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A COLLOCATION METHOD WITH
CUBIC SPLINES FOR MULTIDIMENSIONAL

WEAKLY SINGULAR NONLINEAR INTEGRAL EQUATIONS

PEEP UBA

ABSTRACT. In the papers [8, 9], it is shown that the
solutions of weakly singular Uryson equations satisfy certain
regularity properties. Using these results, the optimal con-
vergence rate of a collocation method with cubic splines of
class C2 for a multidimensional weakly singular nonlinear in-
tegral equation is obtained. A special nonuniform grid is used
where (analogously to the linear one-dimensional case in [7])
the degree of nonuniformity depends on the properties of the
integral operator.

1. Smoothness of the solution. Consider the integral equation

(1) u(x) =
∫

G

K(x, y, u(y)) dy + f(x), x ∈ G,

where G ⊂ Rn is an open bounded set. The kernel K(x, y, u) is assumed
to be m times (m ≥ 1) continuously differentiable with respect to x,
y and u for x ∈ G, y ∈ G, x �= y, u ∈ (−∞,∞). In addition, assume
there exists a real number ν ∈ (−∞, n) such that, for any k ∈ Z+ and
α ≡ (α1, . . . , αn) ∈ Zn

+, β ≡ (β1, . . . , βn) ∈ Zn
+ with k + |α|+ |β| ≤ m,

the following inequalities hold:
(2)∣∣∣∣Dα

x Dβ
x+y

∂k

∂uk
K(x, y, u)

∣∣∣∣ ≤ b1(u)

⎧⎨
⎩

1, ν + |α| < 0
1 + | log |x − y||, ν + |α| = 0
|x − y|−ν−|α|, ν + |α| > 0,

(3)
∣∣∣∣Dα

x Dβ
x+y

∂k

∂uk
K(x, y, u1) − Dα

x Dβ
x+y

∂k

∂uk
K(x, y, u2)

∣∣∣∣

≤ b2(u1, u2)|u1 − u2|

⎧⎪⎨
⎪⎩

1, ν + |α| < 0

1 + | log |x − y||, ν + |α| = 0

|x − y|−ν−|α|, ν + |α| > 0.
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The functions b1 : R → R+ and b2 : R2 → R+ are assumed to be
bounded on every bounded region of R1 and R2, respectively. Here
the following standard notation has been used:

|α| = α1 + . . . + αn for α ∈ Zn
+,

|x| =
√

x2
1 + . . . + x2

n for x ∈ Rn,

Dα
x =

(
∂

∂x1

)α1

· · ·
(

∂

∂xn

)αn

,

Dβ
x+y =

(
∂

∂x1
+

∂

∂y1

)β1

· · ·
(

∂

∂xn
+

∂

∂yn

)βn

.

For the right hand term of equation (1), we assume that f ∈ Cm,ν(G),
where the space Cm,ν is defined as the collection of all m times
continuously differentiable functions f : G → R such that

‖f‖m,ν ≡
∑

|α|≤m

sup
x∈G

(
w|α|−(n−ν)(x) |Dαf(x)|) < ∞.

Here the weight function wλ(x) is for a λ ∈ R, with

(4) wλ(x) =

⎧⎨
⎩

1, λ < 0
[1 + | log ρ(x)|]−1 , λ = 0
ρ(x)λ, λ > 0

, x ∈ G

where ρ(x) = infy∈∂G |x − y| denotes the distance from x to ∂G, the
boundary of G.

In other words, an m times continuously differentiable function f on
G belongs to Cm,ν(G) if the growth of its derivatives near the boundary
can be estimated as follows:
(5)

|Dαf(x)| ≤ const

⎧⎨
⎩

1, |α| < n − ν

1 + | log ρ(x)|, |α| = n − ν

ρ(x)n−ν−|α|, |α| > n − ν

, x ∈ G, |α| ≤ m.

The following theorem (see [8, 9]) states the regularity properties of
solution u of (1)).
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Theorem A. Let f ∈ Cm,ν(G), and let the kernel K(x, y, u) satisfy
conditions (2) and (3). If integral equation (1) has a solution u ∈
L∞(G), then u ∈ Cm,ν(G).

For our present purposes, let G ⊂ Rn be a parallelepiped,

(6) G = {x ∈ Rn : 0 < xk < bk, k = 1, . . . , n}.

Denoting, for x ∈ G,

ρk(x) = min{xk, bk − xk}, k = 1, . . . , n,

we have
ρ(x) = dist (x, ∂G) = min

1≤k≤n
ρk(x).

For a ν ∈ R, ν < n, introduce the space Cm,ν(G) consisting of functions
u ∈ Cm,ν(G) such that

(7)

∣∣∣∣∂
lu(x)
∂xl

k

∣∣∣∣ ≤ const

⎧⎪⎨
⎪⎩

1, l < n − ν

1 + | log ρk(x)|, l = n − ν

ρk(x)n−ν−l, l > n − ν

,

x ∈ G, l = 1, . . . , m, k = 1, . . . , n.

Note that Cm(G) ⊂ Cm,ν(G).

In [9, Chapter 8], a more general case with piecewise smooth bound-
ary ∂G is considered. These results can be summarized as follows.

Lemma B. Let f ∈ Cm,ν(G) and the kernel K(x, y, u) satisfy
conditions (2) and (3). Then any solution u ∈ L∞(G) of integral
equation (1) belongs to Cm,ν(G).

We remark that the regularity properties of a weakly singular Ham-
merstein equation are investigated in [1], and its numerical solution by
a piecewise polynomial collocation method is constructed in [2].

2. Degree of the accuracy of interpolation. As in the case of
a linear integral equation (see, for example [6]) in the interval [0, bk],
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FIGURE 1.

1 ≤ k ≤ n, introduce the following 2Nk + 1 grid points (Nk ≥ 1, Nk

integer):

(8)
xj

k =
bk

2

(
j

Nk

)r

, j = 0, 1, . . . , Nk,

xNk+j
k = bk − xNk−j

k , j = 1, . . . , Nk.

Here r ∈ R, r ≥ 1, characterizes the degree of the nonuniformity of
the grid. If r = 1, then the grid points are uniformly located; if r > 1,
then the grid points are more densely located towards the end points
of the interval (see Figure 1 where Nk = 4, r = 2). Note that x0

k = 0,
x2Nk

k = bk and the grid points are located symmetrically with respect
to xNk = bk/2. Note that another analogous partition considered in [2]
is possible. We refer also to Rice [4], who appears to have been the first
to study graded grids for approximation of functions with singularities.

Using points (8) we introduce the partition of G into the closed cells

Gj1...jn
= {x ∈ Rn : xjk

k ≤ xk ≤ xjk+1
k , k = 1, . . . , n} ⊂ G,

jk = 0, 1, . . . , 2Nk − 1, k = 1, . . . , n.

The partition is illustrated in Figure 2 where n = 2, N1 = 4, N2 = 3,
r = 2.

For short expressions we introduce the notations N = (N1, . . . , Nn)
and h = 1/ min(N1, . . . , Nn). To a function f : G → R we assign
a twice continuously differentiable function S(f ; x) ≡ S(f ; x1, . . . , xn)
on G, which is a cubic polynomial of each of the variables x1, . . . , xn

on each cell Gj1···jn
and which interpolates the f(x) at the points of
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b2

b10

FIGURE 2.

grid (8). We say that S(f ; x) is n-dimensional interpolating cubic
spline of defect 1; for details see, for example [6] where the linear two-
dimensional case is considered (or [7] for the linear one-dimensional
case). Note that the n-dimensional cubic splines are constructed as a
“tensor products” of the one-dimensional cubic splines. It is well known
that for the uniqueness of the interpolating cubic spline, in addition to
interpolating conditions one needs certain boundary conditions. As our
aim is to interpolate the functions, the derivatives of which can have
singularities at the boundary of domain G (the solution of equation
(1)), we do not consider these derivatives at the boundary, but rather
choose the boundary conditions in the form

(9)
(

∂

∂xk

)3

S(f ; xi1
1 , . . . , xik

k + 0, . . . , xin
n )

=
(

∂

∂xk

)3

S(f ; xi1
1 , . . . , xik

k − 0, . . . , xin
n );

ij =
{

0, 1, . . . , 2Nj for j �= k

1, 2Nj − 1 for j = k
, k = 1, . . . , n.

(about these and other boundary conditions see, for example [5, Chap-
ter 3.1]).

The approximation properties of S(f, x) on grid (8) are considered
in [7] for the one-dimensional case and in [6] for the two-dimensional
case. These results can be easily generalized as follows:
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Lemma C. Let f ∈ C4,ν(G). If r = 4/(n − ν), then, for the
interpolating cubic splines S(f ; x), the estimation

max
x∈G

|f(x) − S(f ; x)| ≤ ch4

is valid, where c is independent of h.

Remark 1. Let f ∈ C(G). In a manner similar to the results for the
one-dimensional case [7], the estimation

max
x∈G

|f(x) − S(f ; x)| ≤ c ω(f)

with ω(f) = maxj maxy,z∈Gj
|f(y) − f(z)| can be proved, where j =

(j1 . . . jn) is a multi-index.

Remark 2. Let Ph denote the interpolation projector in C(G),
assigning to any continuous function f ∈ C(G) its interpolant S(f ; x)
satisfying the boundary conditions (9). Due to the principle of uniform
boundedness, the sequence of operators {Ph} is uniformly bounded.

3. The collocation method. For the approximate solution uh(x)
of equation (1) we seek an n-dimensional cubic spline on the grid (8).
It is required that uh(x) should satisfy equation (1) at the interpolation
points (xj

k)

(10)

[
uh(x) −

∫
G

K(x, y, uh(y))dy − f(x)
]

x=xj
k

= 0

k = 0, 1, . . . , n; j = 0, 1, . . . , 2Nk

and the boundary conditions (compare with (9):

(11)
(

∂

∂xk

)3

uh(xi1
1 , . . . , xik

k + 0, . . . , xin
n )

=
(

∂

∂xk

)3

uh(xi1
1 , . . . , xik

k − 0, . . . , xin
n )

ij =
{

0, 1, . . . , 2Nj for j �= k

1, 2Nj − 1 for j = k
, k = 1, . . . , n.
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Theorem. Assume that the following conditions are fulfilled:

1. G ⊂ Rn is a parallelepided;

2. The collocation points (8) are used;

3. The kernel K(x, y, u) satisfies (2) and (3) with m = 4.

4. f ∈ C4,ν .

5. The integral equation (1) has a solution u0 ∈ L∞(G) and the
linearized integral equation
(12)

v(x) =
∫

G

K0(x, y)v(y)dy, K0(x, y) = [∂K(x, y, u)/∂u]u=u0(x),

has in L∞(G) only the trivial solution v = 0.

Then there exist N0
k > 0 (k = 1, . . . , n) and δ0 > 0 such that, for

Nk ≥ N0
k (k = 1, . . . , n), the collocation method (10) with boundary

conditions (11) defines a unique approximation uh to u0 satisfying
‖uh − u0‖L∞(G) ≤ δ0. If r = 4/(n − ν), then

max
y∈G

|uh(x) − u0(x)| ≤ ch4.

Proof. Let K denote the integral operator of equation (1):

Ku(x) :=
∫

G

K(x, y, u(y))dy.

Then (1) can be considered as the equation u = Ku + f in the
Banach space C(G). The spline collocation method (10) with boundary
conditions (11) are equivalent to the solution of equation

(13,) uh = PhKuh + Phf

where Ph is described in Remark 2. By virtue of Remarks 1 and 2, one
obtains the strong convergence

(14) Ph → I as h → 0.
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It is clear that the operators K : C(G) → C(G) and PhK : C(G) →
C(G) are Frechet differentiable, with

(K ′(u0)v)(x) =
∫

G

∂K
∂u

(x, y, u0(y))v(y) dy

and

(PhK)′(u0) = PhK ′(u0).

Due to (2) the linear operator K ′(u0) is a weakly singular operator
from L∞(G) into C(G) and therefore compact. Now because of (14),
it is easy to see that ‖PhK ′(u0) − K ′(u0)‖ → 0 as h → 0.

Therefore, using the assumption 5, one can conclude that (I −
PhK ′(u0))−1 exists and is uniformly bounded linear operator for all
sufficiently small h, say for all h ≤ h1 (which is equivalent to Nk ≥ N1

k ,
k = 1, . . . , n).

Now for ‖u − u0‖ ≤ δ and h ≤ h1, using (3) we have

‖PhK ′(u) − PhK ′(u0)‖
≤ ‖Ph‖ sup

‖u∗‖=1

∣∣∣∣
∫

G

{
∂

∂u
K(x, y, u(y)) − ∂

∂u
K(x, y, u0(y))

}
u∗(y)

∣∣∣∣
≤ ‖Ph‖‖u−u0‖ · b(u, u0) · sup

x

∫
G

|x − y|−ν dy ≤ cδ.

Hence, sup‖u−u0‖≤δ ‖(I−PhK ′(u0))−1(PhK ′(u)−PhK ′(u0))‖ ≤ Θ with
Θ ≡ Cδ‖(I − PhK ′(u0))−1‖. Here we take δ so small that 0 < Θ < 1.
Because of (14) there exists h2 so that for h < h2 the inequality

α ≡ ‖(I − PhK ′(u0))−1(PhK(u0) + Phf − K(u0) − f)‖ ≤ δ(1 − Θ)

is valid. Hence, for h ≤ min{h1, h2} (or, otherwise, Nk ≥ N0
k ,

k = 1, 2 . . . n), using Lemma 19.1 of [3], one can conclude that (13)
has a unique solution in ‖u− u0‖ ≤ δ and the inequality αh/(1 + Θ) ≤
‖uh − u0‖ ≤ αh/(1 − Θ) holds.
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To prove the convergence rate, consider

‖uh − u0‖ ≤ αh

1 − Θ

=
‖(I − PhK ′(u0))−1(PhK(u0) + Phf − K(u0) − f)‖

1 − Θ

≤ ‖(I − PhK ′(u0))−1‖‖Phu0 − u0‖
1 − Θ

≤ Θ
Cδ(1 − Θ)

‖Phu0 − u0‖.

Using the regularity result of the solution u0 of (1) described in Lemma
B, Lemma C now enables us to conclude that

‖uh − u0‖ ≤ ch−4.

Remark 3. The conditions (10) and (11) represent a nonlinear system
of equations whose exact form is determined by the choise of a basis
in the subspace of cubic splines. Since the space of multidimensional
splines is a tensor product space of one-dimensional spline spaces (see,
for example [5]), we can seek uh in form

uh(x) =
2N1+1∑
k1=−1

· · ·
2Nn+1∑
kn=−1

bk1···kn

n∏
j=1

B
kj

j (xj)

where bk1...kn
are unknown and B

kj

j (xj) is the one-dimensional cubic

B-spline with support [xkj−2
j , x

kj+2
j ]. About the construction of these

splines see [5] or [7]. We note that, in addition to the points of the grid
(8), for the construction of B-splines, 6 · ∑n

j=1(2Nj + 1) points from
outside of the domain G are necessary.

In the case of a weakly singular linear equation, the proposed method
reduces to the method described in [6] for the multidimensional case
and to the method described in [7] for the one-dimensional case.
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