ξ) and is
thus the archetypal example of a Wiener-Hopf operator with a piecewise
continuous symbol.

Let a ∈ PC. Then a has at most countably many discontinuities
(jumps), and we denoted by a# the closed, continuous, and naturally
oriented curve resulting from the essential range of a (= spectrum of
a in L∞(R)) by filling in line segments between the endpoints of each
jump, including the possible jump at infinity. The spectrum Λ0(W (a))
equals the union of the curve a# and the set of all points in the plane
having nonzero winding number (index) with respect to a# (see, e.g.,
[13]). In particular, if even a ∈ C, then Λ0(W (a)) is the set described
in the Introduction.

Now suppose a ∈ L∞(R). Then the adjoint operator W ∗(a) is equal
to W (ā) where ā(ξ) := a(ξ). It follows that W (a) is self-adjoint if
and only if a is real-valued. One of the oldest results on Wiener-Hopf
operators goes back to Brown and Halmos [8]: the operator W (a) is
normal, i.e., it commutes with its adjoint, if and only if the essential
range R(a) of a lies on a straight line; in that case the spectrum
Λ0(W (a)) coincides with the line segment convR(a), i.e., with the
closed convex hull of R(a).

We will push the main results to the case of so-called locally normal
symbols. The name is motivated by the Brown-Halmos criterion (and
was introduced in [3]); the consideration of just this class has its reason
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in the fact that it comprises both all piecewise continuous and all real-
valued symbols, and the definition of this class is as follows. For an
open set U ⊂ R, denote by RU (a) the essential values of a on U , i.e.,
the spectrum in L∞(U) of the restriction of a to U . Then for ξ ∈ R,
put

Rξ(a) =
⋂
ε>0

R(ξ−ε,ξ+ε)(a),

and let
R∞(a) =

⋂
M>0

R(−∞,−M)∪(M,∞)(a).

The function a is said to be locally normal if each of the sets Rξ(a),
ξ ∈ R ∪ {∞}, lies on some straight line (depending on ξ). In other
words, a is locally normal if and only if the convex hull of the “limit
values” of a at each point of R ∪ {∞} is some straight line segment.
Notice that Rξ(a) = {a(ξ)} if a ∈ C and Rξ(a) = {a(ξ − 0), a(ξ + 0)}
if a ∈ PC, so that functions in C and PC are automatically locally
normal. To have a more complicated example, if a(ξ) = sin(1/ξ) in a
neighborhood of 0, a(ξ) = i sin ξ in a neighborhood of infinity, and a is
continuous on R\{0}, then a is locally normal. The set of all locally
normal functions will be denoted by LN .

3. Finite section method. Given a Hilbert space H, we denote by
L(H) the collection of all bounded (linear) operators on H. Suppose
A ∈ L(L2(0,∞)) and {Aτ}τ>0 is a family of operators Aτ ∈ L(L2(0, τ ))
such that AτPτ converges strongly (i.e., pointwise) to A as τ → ∞.
Recall that Pτ is the canonical projection of L2(0,∞) onto L2(0, τ ). We
have this situation if, for example, A = W (a) or A = W (ā)W (a) − λI
and Aτ = Wτ (a) or Aτ = Wτ (ā)Wτ (a) − λI, respectively. Here and
in what follows I denotes the identity operator, whatever the space is
that it acts upon.

In numerical analysis, we replace the equation Aϕ = f on L2(0,∞)
by the equations Aτϕτ = Pτf on L2(0, τ ), assuming that the latter
equations are easier to solve than the original equation Aϕ = f . We
write A ∈ Π{Aτ} if the operators Aτ are invertible on L2(0, τ ) for
all sufficiently large τ and ϕτ = A−1

τ Pτf converges in L2(0,∞) to a
solution of the equation Aϕ = f for every right-hand side f ∈ L2(0,∞).
If W (a) ∈ Π{Wτ (a)} one says that the finite section method is
applicable to W (a).
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Our subject here is not to replace the operator A by the operator
Aτ , but rather the problem of gaining information about the operators
Aτ for large τ by having recourse to properties of the operator A.
Hence, let us occupy a more “neutral” position and employ the notion
of stable convergence: the family {Aτ}τ>0 is said to be stable if the
operators Aτ are invertible for all τ large enough, for τ > τ0 say,
and if supτ>τ0 ||A−1

τ || < ∞. On putting ||A−1
τ || = ∞ in case Aτ is

not invertible, we may also define {Aτ}τ>0 to be stable if and only if
lim supτ→∞ ||A−1

τ || <∞.

Finally, some authors (e.g., [17]) use the concept of the spectrum
P{Aτ} of the operator family {Aτ}τ>0. They define P{Aτ} as the set
of all λ ∈ C for which lim supτ→∞ ||(Aτ − λI)−1|| = ∞.

The next proposition, which is well known (see, e.g., [13] or [6]),
shows that all the notions introduced above point to the same thing.

Proposition 3.1. The following are equivalent:

(i) A ∈ Π{Aτ};
(ii) A is invertible and {Aτ} is stable;

(iii) A is invertible and 0 /∈ P{Aτ}.

The finite section method, that is, the problem of deciding whether
W (a) ∈ Π{Wτ (a)}, has been studied by many people for about 30
years. Since 1987 we know that it is not applicable to every invertible
Wiener-Hopf operator:

Theorem 3.2 [23]. There exist a ∈ L∞(R) such that W (a) is
invertible but W (a) /∈ Π{Wτ (a)}.

On the other hand, the finite section method is applicable to Wiener-
Hopf operators with symbols that are not “too bad”:

Theorem 3.3. Suppose a ∈ L∞(R) is locally normal. Then
W (a) ∈ Π{Wτ (a)} if and only if W (a) is invertible. Equivalently,

P{Wτ (a)} = Λ0(W (a)).
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For a ∈ PC this theorem was already established in the late sixties by
Gohberg and Feldman (see [13]). In the form stated here the theorem
has never been published, but it is implicit in the book [6, where its
discrete version is stated and proved on p. 296 (Theorem 7.32 (iii))].

4. C∗-algebras: They do a lot of things for us. Theorem 3.3 in
conjunction with Proposition 3.1 implies that if a ∈ L∞(R) is locally
normal and W (a) is invertible, then

lim sup
τ→∞

||W−1
τ (a)|| <∞.

However, when studying pseudospectra we need more precise informa-
tion about the norms ||W−1

τ (a)||. The best possible thing would be to
have the equality

(2) lim sup
τ→∞

||W−1
τ (a)|| = ||W−1(a)||,

and we will really be able to prove this equality. Formulas like (2)
cannot be proved by bare hands. The magic wand we will use is C∗-
algebra arguments, and I hope I can convince the reader of the claim
made in the heading of the present section. The approach employed in
the following goes back to the papers [20] and [4], and it was worked
out to a powerful machinery in [6]; our presentation is highly inspired
by Silbermann’s paper [21].

Let us recall the definition and some relevant properties of C∗-
algebras (for details and proofs of the facts stated below the reader
is referred to [10] and [11]). A map a 	→ a∗ of a Banach algebra A into
itself is called an involution if

a∗∗ = a, (a+ b)∗ = a∗ + b∗, (ab)∗ = b∗a∗, (λa)∗ = λ̄a∗

for all a, b ∈ A and all λ ∈ C. A C∗-algebra is a Banach algebra
A with an involution such that ||a||2 = ||aa∗|| for every a ∈ A. For
example, if X is a compact Hausdorff space, then C(X) is a C∗-algebra
with complex conjugation as the involution, or if H is a Hilbert space,
then L(H) is a C∗-algebra with passage to the adjoint operator as the
involution.

A subset of a C∗-algebra is said to be self-adjoint if it is invariant
under the involution. Clearly, every closed and self-adjoint subalgebra
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of a C∗-algebra is itself a C∗-algebra. If A is a Banach algebra with
unit element and B is a closed subalgebra of A containing the unit
element, then for an element b ∈ B the spectrum in B may be larger
than its spectrum in A. This does not happen if A is a C∗-algebra and
B is a C∗-subalgebra of A; in that case an element b ∈ B is invertible
in B if (and only if) it is invertible in A.

A map γ : A → B of a C∗-algebra A to a C∗-algebra B is referred
to as a C∗-algebra homomorphism if γ is a bounded linear operator
of A to B that preserves products and involutions. It turns out that
the image of a C∗-algebra homomorphism is always closed (which is
not true for an arbitrary Banach algebra homomorphism). A bijective
C∗-algebra homomorphism is called a C∗-algebra isomorphism. If A
is a unital commutative C∗-algebra with maximal ideal space X, then
the Gelfand map Γ : A→ C(X) is a C∗-algebra isomorphism of A onto
C(X).

It is well known that the norm of a normal Hilbert space operator
coincides with its spectral radius. The same is true in C∗-algebras with
unit element: if aa∗ = a∗a, then

||a|| = r(a) := max{|λ| : λ ∈ Λ0(a)}.
The latter equality has a series of remarkable consequences. Here is the
one that forms the foundation of our approach to equalities like (2).

Proposition 4.1. If a C∗-algebra homomorphism preserves spectra,
then it also preserves norms. That is, if γ : A → B is a C∗-
algebra homomorphism of the C∗-algebra A to the C∗-algebra B with
the property that Λ0(a) = Λ0(γ(a)) for every a ∈ A, then γ is an
isometry, i.e., ||a|| = ||γ(a)|| for all a ∈ A.

Proof. Since both aa∗ and γ(a)γ(a∗) are normal (even self-adjoint),
we have

||a||2 = ||aa∗|| = r(aa∗) = r(γ(aa∗))
= r(γ(a)γ(a∗)) = ||γ(a)γ(a∗)|| = ||γ(a)||2.

Notice also that injective C∗-algebra homomorphisms automatically
preserve spectra and thus norms. Indeed, let γ : A→ B be an injective
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C∗-algebra homomorphism. Clearly, Λ0(γ(a)) ⊂ Λ0(a) for every a ∈ A.
To get the reverse inclusion, suppose γ(a−λe) is invertible in B. Since
γ(a−λe) lies in γ(A) and γ(A) is a C∗-subalgebra of B, it follows that
the inverse of γ(a − λe) belongs to γ(A) and is therefore of the form
γ(c) with c ∈ A. The injectivity of γ then implies that c is the inverse
of a− λe.

Finally, given a C∗-algebra A, we may construct new C∗-algebras
as follows. If J is a closed two-sided ideal of A, then J is in fact
self-adjoint and the quotient algebra A/J is a C∗-algebra with the
involution (a+ J)∗ := a∗ + J and the usual quotient norm. Moreover,
if B is a C∗-subalgebra of A and J is a closed two-sided ideal of A,
then B + J is a C∗-subalgebra of A and the map

(B + J)/J → B/(B ∩ J), b+ j + J 	→ b+ (B ∩ J)

is a well-defined C∗-algebra isomorphism.

Now let us return to the equality (2). Our first task is to construct
a C∗-algebra whose norm has something to do with the left-hand side
of (2). This may be done as follows. Let F be the set of all families
{Aτ}τ>0 of operators Aτ ∈ L(L2(0, τ )) such that

(3) ||{Aτ}|| := sup
τ>0

||Aτ || <∞.

With the operations {Aτ}∗ = {A∗
τ}, {Aτ} + {Bτ} = {Aτ + Bτ},

α{Aτ} = {αAτ}, {Aτ}{Bτ} = {AτBτ}, and the norm (3), this set
is a C∗-algebra. To convert the “sup” in (3) into a “limsup,” we have
recourse to a simple trick: the subset

N = {{Cτ} ∈ F : ||Cτ || → 0 as τ → ∞}

is a closed two-sided ideal of F, and if {Aτ} ∈ F, then the norm of the
coset {Aτ} + N in the quotient algebra F/N is

||{Aτ} + N|| = lim sup
τ→∞

||Aτ ||.

Thus, F/N is the C∗-algebra we should work in.

The algebra F/N is too large to be well understood, but it contains
nice C∗-subalgebras. One of them is the smallest C∗-subalgebra A of
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F/N containing all cosets of the form {Wτ (a)} + N with a ∈ C. It is
easy to check (see Proposition 5.1 below) that if {Aτ} + N ∈ A, then
the strong limit

S1{Aτ} := s− lim
τ→∞Aτ (:= s− lim

τ→∞AτPτ )

exists and clearly, ||S1{Aτ}|| ≤ ||{Aτ} + N||. Now denote by Rτ the
operator of L2(0,∞) onto L2(0, τ ) defined by

(Rτϕ)(x) = ϕ(τ − x), 0 < x < τ, (Rτϕ)(x) = 0, x > τ.

We have R2
τ = Pτ and RτWτ (a)Rτ = Wτ (ā). Using these two equalities

one can show (see Proposition 5.1 in the next section) that for every
{Aτ} + N ∈ A the strong limit

S2{Aτ} := s− lim
τ→∞RτAτRτ

exists. Again ||S2{Aτ}|| ≤ ||{RτAτRτ} + N|| ≤ ||{Aτ} + N||. Hence,
the mapping

γ : {Aτ} + N 	→ (S1{Aτ}, S2{Aτ})
is a C∗-algebra homomorphism of the C∗-algebra A into the C∗-algebra
L2 := L(L2(0,∞)) ⊕ L(L2(0,∞)), the direct sum of two copies of
L(L2(0,∞)) with the norm

||(B,C)|| = max{||B||, ||C||}.

Now suppose we are able to show the following:

(4)
for every {Aτ} + N ∈ A, the spectrum of {Aτ} + N in A

equals the spectrum of (S1(Aτ}, S2{Aτ}) in L2.

Notice that (4) has nothing to do with the exact value of certain
norms, it is merely an assertion on stable convergence. Indeed, since
A is a C∗-subalgebra of F/N, invertibility in A is equivalent to invert-
ibility in F/N, and invertibility in the latter algebra means just stable
convergence. Hence, (4) is in fact equivalent to the claim
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(5)
if {Aτ} + N ∈ A, then {Aτ}is stable if and only if

both S1{Aτ} and S2{Aτ}are invertible.

Once (5) and thus (4) is shown, we are done; Proposition 4.1 implies
that

||{Aτ} + N|| = max{||S1{Aτ}||, ||S2{Aτ ||}
for all {Aτ} + N ∈ A, and in the special case where Aτ = W−1

τ (a) we
have in particular

S1{W−1
τ (a)} = W−1(a), S2{W−1

τ (a)} = W−1(ā),

and since ||W−1(a)|| = ||W−1(ā)||, we obtain the equality

||{W−1
τ (a)} + N|| = ||W−1(a)||.

What we are left with is the verification of (5). This requires working
with a few more C∗-algebras.

5. C∗-algebras in action. Define F,N, and A as in the preceding
section. In order to study A, we need to know something about the
products Wτ (b)Wτ (c). If b, c ∈ C, then Wτ (b)Wτ (c) is in general not
equal to Wτ (bc), but Widom [25] showed that

(6) Wτ (b)Wτ (c) = Wτ (bc) + PτKPτ +RτLRτ ,

where K and L are compact operators on L2(0,∞), Pτ is the canonical
projection of L2(0,∞) onto L2(0, τ ), and Rτ is the operator of L2(0,∞)
onto L2(0, τ ) introduced in the previous section. From (6) we infer
that Wτ (b)Wτ (c) is equal to Wτ (c)Wτ (b) modulo operators of the form
PτKPτ +RτLRτ with K and L compact. This observation motivated
Silbermann [20] to check whether the set

J = {{Aτ} + N ∈ A :
Aτ = PτKPτ +RτLRτ with compact K and L}

is an ideal in A, and he was in luck: one can indeed show that J is
a closed two-sided ideal of A. Consequently, A/J is a commutative
C∗-algebra!
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But how is invertibility in A/J related to what we are actually
interested in, namely invertibility in A? Here is the answer [20, 6].

Proposition 5.1. Let {Aτ}+N ∈ A. Then the strong limits S1{Aτ}
and S2{Aτ} exist and belong to L(L2(0,∞)). The coset {Aτ} + N
is invertible in A if and only if S1{Aτ} and S2{Aτ} are invertible
operators and the coset {Aτ} + N + J is invertible in A/J.

Proof outline. The collection of all elements of the form

(7) {Aτ} + N =
{∑

j

∏
k

Wτ (ajk)
}

+ N, ajk ∈ C,

the sum and the products finite, is dense in A. So it suffices to establish
the existence of S1{Aτ} and S2{Aτ} for the element of the form (7).
But we clearly have

S1{Aτ} =
∑
j

∏
k

W (ajk),

and since R2
τ = Pτ and RτWτ (a)Rτ = Wτ (ā), it follows that

S2{Aτ} =
∑
j

∏
k

W (ājk).

Now suppose that {Aτ} + N is invertible in A. Then {Aτ} + N + J
is all the more invertible in A/J. For every ϕ ∈ L2(0,∞) and all
sufficiently large τ we have ||ϕ|| ≤ ||A−1

τ || ||Aτϕ|| and hence ||ϕ|| ≤
M ||S1{Aτ}ϕ||. In the same way one gets ||ϕ|| ≤ M ||(S1(Aτ})∗ϕ||.
Consequently, S1{Aτ} is invertible. The invertibility of S2{Aτ} can be
shown analogously.

Now assume S1{Aτ}, S2{Aτ}, and {Aτ}+N+J are invertible. Then
there is an element {Bτ} + N ∈ A such that

AτBτ = I + PτKPτ +RτLRτ + Cτ

with compact operators K and L and {Cτ} ∈ N. It follows that

S1{Aτ}S1{Bτ} = I +K, S2{Aτ}S2{Bτ} = I + L,
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and hence

M := (S1{Aτ})−1 − S1{Bτ}, N := (S2{Aτ})−1 − S2{Bτ}
are compact. Put

B′
τ = Bτ + PτMPτ +RτNRτ .

Then
AτB

′
τ = I + Pτ (K +AτPτM)Pτ

+Rτ (L+RτAτRτN)Rτ + Cτ

= I + Pτ (K + S1{Aτ}M)Pτ
+Rτ (L+ S2{Aτ}N)Rτ + Cτ + C ′

τ

= I + Cτ + C ′
τ

with {C ′
τ} ∈ N, i.e., {B′

τ} + N is a right inverse of {Aτ} + N. It can
be shown similarly that {Aτ} + N is invertible from the left.

The previous proposition reduces the invertibility problem in A to
studying invertibility in the commutative C∗-algebra A/J. So our next
question reads: what is the maximal ideal space of A/J? Denote by
B the smallest C∗-subalgebra of L(L2(0,∞)) containing all operators
W (a) with a ∈ C. One can show (see, e.g., [6, p. 402]) that the set K
of all compact operators on L2(0,∞) is contained in B and thus is a
closed two-sided ideal of B. So we may consider the quotient algebra
B/K, and this C∗-algebra is very well understood (see, e.g., [13]), one
has

B/K = {W (a) + K : a ∈ C},
B/K is commutative, the maximal ideal space may be identified with
the one-point compactification R ∪ {∞} of R, and the Gelfand trans-
form Γ is given by

Γ : B/K → C(R ∪ {∞}), (Γ(W (a) + K))(ξ) = a(ξ).

The following result was first established in [4].

Proposition 5.2. For every {Aτ} + N ∈ A the strong limit S1{Aτ}
belongs to B, and the mapping

δ : A/J → B/K, {Aτ} + N + J → S1{Aτ} + K
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is a well-defined isometric C∗-algebra isomorphism of A/J onto B/K.
In particular, {Aτ}+N+J is invertible in A/J if and only if S1{Aτ} is
a Fredholm operator, i.e., an operator that is invertible modulo compact
operators.

Proof outline. Taking into account (6) and the definition of J it
is readily seen that every element of A/J is actually of the form
{Wτ (a)} + N + J with a ∈ C. If K and L are compact operators
and {Cτ} ∈ N, then

Wτ (a) + PτKPτ +RτLRτ + Cτ

converges strongly to W (a) +K, hence

||W (a) + K|| ≤ ||W (a) +K||
≤ lim inf

τ→∞ ||Wτ (a) + PτKPτ +RτLRτ + Cτ ||

and thus

(8) ||W (a) + K|| ≤ ||{Wτ (a)} + N + J||.

If now {Aτ} + N + J = {Bτ} + N + J, then there are a, b ∈ C such
that

{Aτ} + N + J = {Wτ (a)} = N + J, {Bτ} + N + J = {Wτ (b)} + N + J

and from (8) we infer that ||W (a − b) + K|| = 0. Since there are no
nonzero compact Wiener-Hopf operators, it follows that a = b, and
since

S1{Aτ} = W (a) +K1, S1{Bτ} = W (b) +K2

with certain compact operators K1 and K2, we obtain that S1{Aτ} +
K = S1{Bτ} + K. This shows that δ is well-defined. It is immediate
from (8) that δ is continuous. Because W (a) + K = S1{Wτ (a)} + K,
the mapping is surjective, and as S1{Aτ} + K is always of the form
W (a) + K, it follows that δ is injective. Finally, by virtue of (6), the
mapping δ is a C∗-algebra homomorphism.

We thus have shown that δ is a bijective C∗-algebra homomorphism,
and hence it is an isometric C∗-algebra isomorphism.
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Now we have all that we need to dispose of (5).

Proposition 5.3. Let {Aτ} + N ∈ A. Then {Aτ} is stable if and
only if S1{Aτ} and S2{Aτ} are invertible.

Proof. In view of Proposition 5.1 we are left with showing that
{Aτ}+ N + J is automatically invertible in A/J whenever S1{Aτ} and
S2{Aτ} are invertible. In fact, the invertibility of S1{Aτ} is sufficient:
if S1{Aτ} is invertible, then so is (all the more) S1{Aτ} + K, and
Proposition 5.2 tells us then that {Aτ}+ N + J is also invertible.

Theorem 5.4. Let {Aτ} + N ∈ A. Then the limit limτ→∞ ||Aτ ||
exists and

lim
τ→∞ ||Aτ || = max{||S1{Aτ}||, ||S2{Aτ}||}.

Proof. Combining Proposition 5.3 with what was said in Section 4,
we obtain that

lim sup
τ→∞

||Aτ || = max{||S1{Aτ}||, ||S2{Aτ}||}.

Since Aτ converges strongly to S1{Aτ}, it follows that

||S1{Aτ}|| ≤ lim inf
τ→∞ ||Aτ ||,

and because S2{Aτ} is the strong limit of RτAτRτ , we get

||S2{Aτ}|| ≤ lim inf
τ→∞ ||RτAτRτ || ≤ lim inf

τ→∞ ||Aτ ||.

Whew, the last two sections were a hard piece of work. But now we
are ready for the harvest...

6. Pseudospectra. In what follows we use the convention that
||T−1|| = ∞ in case T is not invertible. So we may write

Λε(T ) = {λ ∈ C : ||(T − λI)−1|| ≥ 1/ε}.
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Estimating the limit set of the pseudospectra of operator sequences
from below leads to the problem whether the resolvent of an operator
can have constant norm. The following result shows that this cannot
happen. Both this result and its proof are due to Andrzej Daniluk from
Cracow (private communication).

Proposition 6.1. Let H be a Hilbert space, and let T ∈ L(H).
Suppose that T − λI is invertible for all λ in some open subset U of C
and ||(T −λI)−1|| ≤M for all λ ∈ U . Then ||(T −λI)−1|| < M for all
λ ∈ U .

Proof. A little thought reveals that what we must show is the
following: if U is an open subset of C containing the origin and
||(T − λI)−1|| ≤ M for all λ ∈ U , then ||T−1|| < M . To prove this,
assume the contrary, i.e., let ||T−1|| = M . We have

(T − λI)−1 =
∞∑
j=0

λjT−j−1

for all λ in some disk |λ| ≤ r. Given any f ∈ H, we therefore get

||(T − λI)−1f ||2 =
∑
j,k≥0

λjλ̄k(T−j−1f, T−k−1f)

whenever |λ| ≤ r. Integrating the latter equality along the circle
|λ| = r, we obtain

1
2π

∫ 2π

0

||(T − reiθI)−1f ||2dθ =
∞∑
j=0

r2j ||T−j−1f ||2,

and since ||(T − reiθaI)−1f || ≤M ||f ||, we arrive at the inequality

||T−1f ||2 + r2||T−2f ||2 ≤
∞∑
j=0

r2j ||T−j−1f ||2 ≤M2||f ||2.

Now pick an arbitrary ε > 0. Because ||T−1|| = M by assumption,
there is an fε ∈ H such that ||fε|| = 1 and ||T−1fε||2 > M2 − ε. It
follows that

M2 − ε+ r2||T−2fε||2 < M2,
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i.e., ||T−2fε||2 < εr−2, and consequently,

1 = ||fε||2 ≤ ||T 2||2||T−2fε||2 < εr−2||T 2||2,
which is impossible if ε > 0 is sufficiently small. This contradiction
shows that ||T−1|| < M .

Now we are in a position to give a lower bound for the limit set of
the pseudospectra of the truncations of an arbitrary operator.

Proposition 6.2. Let A ∈ L(L2(0,∞)) and denote by Aτ =
PτA|L2(0, τ ) the compression of A to L2(0, τ ). Then, for each ε > 0,

Λε(A) ⊂ lim
τ→∞ Λε(Aτ ).

Proof. First let λ ∈ Λ0(A). We then claim that

(9) lim sup
τ→∞

||(Aτ − λI)−1|| = ∞.

Indeed, if ||(Aτ − λI)−1|| ≤ M for all τ > τ0, then ||Pτϕ|| ≤
M ||(Aτ−λI)Pτϕ|| for all ϕ ∈ L2(0,∞) and passage to the limit τ → ∞
gives ||ϕ|| ≤ M ||(A − λI)ϕ|| for all ϕ ∈ L2(0,∞), implying that the
range of A − λI is closed and that A − λI is injective. Considering
adjoints we similarly get ||ϕ|| ≤ M ||(A∗ − λ̄I)ϕ|| for all ϕ ∈ L2(0,∞),
which shows that the range of A−λI is dense. Hence, if (9) is not valid
then A− λI is invertible. Our assumption that λ is in Λ0(A) therefore
implies that (9) holds. From (9) we infer that there is a sequence
τn → ∞ such that λ ∈ Λε(Aτn

) and thus λ ∈ limτ→∞ Λε(Aτ ).

Now suppose that λ ∈ Λε(A)\Λ0(A). Then A − λI is invertible
and ||(A − λI)−1|| ≥ 1/ε. Let U be any open neighborhood of λ.
From Proposition 6.1 we deduce that there is a μ ∈ U such that
||(A − μI)−1|| > 1/ε and thus ||(A − μI)−1|| ≥ 1/(ε − 1/n) for all
sufficiently large n. Consequently, we have λ = limn→∞ λn with
λn ∈ Λε−1/n(A). If T is any invertible Hilbert space operator, then

(10) ||T−1|| = sup
ψ 	=0

||T−1ψ||
||ψ|| = sup

ϕ	=0

||ϕ||
||Tϕ|| =

(
inf
ϕ	=0

||Tϕ||
||ϕ||

)−1

.
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Hence, for each n, there exists a ϕ in L2(0,∞) such that

||ϕ|| = 1, ||(A− λnI)ϕ|| < ε− 1/(2n).

We have

||(Aτ − λnI)Pτϕ|| = ||Pτ (A− λnI)Pτϕ||
≤ ||(A− λnI)ϕ||

+ ||(A− λnI)(I − Pτ )ϕ||
and since I − Pτ converges strongly to zero, we obtain

||(Aτ − λnI)Pτϕ|| < ε− 1/(3n)

for all sufficiently large τ . Because ||Pτϕ|| tends to ||ϕ|| = 1 as τ → ∞,
we get

||(Aτ − λnI)Pτϕ||/||Pτϕ|| < ε− 1/(4n) < ε

for all τ large enough. Now (10) implies that

||(Aτ − λnI)−1|| > 1/ε

and consequently, λn ∈ Λε(Aτ ) for all sufficiently large τ . This proves
that λ = limn→∞ λn belongs to limτ→∞ Λε(Aτ ).

The previous proof is partially based on arguments of Reddy [17],
who stated the inclusion

Λε(W (a)) ⊂ lim
τ→∞ Λε(Wτ (a))

for a = c+ k̂ with c ∈ C and k ∈ L1(R).

We now come to upper bounds for the limit set of the pseudospectra
of truncated Wiener-Hopf operators.

Theorem 6.3. Let a ∈ C and suppose that W (a) is invert-
ible. Then Wτ (a) is invertible for all sufficiently large τ , the limit
limτ→∞ ||W−1

τ (a)|| exists, and

(11) lim
τ→∞ ||W−1

τ (a)|| = ||W−1(a)||.
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Proof. Theorem 3.3 implies that {Wτ (a)} + N is invertible in F/N
and since A is a C∗-subalgebra of F/N and {Wτ (a)} + N belongs to
A, it follows that {W−1

τ (a)} + N also lies in A. We can thus apply
Theorem 5.4 with Aτ = W−1

τ (a). Since

S1{W−1
τ (a)} = W−1(a), S2{W−1

τ (a)} = W−1(ā),

and W−1(ā) is nothing but the adjoint of W−1(a), we arrive at (11).

Theorem 6.4. If a ∈ C and ε > 0, then

(12) lim
τ→∞ Λε(Wτ (a)) = Λε(W (a)).

Proof. By virtue of Proposition 6.2, we are left with showing that
the left-hand side of (12) is a subset of the right-hand side. So let
λ /∈ Λε(W (a)). Then W (a) − λI = W (a− λ) is invertible and

||W−1(a− λ)|| = 1/ε− 2δ < 1/ε.

Theorem 6.3 implies that there is a τ0 > 0 such that Wτ (a − λ) is
invertible and

||W−1
τ (a− λ)|| < 1/ε− δ

for all τ > τ0. If τ > τ0 and |μ− λ| < εδ(1/ε− δ)−1, then

||W−1
τ (a− μ)|| ≤ ||W−1

τ (a− λ)||
1 − |μ− λ| ||W−1

τ (a− λ)||
<

1/ε− δ

1 − εδ(1/ε− δ)−1(1/ε− δ)
= 1/ε

and hence μ /∈ Λε(Wτ (a)).

For “triangular” Wiener-Hopf operators, that is, for symbols of the
form a+ = c + k̂+ or a− = c + k̂− with c ∈ C, k+ ∈ L1(0,∞),
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k− ∈ L1(−∞, 0), Theorem 6.4 was already proved in [17]. In this
case Theorem 6.3 is trivial, because then

||W−1
τ (a±)|| = ||Wτ (a−1

± )|| → ||W (a−1
± )||

= ||W−1(a±)|| as τ → ∞;

moreover, in this case we have

||W−1(a± − λ)|| = ||(a± − λ)−1||L∞(R) = 1/dist (λ, a±(R ∪ {∞}))
for every λ ∈ C\Λ0(W (a±)), which implies that

Λ0
ε(W (a±)) = Λε(W (a±)) = {λ ∈ C : dist (λ,Λ0(W (a±))) ≤ ε}.

7. Singular values. Recall that A stands for the smallest C∗-
subalgebra of F/N containing all cosets of the form {Wτ (a)}+ N with
a ∈ C. For {Aτ} + N ∈ A, we put, as above,

S1{Aτ} = s− lim
τ→∞Aτ , S2{Aτ} = s− lim

τ→∞RτAτRτ .

Theorem 7.1. Let {Aτ} + N ∈ A. Then {Aτ} is stable if and
only if S1{Aτ} and S2{Aτ} are invertible. In that case the limit
limτ→∞ ||A−1

τ || exists and

lim
τ→∞ ||A−1

τ || = max{||(S1{Aτ})−1||, ||(S2{Aτ})−1||}.

Proof. The first assertion is Proposition 5.3. If {Aτ} is stable, then
{A−1

τ } + N ∈ A and Theorem 5.4 implies that limτ→∞ ||A−1
τ || equals

the maximum of

||S1{A−1
τ }||= ||(S1{Aτ})−1|| and ||S2{A−1

τ }||= ||(S2{Aτ})−1||.

Example 7.2. Let

Aτ =
∑
j

∏
k

Wτ (ajk), ajk ∈ C,
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where the sum and the products are finite. We have

S1{Aτ} =
∑
j

∏
k

W (ajk), S2{Aτ} =
∑
j

∏
k

W (ajk).

Theorem 7.1 implies that if both S1{Aτ} and S2{Aτ} are invertible,
then so is Aτ for all sufficiently large τ and

lim
τ→∞

∥∥∥∥
( ∑

j

∏
k

Wτ (ajk)
)−1∥∥∥∥

= max
{∥∥∥∥

( ∑
j

∏
k

W (ajk)
)−1∥∥∥∥,

∥∥∥∥
( ∑

j

∏
k

W (ajk)
)−1∥∥∥∥

}
.

Theorem 7.3. Let {Aτ}+ N ∈ A and suppose Aτ is self-adjoint for
every τ > 0. Then

(13) lim
τ→∞ Λ0(Aτ ) = Λ0(S1{Aτ}) ∪ Λ0(S2{Aτ}).

Proof. The operators Aτ , S1{Aτ}, S2{Aτ} are all self-adjoint and
hence all spectra in (13) are real. So let λ ∈ R.

If λ /∈ limτ→∞ Λ0(Aτ ), then there are a δ > 0 and a τ0 > 0 such that
|λ − μ| > δ for all μ ∈ ∪{Λ0(Aτ ) : τ > τ0}. It follows that Aτ − λI is
invertible for all τ > τ0 and that

(14) sup
τ>τ0

||(Aτ − λI)−1|| = sup
τ>τ0

max
μ∈Λ0(Aτ )

1
|λ− μ| ≤

1
δ

(note that (Aτ−λI)−1 is self-adjoint). On the other hand, if (14) holds
then |λ − μ| ≥ δ for all μ ∈ ∪{Λ0(Aτ ) : τ > τ0}, which implies that
λ /∈ limτ→∞ Λ0(Aτ ). Consequently, we have

λ /∈ lim
τ→∞ Λ0(Aτ ) ⇐⇒ lim sup

τ→∞
||(Aτ − λI)−1|| <∞.

Now Theorem 7.1 can be used to conclude that λ /∈ limτ→∞ Λ0(Aτ ) if
and only if S1{Aτ} − λI and S2{Aτ} − λI are invertible, which gives
the assertion.
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Example 7.4. If a ∈ C is real-valued, then Wτ (a) as well as
S1{Wτ (a)} = W (a) and S2{Wτ (a)} = W (ā) = W (a) are self-adjoint.
Theorem 7.3 with Aτ = Wτ (a) gives

lim
τ→∞ Λ0(Wτ (a)) = Λ0(W (a)).

Note that in fact the latter equality can easily be shown to hold for
every real-valued a ∈ L∞ (see, e.g., [7]).

Example 7.5. Let Aτ be as in Example 7.2, but now suppose that
all the functions ajk are real-valued. Theorem 7.3 implies that

lim
τ→∞ Λ0

( ∑
j

∏
k

Wτ (ajk)
)

= Λ0

( ∑
j

∏
W (ajk)

)
.

Example 7.6. Let a ∈ C be any (not necessarily real-valued)
function and apply Theorem 7.3 with Aτ = Wτ (ā)Wτ (a). It results
that

lim
τ→∞ Λ0(Wτ (ā)Wτ (a)) = Λ0(W (ā)W (a)) ∪ Λ0(W (a)W (ā))

and hence, by the spectral mapping theorem,

lim
τ→∞ Λ0(f(Wτ (ā)Wτ (a))) = Λ0(f(W (ā)W (a))) ∪ Λ0(f(W (a)W (ā)))

for every continuous function f on R. In the case where f(λ) = |λ|1/2
we obtain a result on the limit set of the singular values of Wτ (a):

lim
τ→∞ Λ0((Wτ (ā)Wτ (a))1/2)

= Λ0((W (ā)W (a))1/2) ∪ Λ0((W (a)W (ā))1/2)

8. Discontinuous symbols. Convolutions with L1 kernels lead
to Wiener-Hopf operators with continuous symbols. Wiener-Hopf
operators with discontinuous symbols arise when studying convolutions



290 A. BÖTTCHER

with less harmless kernels. If, for example, a(ξ) = −sign (ξ − α), then
W (a) may be given on L2(0,∞) by

(W (a)ϕ)(x) =
1
πi

∫ ∞

0

eiα(t−x)

t− x
ϕ(t) dt, x > 0,

the integral understood in the sense of the Cauchy principal value.
Hence, piecewise constant symbols produce convolutions with kernels of
the form k(t) = p(t)/t, where p(t) is an almost periodic polynomial. If
the kernel is k(t) = p(t)/t+l(t) with an almost periodic polynomial p(t)
and an L1 function l(t), then the symbol is no longer piecewise constant
but still piecewise continuous. Finally, we remark that the class of
Wiener-Hopf operators with discontinuous symbols also comprises the
compressions of difference operators to the half-line. For instance, if
a(ξ) = cos ξ, then W (a) acts on L2(0,∞) by the rule

(W (a)ϕ)(x) =
{

(ϕ(x− 1) + ϕ(x+ 1))/2 for x > 1,
(ϕ(x+ 1))/2 for 0 < x < 1,

that is, W (a) is convolution by (δ(t + 1) + δ(t − 1))/2 compressed to
the half-line.

It turns out that many of the results established in the preceding
sections remain literally valid for operators with piecewise continuous
or even locally normal symbols (for the definition of local normality
recall Section 2).

In Section 4 we introduced the C∗-algebra A as the smallest C∗-
subalgebra of F/N containing all cosets {Wτ (a)}+N with a ∈ C. Now
let C denote the smallest closed C∗-subalgebra of F/N containing all
cosets {Wτ (a)}+ N with a ∈ PC, and given a locally normal function
a ∈ LN , denote by Da the smallest closed C∗-subalgebra of F/N
containing the coset {Wτ (a)} + N and all cosets {Wτ (c)} + N with
c ∈ C.

Theorem 8.1. Theorems 6.3 and 6.4 as well as all assertions made
in Examples 7.2, 7.5 and 7.6 are true with C replaced by PC. Theorems
7.1 and 7.3 remain valid with A replaced by C.

Theorem 8.2. Theorems 6.3 and 6.4 and the limit formula estab-
lished in Example 7.6 are valid with C replaced by LN . If a ∈ LN ,
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then Theorems 7.1 and 7.3 as well as the conclusions of Examples 7.2
and 7.5 hold with Da in place of A.

The proofs of the last two theorems are based on a combination of the
C∗-machinery developed in Sections 4 and 5 with the usage of so-called
local principles. I will not give these proofs in detail here, but I will
try to single out the main steps and ideas.

Let us first consider the PC case. All that was said in Section 4
remains valid with A replaced by C, and so we can enter Section 5.
The first problem comes about with Widom’s formula (6): if b, c ∈ PC
then this formula holds, but the operators K and L are in general no
longer compact. Nevertheless, it turns out that the set

J = {{Aτ} + N ∈ C : Aτ
= PτKPτ +RτLRτ with compact K and L}

is a closed two-sided ideal of C and that, moreover, C/J is a commuta-
tive C∗-algebra.

I want at least to indicate why C/J is commutative. To simplify
notation, we write Aτ ≡ Bτ if {Aτ} + N and {Bτ} + N are in
C/N and {Aτ} + N + J = {Bτ} + N + J. We must show that
Wτ (b)Wτ (c) ≡ Wτ (c)Wτ (b) whenever b, c ∈ PC. A little thought
reveals that we may confine ourselves to the case where b and c have
only one jump, at β and γ, say. If b and c have the jump at distinct
points, i.e., if β �= γ, then the operators K and L in (6) are compact
and hence

Wτ (b)Wτ (c) ≡Wτ (bc) = Wτ (cb) ≡Wτ (c)Wτ (b)

in this case. So assume β = γ. Then there is a constant λ ∈ C and a
function f ∈ C such that b = λc+ f . It follows that

Wτ (b)Wτ (c) −Wτ (c)Wτ (b)
= Wτ (λc+ f)Wτ (c) −Wτ (c)Wτ (λc+ f)
= Wτ (f)Wτ (C) −Wτ (c)Wτ (f),

and since now f and c have no common discontinuity, we obtain

Wτ (f)Wτ (c) −Wτ (c)Wτ (f) ≡ 0.



292 A. BÖTTCHER

This proves that C/J is commutative.

Let us proceed further. Proposition 5.1 holds with A replaced by
C, and so we are left with finding the maximal ideal space of C/J.
Denote by C the smallest C∗-subalgebra of L(L2(0,∞)) containing all
operators W (a) with a ∈ PC. The structure of the quotient algebra
C/K was uncovered by Gohberg and Krupnik [14]. They showed that
the C∗-algebra C/K is commutative, that its maximal ideal space may
be identified with the cylinder

M = (R ∪ {∞}) × [0, 1]

(with an exotic topology), and that the Gelfand transform of W (a)+K
is for a ∈ PC given by

(Γ(W (a) + K))(ξ, μ) = a(ξ − 0)(1 − μ) + a(ξ + 0)μ.

Suppose now that we are able to show the following analogue of
Proposition 5.2: the mapping

δ : C/J → C/K, {Aτ} + N + J 	→ S1{Aτ} + K

is a well-defined isometric C∗-algebra isomorphism between C/J and
C/K. Then we would get Proposition 5.3 and Theorem 5.4 with A
replaced by C, and after that all assertions of Theorem 8.1 could be
proved exactly as in Sections 6 and 7.

That C/J and C/K are really isometrically isomorphic was first shown
in [4]. Here is a sketch of a proof (different from the original one in
[4]). It is relatively easy to see that δ : C/J → C/K is a well-defined
C∗-homomorphism of C/J onto C/K. To show that δ preserves spectra
and is thus isometric, we proceed as in Section 4: we prove that

(15)
if {Aτ} + N + J ∈ C/J, then {Aτ} + N + N is invertible
in C/J if and only if S1{Aτ} + K is invertible in C/K.

To show (15) we apply the local principle of Allan and Douglas (see,
e.g., [11] or [6]). This local principle says the following. Let R be a
C∗-algebra, and let Z be a C∗-subalgebra of the center of R. Denote
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the maximal ideal space of Z by N , and for a maximal ideal m ∈ N , let
Ym denote the smallest closed two-sided ideal of R containing m. Then
an element a ∈ R is invertible in R if and only if the cosets a+ Ym are
invertible in R/Ym for all m ∈ N .

Put R = C/J. Taking into account that (6) holds with compact K
and L if at least one of the functions b and c is continuous and defining
A as in Section 4, we see that Z = (A + J)/J is a C∗-subalgebra
of the center of R. Proposition 5.1 tells us that the maximal ideal
space of (A + J)/J ∼= A/(A ∩ J) is R ∪ {∞} (notice that the J in
Proposition 5.1 is not the J employed here but is equal to A∩ J). Now
fix m ∈ R ∪ {∞}, and for the sake of simplicity, assume m ∈ R. The
ideal Ym is the smallest closed two-sided ideal of C/J containing all
cosets {Wτ (ϕ)} + N + J such that ϕ ∈ PC is continuous at m and
vanishes there. For a ∈ PC, define am ∈ PC by

am(ξ) = a(m− 0)(1 − χ+
m(ξ)) + a(m+ 0)χ+

m(ξ),

where χ+
m is the characteristic function of the interval (m,∞). Then

a− am is continuous at m and (a− am)(m) = 0. Hence,

{Wτ (a)} + N + J + Ym = {Wτ (am)} + N + J + Ym

and we have replaced {Wτ (a)} with general a ∈ PC by {Wτ (am)},
where am is a linear combination of 1 (the function identically 1) and
χ+
m. Since R = C/J is generated by {Wτ (a)} + N + J with a ∈ PC, it

follows that R/Ym = (C/J)/Ym is generated by the identity and by

(16) {Wτ (χ+)} + N + J + Ym.

The spectrum of the element (16) can be shown to be the interval
[0, 1], and therefore R/Ym is isometrically isomorphic to C[0, 1]. For
any {Aτ} + N + J ∈ C/J, the element

(17) {Aτ} + N + J + Ym ∈ (C/J)/Ym

may therefore be represented by a well-defined function (the “local
representative”) in C[0, 1].

Now repeat the construction of the preceding paragraph, but this
time with R = C/K and Z = B/K, where B is as in Section 5. What
results is that

(18) S1{Aτ} + K + Ym ∈ (B/K)/Ym
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is represented by the same function in C[0, 1] as (17). Thus, the
spectra of the elements (17) and (18) coincide. The local principle
says that {Aτ} + N + J is invertible if and only if (17) is invertible for
all m ∈ R∪{∞} and that the invertibility of S1{Aτ}+K is equivalent
to the invertibility of (18) for all m ∈ R ∪ {∞}. This completes the
proof of (15) and thus the proof of Theorem 8.1.

Theorem 8.2 can be proved in a similar fashion. Again,

J = {{Aτ} + N ∈ Da :
Aτ = PτKPτ +RτLRτ with compact K and L}

is a closed two-sided ideal of Da, and Proposition 5.1 holds with Da

in place of A. Define Da as the smallest C∗-subalgebra of L(L2(0,∞))
containing the operator W (a) and all operators W (c) with c ∈ C. The
mapping

δ : Da/J → D/K, {Aτ} + N + J 	→ S1{Aτ} + K
is a C∗-algebra homomorphism of Da/J onto Da/K. Localizing in Da/J
and Da/K over the same central subalgebras (A + J)/J and B/K as in
the PC case gives that

(19) (Da/J)/Ym and (Da/K)/Ym
are isometrically isomorphic to the C∗-algebra of all continuous func-
tions on

(20) Λ0({Wτ (a)} + N + J + Ym) and Λ0(W (a) + K + Ym),

respectively. The determination of the spectra (20) is possible due
to the happy circumstance that these two spectra depend only on the
“local range” Rm(a) and that Rm(a) lies entirely on some line segment.
The arguments of the proofs of Theorem 4.67 and of Section 7.31(c)
of [6] show that both spectra (20) are equal to the closed convex hull
convRm(a) of Rm(a). Finally, as in the PC case, we obtain that

{Aτ} + N + J + Ym and S1{Aτ} + K + Ym

are represented by the same function in C(convRm(a)), which in the
end implies that δ is an isometric isomorphism of Da/J onto D/K.



PSEUDOSPECTRA 295

After that we see that Proposition 5.3 and Theorem 3.4 are valid with
Da in place of A, and this completes the proof of Theorem 8.2.

We remark that the algebras Da/J and Da/K are both commutative.
Indeed, since the algebras (19) are isomorphic to the commutative C∗-
algebra C(convRm(a)), it follows that the algebras (19) themselves are
commutative. Hence,

{Wτ (a)Wτ (ā) −Wτ (ā)Wτ (a)} + N + J ∈ Ym

and
W (a)W (ā) −W (ā)W (a) + K ∈ Ym

for all m ∈ N , and since ∩m∈NYm is the zero ideal in R (this is also
part of the general local principle of Allan and Douglas, see [11] or [6]),
it follows that

{Wτ (a)Wτ (ā) −Wτ (ā)Wτ (a)} ∈ N + J

and
W (a)W (ā) −W (ā)W (a) ∈ K,

which proves the commutativity of Da/J and D/K. In other words, if
a ∈ L∞(R) is locally normal, then W (a) and W (ā) commute modulo
compact operators, whileWτ (a) andWτ (ā) commute modulo operators
of the form PτKPτ + RτLRτ + Cτ with compact operators K and L
(independent of τ ) and operators Cτ for which ||Cτ || → 0 as τ → ∞.

9. Discrete convolutions and Toeplitz operators. All the
problems, methods, and results discussed in the preceding eight sections
have their discrete analogues, and in fact much more is known for
discrete convolution operators than for their integral counterparts.
The central problem is to relate the spectral properties of a discrete
convolution operator Tn given on l2 over Z0,n = {k ∈ Z : 0 ≤ k ≤ n}
by

(Tnϕ)i =
n∑
j=0

ai−jϕj , 0 ≤ i ≤ n

to the spectral properties of the discrete convolution operator T defined
on l2 over Z+ = {k ∈ Z : 0 ≤ k} as

(Tϕ)i =
∞∑
j=0

ai−jϕj , 0 ≤ i
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or to those of the discrete convolution operator L acting on l2 over all
of Z by the rule

(Lϕ)i =
∞∑

j=−∞
ai−jϕj , −∞ < i <∞.

The appropriate language is the language of the Toeplitz and Laurent
operators and matrices.

For a function a in L∞ on the complex unit circle T, denote by
{an}n∈Z the sequence of its Fourier coefficients:

a(eiθ) =
∑
n∈Z

ane
inθ, eiθ ∈ T.

It is the boundedness of the function a which implies that the infi-
nite matrices (ai−j)∞i,j=0 and (ai−j)∞i,j=−∞ induce bounded operators
on l2(Z+) and l2(Z), which are called the Toeplitz and the Laurent
operator with the symbol a and are denoted by T (a) and L(a), respec-
tively. For a ∈ L∞(T) and n ∈ Z+, the truncated (Toeplitz) operator
Tn(a) is given by the matrix (ai−j)ni,j=0 on l2(Z0,n) = Cn+1.

Given a sequence {En}∞n=0 of sets En ⊂ C, we denote by limn→∞En
the set of all λ ∈ C for which there exist n1, n2, . . . and λ1, λ2, . . . such
that

0 < n1 < n2 < · · · , nk → ∞, λk ∈ Enk, λk → λ.

From the work of Szegö [22] and Widom [24] we know that if
a ∈ L∞(T) is real-valued, then

(21) lim
n→∞Λ0(Tn(a)) = Λ0(T (a)) =

[
ess inf
t∈T

a(t), ess sup
t∈T

a(t)
]
,

and since the spectrum Λ0(L(a)) is the essential range R(a) of a, it is
clear that (21) is not true with Λ0(T (a)) replaced by Λ0(L(a)). In case
a ∈ L∞(T) is rational, the limit set limn→∞ Λ0(Tn(a)) was identified
by Schmidt and Spitzer [19] and Day [9]: it turns out that this limit
set is a “thin” set (a finite union of analytic arcs) contained in Λ0(T (a))
and “trying to stay away” from the boundary of Λ0(T (a)).
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For symbols a ∈ L∞(T) that are neither rational nor real-valued,
nice discussions of the problem are in [27] and [2]. In particular,
with respect to the question of whether Λ0(Tn(a)) mimics Λ0(T (a))
or Λ0(M(a)), Basor and Morrison [2] write: “Obviously, these are
conflicting pictures and the truth is a mixture of the two, with the
eigenvalues approaching Λ0(L(a)) by staying in the interior of Λ0(T (a))
as can be seen from plots of actual examples. This behavior is typical
but it has not been rigorously proved for a large class of symbols.”

A function a ∈ L∞(T) is said to be piecewise continuous or to belong
to PC if the one-sided limits a(ei(θ±0)) exist at each eiθ ∈ T. The
Toeplitz operator T (a) induced by the piecewise continuous function

(22) a(eiθ) = πieiθ/2, 0 ≤ θ < 2π

is given by the Hilbert matrix (1/(i− j − 1/2))∞i,j=0 and is a wonderful
example of a symbol that is neither rational nor real-valued. It is shown
in [27] and [2] (also see [5] and [15]) that if a is given by (22), then
limn→∞ Λ0(Tn(a)) equals Λ0(L(a)) and is not (!) equal to Λ0(T (a)),
which underpins the above quotation from [2].

But now suppose a ∈ PC is the function which equals 1 on the
upper and −1 on the lower half circle. Then a is real-valued and (21)
tells us that limn→∞ Λ0(Tn(a)) = [−1, 1], whereas the Basor-Morrison
quotation suggests that the limit set has rather to do with the set
Λ0(L(a)) = {−1, 1}!? The enigma’s resolution is that although for
large n the eigenvalues of Tn(a) are tightly distributed throughout the
interval [−1, 1], most of them lie near −1 or 1. To put this into precise
language, let μn denote the measure on [−1, 1] given by

μn(E) =
1

n+ 1
× number of eigenvalues of Tn(a) in E;

Szegö [22] showed that if f is any continuous function on [−1, 1], then

lim
n→∞

1
n+ 1

∑
λ∈Λ0(Tn(a))

f(λ) =
∫ 1

−1

f(λ)dμn(λ)

=
f(−1) + f(1)

2

=
∫ 1

−1

f(λ) dμ(λ),
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where μ(E) is half of the cardinality of {−1, 1} ∩ E. Equivalently, μn
converges weakly to the probability measure concentrated at {−1, 1},
and in this sense Basor and Morrison are completely right.

Let us now turn to the discrete analogues of the main results estab-
lished in the previous sections.

For a ∈ L∞(T) and an open arc U ⊂ T, the essential range RU (a)
is defined as the spectrum of the restriction a|U in L∞(U). A function
a ∈ L∞(T) is called locally normal if for each t ∈ T the set

Rt(a) =
⋂
t∈U

RU (a),

the intersection over all open arcs U ⊂ T containing t, lies on some
straight line segment (depending on t).

Theorem 9.1. Let a ∈ L∞(T) be locally normal. If T (a) is
invertible, then Tn(a) is invertible for all sufficiently large n, the limit
limn→∞ ||T−1

n (a)|| exists, and

lim
n→∞ ||T−1

n (a)|| = ||T−1(a)||.

This result is very implicity already contained in [21].

The proof is completely analogous to the one we have given for the
Wiener-Hopf case: the role of F is now played by the set of all sequences
{An}∞n=0 of operators An ∈ L(l2(Z0,n)) such that

||{An}|| := sup
n≥0

||An|| <∞,

instead of the operators Pτ and Rτ we have to work with Pn and Rn
given by

Pn : (ϕ0, ϕ1, ϕ2, . . . ) 	→ (ϕ0, ϕ1, . . . , ϕn, 0, 0, . . . ),
Rn : (ϕ0, ϕ1, ϕ2, . . . ) 	→ (ϕn, ϕn−1, . . . , ϕ0, 0, 0, . . . ),

and so on.

As in the Wiener-Hopf case, we can prove the following results.
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Theorem 9.2. If a ∈ L∞(T) is locally normal and ε > 0, then

lim
n→∞Λε(Tn(a)) = Λε(T (a)).

A theorem like this first appeared in Reichel and Trefethen’s paper
[18], where it is derived from the results of Widom [26].

Theorem 9.3. Let a ∈ L∞(T) be locally normal, and let f : R → C
be any continuous function. Then

lim
n→∞Λ0(f(Tn(ā)Tn(a)) = Λ0(f(T (ā)T (a))) ∪ Λ0(f(T (a)T (ā))),

where ā(eiθ) = a(eiθ).

Theorems of this type were first established by Parter [16], Widom
[26] and Silbermann [21].

We finally remark that Theorems 8.1 and 8.2 (and thus the assertions
of Examples 7.2, 7.4 and 7.5) can be completely carried over to the
Toeplitz case.
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