A COLLOCATION METHOD WITH CUBIC SPLINES FOR MULTIDIMENSIONAL WEAKLY SINGULAR NONLINEAR INTEGRAL EQUATIONS

PEEP UBA

Abstract

In the papers $[\mathbf{8}, \mathbf{9}]$, it is shown that the solutions of weakly singular Uryson equations satisfy certain regularity properties. Using these results, the optimal convergence rate of a collocation method with cubic splines of class C^{2} for a multidimensional weakly singular nonlinear integral equation is obtained. A special nonuniform grid is used where (analogously to the linear one-dimensional case in [7]) the degree of nonuniformity depends on the properties of the integral operator.

1. Smoothness of the solution. Consider the integral equation

$$
\begin{equation*}
u(x)=\int_{G} \mathcal{K}(x, y, u(y)) d y+f(x), \quad x \in G \tag{1}
\end{equation*}
$$

where $G \subset \mathbf{R}^{n}$ is an open bounded set. The kernel $\mathcal{K}(x, y, u)$ is assumed to be m times $(m \geq 1)$ continuously differentiable with respect to x, y and u for $x \in G, y \in G, x \neq y, u \in(-\infty, \infty)$. In addition, assume there exists a real number $\nu \in(-\infty, n)$ such that, for any $k \in Z_{+}$and $\alpha \equiv\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in Z_{+}^{n}, \beta \equiv\left(\beta_{1}, \ldots, \beta_{n}\right) \in Z_{+}^{n}$ with $k+|\alpha|+|\beta| \leq m$, the following inequalities hold:
(2)

$$
\begin{aligned}
& \left|D_{x}^{\alpha} D_{x+y}^{\beta} \frac{\partial^{k}}{\partial u^{k}} \mathcal{K}(x, y, u)\right| \leq b_{1}(u) \begin{cases}1, & \nu+|\alpha|<0 \\
1+|\log | x-y| |, & \nu+|\alpha|=0 \\
|x-y|^{-\nu-|\alpha|}, & \nu+|\alpha|>0\end{cases} \\
& (3)\left|D_{x}^{\alpha} D_{x+y}^{\beta} \frac{\partial^{k}}{\partial u^{k}} \mathcal{K}\left(x, y, u_{1}\right)-D_{x}^{\alpha} D_{x+y}^{\beta} \frac{\partial^{k}}{\partial u^{k}} \mathcal{K}\left(x, y, u_{2}\right)\right| \\
& \leq b_{2}\left(u_{1}, u_{2}\right)\left|u_{1}-u_{2}\right| \begin{cases}1, & \nu+|\alpha|<0 \\
1+|\log | x-y| |, & \nu+|\alpha|=0 \\
|x-y|^{-\nu-|\alpha|}, & \nu+|\alpha|>0\end{cases}
\end{aligned}
$$

[^0]The functions $b_{1}: \mathbf{R} \rightarrow \mathbf{R}_{+}$and $b_{2}: \mathbf{R}^{2} \rightarrow \mathbf{R}_{+}$are assumed to be bounded on every bounded region of \mathbf{R}^{1} and \mathbf{R}^{2}, respectively. Here the following standard notation has been used:

$$
\begin{aligned}
|\alpha| & =\alpha_{1}+\ldots+\alpha_{n} \quad \text { for } \alpha \in Z_{+}^{n} \\
|x| & =\sqrt{x_{1}^{2}+\ldots+x_{n}^{2}} \quad \text { for } x \in \mathbf{R}^{n} \\
D_{x}^{\alpha} & =\left(\frac{\partial}{\partial x_{1}}\right)^{\alpha_{1}} \cdots\left(\frac{\partial}{\partial x_{n}}\right)^{\alpha_{n}} \\
D_{x+y}^{\beta} & =\left(\frac{\partial}{\partial x_{1}}+\frac{\partial}{\partial y_{1}}\right)^{\beta_{1}} \cdots\left(\frac{\partial}{\partial x_{n}}+\frac{\partial}{\partial y_{n}}\right)^{\beta_{n}}
\end{aligned}
$$

For the right hand term of equation (1), we assume that $f \in C^{m, \nu}(G)$, where the space $C^{m, \nu}$ is defined as the collection of all m times continuously differentiable functions $f: G \rightarrow \mathbf{R}$ such that

$$
\|f\|_{m, \nu} \equiv \sum_{|\alpha| \leq m} \sup _{x \in G}\left(w_{|\alpha|-(n-\nu)}(x)\left|D^{\alpha} f(x)\right|\right)<\infty
$$

Here the weight function $w_{\lambda}(x)$ is for a $\lambda \in \mathbf{R}$, with

$$
w_{\lambda}(x)= \begin{cases}1, & \lambda<0 \tag{4}\\ {[1+|\log \rho(x)|]^{-1},} & \lambda=0, \quad x \in G \\ \rho(x)^{\lambda}, & \lambda>0\end{cases}
$$

where $\rho(x)=\inf _{y \in \partial G}|x-y|$ denotes the distance from x to ∂G, the boundary of G.

In other words, an m times continuously differentiable function f on G belongs to $C^{m, \nu}(G)$ if the growth of its derivatives near the boundary can be estimated as follows:

$$
\left|D^{\alpha} f(x)\right| \leq \mathrm{const} \begin{cases}1, & |\alpha|<n-\nu \tag{5}\\ 1+|\log \rho(x)|, & |\alpha|=n-\nu, \quad x \in G,|\alpha| \leq m \\ \rho(x)^{n-\nu-|\alpha|}, & |\alpha|>n-\nu\end{cases}
$$

The following theorem (see $[\mathbf{8}, \mathbf{9}]$) states the regularity properties of solution u of (1)).

Theorem A. Let $f \in C^{m, \nu}(G)$, and let the kernel $\mathcal{K}(x, y, u)$ satisfy conditions (2) and (3). If integral equation (1) has a solution $u \in$ $L^{\infty}(G)$, then $u \in C^{m, \nu}(G)$.

For our present purposes, let $G \subset \mathbf{R}^{n}$ be a parallelepiped,

$$
\begin{equation*}
G=\left\{x \in \mathbf{R}^{n}: 0<x_{k}<b_{k}, k=1, \ldots, n\right\} . \tag{6}
\end{equation*}
$$

Denoting, for $x \in G$,

$$
\rho_{k}(x)=\min \left\{x_{k}, b_{k}-x_{k}\right\}, \quad k=1, \ldots, n,
$$

we have

$$
\rho(x)=\operatorname{dist}(x, \partial G)=\min _{1 \leq k \leq n} \rho_{k}(x) .
$$

For a $\nu \in \mathbf{R}, \nu<n$, introduce the space $C_{\square}^{m, \nu}(G)$ consisting of functions $u \in C^{m, \nu}(G)$ such that

$$
\begin{align*}
& \left|\frac{\partial^{l} u(x)}{\partial x_{k}^{l}}\right| \leq \mathrm{const} \begin{cases}1, & l<n-\nu \\
1+\left|\log \rho_{k}(x)\right|, & l=n-\nu \\
\rho_{k}(x)^{n-\nu-l}, & l>n-\nu\end{cases} \tag{7}\\
& x \in G, \quad l=1, \ldots, m, \quad k=1, \ldots, n
\end{align*}
$$

Note that $C^{m}(\bar{G}) \subset C_{\square}^{m, \nu}(G)$.
In [9, Chapter 8], a more general case with piecewise smooth boundary ∂G is considered. These results can be summarized as follows.

Lemma B. Let $f \in C_{\square}^{m, \nu}(G)$ and the kernel $\mathcal{K}(x, y, u)$ satisfy conditions (2) and (3). Then any solution $u \in L^{\infty}(G)$ of integral equation (1) belongs to $C_{\square}^{m, \nu}(G)$.

We remark that the regularity properties of a weakly singular Hammerstein equation are investigated in [1], and its numerical solution by a piecewise polynomial collocation method is constructed in [2].
2. Degree of the accuracy of interpolation. As in the case of a linear integral equation (see, for example $[\mathbf{6}]$) in the interval $\left[0, b_{k}\right]$,

FIGURE 1.
$1 \leq k \leq n$, introduce the following $2 N_{k}+1$ grid points $\left(N_{k} \geq 1, N_{k}-\right.$ integer):

$$
\begin{align*}
x_{k}^{j} & =\frac{b_{k}}{2}\left(\frac{j}{N_{k}}\right)^{r}, \quad j=0,1, \ldots, N_{k}, \tag{8}\\
x_{k}^{N_{k}+j} & =b_{k}-x_{k}^{N_{k}-j}, \quad j=1, \ldots, N_{k} .
\end{align*}
$$

Here $r \in \mathbf{R}, r \geq 1$, characterizes the degree of the nonuniformity of the grid. If $r=1$, then the grid points are uniformly located; if $r>1$, then the grid points are more densely located towards the end points of the interval (see Figure 1 where $N_{k}=4, r=2$). Note that $x_{k}^{0}=0$, $x_{k}^{2 N_{k}}=b_{k}$ and the grid points are located symmetrically with respect to $x^{N_{k}}=b_{k} / 2$. Note that another analogous partition considered in [2] is possible. We refer also to Rice [4], who appears to have been the first to study graded grids for approximation of functions with singularities.

Using points (8) we introduce the partition of G into the closed cells

$$
\begin{aligned}
G_{j_{1} \ldots j_{n}}= & \left\{x \in \mathbf{R}^{n}: x_{k}^{j_{k}} \leq x_{k} \leq x_{k}^{j_{k}+1}, k=1, \ldots, n\right\} \subset \bar{G} \\
& j_{k}=0,1, \ldots, 2 N_{k}-1, \quad k=1, \ldots, n
\end{aligned}
$$

The partition is illustrated in Figure 2 where $n=2, N_{1}=4, N_{2}=3$, $r=2$.

For short expressions we introduce the notations $N=\left(N_{1}, \ldots, N_{n}\right)$ and $h=1 / \min \left(N_{1}, \ldots, N_{n}\right)$. To a function $f: \bar{G} \rightarrow R$ we assign a twice continuously differentiable function $S(f ; x) \equiv S\left(f ; x_{1}, \ldots, x_{n}\right)$ on G, which is a cubic polynomial of each of the variables x_{1}, \ldots, x_{n} on each cell $G_{j_{1} \cdots j_{n}}$ and which interpolates the $f(x)$ at the points of

FIGURE 2.
grid (8). We say that $S(f ; x)$ is n-dimensional interpolating cubic spline of defect 1 ; for details see, for example [6] where the linear twodimensional case is considered (or [7] for the linear one-dimensional case). Note that the n-dimensional cubic splines are constructed as a "tensor products" of the one-dimensional cubic splines. It is well known that for the uniqueness of the interpolating cubic spline, in addition to interpolating conditions one needs certain boundary conditions. As our aim is to interpolate the functions, the derivatives of which can have singularities at the boundary of domain G (the solution of equation (1)), we do not consider these derivatives at the boundary, but rather choose the boundary conditions in the form
(9) $\left(\frac{\partial}{\partial x_{k}}\right)^{3} S\left(f ; x_{1}^{i_{1}}, \ldots, x_{k}^{i_{k}}+0, \ldots, x_{n}^{i_{n}}\right)$

$$
\begin{gathered}
=\left(\frac{\partial}{\partial x_{k}}\right)^{3} S\left(f ; x_{1}^{i_{1}}, \ldots, x_{k}^{i_{k}}-0, \ldots, x_{n}^{i_{n}}\right) ; \\
i_{j}=\left\{\begin{array}{ll}
0,1, \ldots, 2 N_{j} & \text { for } j \neq k \\
1,2 N_{j}-1 & \text { for } j=k
\end{array}, \quad k=1, \ldots, n .\right.
\end{gathered}
$$

(about these and other boundary conditions see, for example [5, Chapter 3.1]).

The approximation properties of $S(f, x)$ on grid (8) are considered in $[\mathbf{7}]$ for the one-dimensional case and in [6] for the two-dimensional case. These results can be easily generalized as follows:

Lemma C. Let $f \in C_{\square}^{4, \nu}(G)$. If $r=4 /(n-\nu)$, then, for the interpolating cubic splines $S(f ; x)$, the estimation

$$
\max _{x \in \bar{G}}|f(x)-S(f ; x)| \leq c h^{4}
$$

is valid, where c is independent of h.

Remark 1. Let $f \in C(\bar{G})$. In a manner similar to the results for the one-dimensional case [7], the estimation

$$
\max _{x \in \bar{G}}|f(x)-S(f ; x)| \leq c \omega(f)
$$

with $\omega(f)=\max _{j} \max _{y, z \in G_{j}}|f(y)-f(z)|$ can be proved, where $j=$ $\left(j_{1} \ldots j_{n}\right)$ is a multi-index.

Remark 2. Let P_{h} denote the interpolation projector in $C(\bar{G})$, assigning to any continuous function $f \in C(\bar{G})$ its interpolant $S(f ; x)$ satisfying the boundary conditions (9). Due to the principle of uniform boundedness, the sequence of operators $\left\{P_{h}\right\}$ is uniformly bounded.
3. The collocation method. For the approximate solution $u_{h}(x)$ of equation (1) we seek an n-dimensional cubic spline on the grid (8). It is required that $u_{h}(x)$ should satisfy equation (1) at the interpolation points $\left(x_{k}^{j}\right)$

$$
\begin{gather*}
{\left[u_{h}(x)-\int_{G} \mathcal{K}\left(x, y, u_{h}(y)\right) d y-f(x)\right]_{x=x_{k}^{j}}=0} \tag{10}\\
k=0,1, \ldots, n ; \quad j=0,1, \ldots, 2 N_{k}
\end{gather*}
$$

and the boundary conditions (compare with (9):

$$
\begin{gather*}
\left(\frac{\partial}{\partial x_{k}}\right)^{3} u_{h}\left(x_{1}^{i_{1}}, \ldots, x_{k}^{i_{k}}+0, \ldots, x_{n}^{i_{n}}\right) \tag{11}\\
\quad=\left(\frac{\partial}{\partial x_{k}}\right)^{3} u_{h}\left(x_{1}^{i_{1}}, \ldots, x_{k}^{i_{k}}-0, \ldots, x_{n}^{i_{n}}\right) \\
i_{j}=\left\{\begin{array}{ll}
0,1, \ldots, 2 N_{j} & \text { for } j \neq k \\
1,2 N_{j}-1 & \text { for } j=k
\end{array}, \quad k=1, \ldots, n .\right.
\end{gather*}
$$

Theorem. Assume that the following conditions are fulfilled:

1. $G \subset \mathbf{R}^{n}$ is a parallelepided;
2. The collocation points (8) are used;
3. The kernel $\mathcal{K}(x, y, u)$ satisfies (2) and (3) with $m=4$.
4. $f \in C_{\square}^{4, \nu}$.
5. The integral equation (1) has a solution $u_{0} \in L^{\infty}(G)$ and the linearized integral equation

$$
\begin{equation*}
v(x)=\int_{G} K_{0}(x, y) v(y) d y, \quad K_{0}(x, y)=[\partial \mathcal{K}(x, y, u) / \partial u]_{u=u_{0}(x)} \tag{12}
\end{equation*}
$$

has in $L^{\infty}(G)$ only the trivial solution $v=0$.
Then there exist $N_{k}^{0}>0(k=1, \ldots, n)$ and $\delta_{0}>0$ such that, for $N_{k} \geq N_{k}^{0}(k=1, \ldots, n)$, the collocation method (10) with boundary conditions (11) defines a unique approximation u_{h} to u_{0} satisfying $\left\|u_{h}-u_{0}\right\|_{L^{\infty}(G)} \leq \delta_{0}$. If $r=4 /(n-\nu)$, then

$$
\max _{y \in \bar{G}}\left|u_{h}(x)-u_{0}(x)\right| \leq c h^{4}
$$

Proof. Let K denote the integral operator of equation (1):

$$
K u(x):=\int_{G} \mathcal{K}(x, y, u(y)) d y
$$

Then (1) can be considered as the equation $u=K u+f$ in the Banach space $C(\bar{G})$. The spline collocation method (10) with boundary conditions (11) are equivalent to the solution of equation

$$
u_{h}=P_{h} K u_{h}+P_{h} f
$$

where P_{h} is described in Remark 2. By virtue of Remarks 1 and 2, one obtains the strong convergence

$$
\begin{equation*}
P_{h} \rightarrow I \quad \text { as } \quad h \rightarrow 0 . \tag{14}
\end{equation*}
$$

It is clear that the operators $K: C(\bar{G}) \rightarrow C(\bar{G})$ and $P_{h} K: C(\bar{G}) \rightarrow$ $C(\bar{G})$ are Frechet differentiable, with

$$
\left(K^{\prime}\left(u_{0}\right) v\right)(x)=\int_{G} \frac{\partial \mathcal{K}}{\partial u}\left(x, y, u_{0}(y)\right) v(y) d y
$$

and

$$
\left(P_{h} K\right)^{\prime}\left(u_{0}\right)=P_{h} K^{\prime}\left(u_{0}\right)
$$

Due to (2) the linear operator $K^{\prime}\left(u_{0}\right)$ is a weakly singular operator from $L_{\infty}(G)$ into $C(\bar{G})$ and therefore compact. Now because of (14), it is easy to see that $\left\|P_{h} K^{\prime}\left(u_{0}\right)-K^{\prime}\left(u_{0}\right)\right\| \rightarrow 0$ as $h \rightarrow 0$.
Therefore, using the assumption 5 , one can conclude that ($I-$ $\left.P_{h} K^{\prime}\left(u_{0}\right)\right)^{-1}$ exists and is uniformly bounded linear operator for all sufficiently small h, say for all $h \leq h_{1}$ (which is equivalent to $N_{k} \geq N_{k}^{1}$, $k=1, \ldots, n$).
Now for $\left\|u-u_{0}\right\| \leq \delta$ and $h \leq h_{1}$, using (3) we have

$$
\begin{aligned}
& \left\|P_{h} K^{\prime}(u)-P_{h} K^{\prime}\left(u_{0}\right)\right\| \\
& \quad \leq\left\|P_{h}\right\| \sup _{\left\|u^{*}\right\|=1}\left|\int_{G}\left\{\frac{\partial}{\partial u} \mathcal{K}(x, y, u(y))-\frac{\partial}{\partial u} \mathcal{K}\left(x, y, u_{0}(y)\right)\right\} u^{*}(y)\right| \\
& \quad \leq\left\|P_{h}\right\|\left\|u-u_{0}\right\| \cdot b\left(u, u_{0}\right) \cdot \sup _{x} \int_{G}|x-y|^{-\nu} d y \leq c \delta .
\end{aligned}
$$

Hence, $\sup _{\left\|u-u_{0}\right\|<\delta}\left\|\left(I-P_{h} K^{\prime}\left(u_{0}\right)\right)^{-1}\left(P_{h} K^{\prime}(u)-P_{h} K^{\prime}\left(u_{0}\right)\right)\right\| \leq \Theta$ with $\Theta \equiv C \delta\left\|\left(I-P_{h} K^{\prime}\left(u_{0}\right)\right)^{-1}\right\|$. Here we take δ so small that $0<\Theta<1$. Because of (14) there exists h_{2} so that for $h<h_{2}$ the inequality

$$
\alpha \equiv\left\|\left(I-P_{h} K^{\prime}\left(u_{0}\right)\right)^{-1}\left(P_{h} K\left(u_{0}\right)+P_{h} f-K\left(u_{0}\right)-f\right)\right\| \leq \delta(1-\Theta)
$$

is valid. Hence, for $h \leq \min \left\{h_{1}, h_{2}\right\}$ (or, otherwise, $N_{k} \geq N_{k}^{0}$, $k=1,2 \ldots n$), using Lemma 19.1 of [3], one can conclude that (13) has a unique solution in $\left\|u-u_{0}\right\| \leq \delta$ and the inequality $\alpha_{h} /(1+\Theta) \leq$ $\left\|u_{h}-u_{0}\right\| \leq \alpha_{h} /(1-\Theta)$ holds.

To prove the convergence rate, consider

$$
\begin{aligned}
\left\|u_{h}-u_{0}\right\| & \leq \frac{\alpha_{h}}{1-\Theta} \\
& =\frac{\left\|\left(I-P_{h} K^{\prime}\left(u_{0}\right)\right)^{-1}\left(P_{h} K\left(u_{0}\right)+P_{h} f-K\left(u_{0}\right)-f\right)\right\|}{1-\Theta} \\
& \leq \frac{\left\|\left(I-P_{h} K^{\prime}\left(u_{0}\right)\right)^{-1}\right\|\left\|P_{h} u_{0}-u_{0}\right\|}{1-\Theta} \\
& \leq \frac{\Theta}{C \delta(1-\Theta)}\left\|P_{h} u_{0}-u_{0}\right\| .
\end{aligned}
$$

Using the regularity result of the solution u_{0} of (1) described in Lemma B, Lemma C now enables us to conclude that

$$
\left\|u_{h}-u_{0}\right\| \leq c h^{-4}
$$

Remark 3. The conditions (10) and (11) represent a nonlinear system of equations whose exact form is determined by the choise of a basis in the subspace of cubic splines. Since the space of multidimensional splines is a tensor product space of one-dimensional spline spaces (see, for example [5]), we can seek u_{h} in form

$$
u_{h}(x)=\sum_{k_{1}=-1}^{2 N_{1}+1} \cdots \sum_{k_{n}=-1}^{2 N_{n}+1} b_{k_{1} \cdots k_{n}} \prod_{j=1}^{n} B_{j}^{k_{j}}\left(x_{j}\right)
$$

where $b_{k_{1} \ldots k_{n}}$ are unknown and $B_{j}^{k_{j}}\left(x_{j}\right)$ is the one-dimensional cubic B-spline with support $\left[x_{j}^{k_{j}-2}, x_{j}^{k_{j}+2}\right]$. About the construction of these splines see [5] or [7]. We note that, in addition to the points of the grid (8), for the construction of B-splines, $6 \cdot \sum_{j=1}^{n}\left(2 N_{j}+1\right)$ points from outside of the domain \bar{G} are necessary.

In the case of a weakly singular linear equation, the proposed method reduces to the method described in [6] for the multidimensional case and to the method described in [7] for the one-dimensional case.

Acknowledgment. The author would like to acknowledge the support of the Estonian Science Foundation.

REFERENCES

1. H. Kaneko, R. Noren and Y. Xu, Regularity of the solution of Hammerstein equations with weakly singular kernel, Integral Equations Operator Theory (1990) 13, 660-670.
2. -, Numerical solution for weakly singular Hammerstein equations and their superconvergence, J. Integral Equation Appl. 4 (1992), 391-407.
3. M. Krasnoselskii, G. Vainikko, P. Zabreiko, Ya. Rutitskii and V. Stetsenko, Approximate solution of operator equations, Wolters-Noordhoff, Groningen, 1972.
4. J.R. Rice, On the degree of convergence of nonlinear spline approximation, in Approximations with special emphasis on spline functions, Academic Press, New York, 1969.
5. Yu. Sav'yalov, B. Kvasov and V. Miroshnichenko, The spline-function method, (Russian) Moscow, 1980.
6. P. Uba, A collocation method with cubic splines to the solution of a multidimensional weakly singular integral equation, Acta et Commentationes Universitatis Tartuensis 863 Tartu, 1989, 19-25.
7. \quad, On the convergence of interpolate cubic splines on non-uniform grids, (Russian) Proceeding of the Estonian Academy of Sciences, Physics-Mathematics 31 (1982), 393-409.
8. G. Vainikko, Estimations of derivatives of a solution to a nonlinear weakly singular integral equation, in Problems of pure and applied mathematics, Abstract of conference, Tartu, 1990, 212-215.
9. -, Multidimensional weakly singular integral equations, Lect. Notes Math. 1549, Springer-Verlag, 1993.

Chair of Differential and Integral Equations, Institute of Applied Mathematics, Tartu University, Tartu EE2400, Estonia

[^0]: Received by the editors on May 19, 1993, and in revised form on March 7, 1994.

