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PIECEWISE POLYNOMIAL COLLOCATION FOR
INTEGRAL EQUATIONS WITH A SMOOTH KERNEL

ON SURFACES IN THREE DIMENSIONS

DAVID CHIEN

ABSTRACT. We consider solving integral equations on
a piecewise smooth surface S in R3 with a smooth kernel
function, using piecewise polynomial collocation interpolation
of the surface. The theoretical analysis includes the effects of
the numerical integration of the collocation coefficients and
the use of the approximating surface. The resulting order of
convergence is higher than had previously been expected in
the literature.

1. Introduction. Consider the integral equation

(1) λf(P ) −
∫

S

k(P, Q)f(Q) dSQ = g(P ), P ∈ S

with k(P, Q) continuous for P, Q ∈ S, and with S a piecewise smooth
surface in R3. We write the equation (1) as

(λ −K)f = g

symbolically. We assume λ is nonzero and is not an eigenvalue of the
integral operator K defined implicitly in (1). Thus, (1) has a unique
solution f ∈ C(S) for each g ∈ C(S). In this paper we use collocation
with piecewise quadratic interpolation for both the surface S and the
unknown function f , as proposed in Atkinson [3].

In practice, most of the 3-D boundary integral equations that arise
do not have a smooth kernel. The major motivation of this paper is
to develop the tools needed for handling boundary integral equations.
Also, this paper is the first paper of a sequence of two papers. The
second paper, Atkinson and Chien [6], will discuss a nonsmooth kernel
case.
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In Section 2 the definitions and assumptions on the triangulation of
S are given. The regular subdivision of the triangulation is essential
for this paper. For other kinds of triangulation, the rate of convergence
is of order three; and the convergence rate when using our subdivision
scheme is of order four. This indicates that the regular subdivision
of the triangulation as proposed in [3] is a better scheme. Section 3
contains the interpolation formula. The collocation method and the
discrete collocation method are discussed in Sections 4 and 5, respec-
tively. Section 6 gives numerical examples of the discrete collocation
method. The proofs of the theorems in Sections 4 and 5 are given in
Section 7.

This paper presents only the results when using polynomials of degree
two to approximate both the surface and the solution. We can also use
other degrees of interpolation for the surface and the solution, and the
results are consistent with the kind of results we have obtained for the
quadratic case. Section 8 gives the generalization for other degrees of
interpolation.

2. The triangulation and refinement. As discussed in Atkinson
[3], we assume the surface S can be written as

(2) S = S1 ∪ S2 ∪ · · · ∪ SJ

where each Si is a closed, smooth surface in R3. The only possible
intersection of a pair Si and Sj is to be along a common portion of
the edges of these two sub-surfaces. We also assume each Si has a
parametrization in a region of R2, with the parametrization six times
continuously differentiable. In this case we say S is piecewise smooth.
By a smooth surface, we mean that for each point P ∈ S there is
a neighborhood on S of P , with the neighborhood having a local
six times continuously differentiable parametrization in R2 with its
Jacobian determinant not vanishing.

The surface S of (2) is divided into a triangular mesh

(3) {ΔK,N | 1 ≤ K ≤ N}

where N is the total number of triangles on the surface S. Each Sj

is to be broken apart into a set of nonoverlapping triangular shaped
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elements ΔK,Nj
’s, about which we say more below. In referring to

the element ΔK,N , the reference to N will be omitted but understood
implicitly. Define the mesh size of (3) by

δN = max
1≤K≤N

diam (ΔK), diam (ΔK) = max
p,q∈ΔK

|p − q|.

Let σ denote the unit simplex in the st-plane

σ = {(s, t) | 0 ≤ s, t, s + t ≤ 1}.
Let ρ1, . . . , ρ6 denote the three vertices and three midpoints of the sides
of σ, numbered according to Figure 1.

�

�

�
�

�
�

�
�

�
�
�� � �

�

�

�

ρ1 ρ6 ρ3

ρ4

ρ2

ρ5

FIGURE 1. The unit simplex.

One way of obtaining the triangulation (3) and the mappings from σ
to each ΔK is by means of a parametric representation for the region
Sj of (2). Assume that, for each Sj , there is a mapping

(4) Fj : Rj
1−1→
onto

Sj , 1 ≤ j ≤ J,

where Rj is a polygonal domain in the plane and Fj ∈ C6(Rj). Then
the mapping of a triangulation of Rj , using Fj , yields a triangulation
of Sj . Since the Rj ’s are polygonal domains and can be written as a
union of triangles, without loss of generality, we assume in this paper
that the Rj ’s are triangles. A paraboloid with top is a good example of
an S that satisfies our assumptions; but a circular cone is an example
of an S for which some of the above assumptions are not valid, because
of the discontinuity of the gradient at the vertex.
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FIGURE 2. Refinement.

Let Δ̂K be an element in the triangulation of Rj , and let v̂1, v̂2 and
v̂3 be its vertices. Define

(5) mK(s, t) = Fj(uv̂1+tv̂2+sv̂3), u = 1−s−t, (s, t) ∈ σ

and let ΔK be the image of Δ̂K under this mapping. Also, if any
two elements in this triangulation have a side in common, then their
intersection will be an entire side of both triangles. Most surfaces S
of interest can be decomposed as in (2), with each Sj representable as
in (4). Also, the surface S could be smooth, and we would often still
want to decompose it as in (2).

The mapping (5) is used in defining interpolation and numerical
integration on ΔK . Introduce the node points for ΔK by

vj,K = mK(ρj), j = 1, . . . , 6.

Collectively, the node points of the triangulation {ΔK} will be denoted
by

{vi | 1 ≤ i ≤ MN},
with MN the number of distinct node points.

The sequence of triangulations (3) will usually be obtained by suc-
cessive refinements. The refinement process is based on connecting the
midpoints of the sides of a given element Δ̂K . Given {v̂1, . . . , v̂6},
connect v̂4, v̂5, v̂6 by lines parallel to the sides of Δ̂K , as in Figure 2,
producing four new triangular elements. The new elements all are con-
gruent, and they are similar to Δ̂K . More importantly, any symmetric
pair of triangles, as shown in Figure 3, have the following property:

(6) v̂1 − v̂2 = −(v̂1 − v̂4) and v̂1 − v̂3 = −(v̂1 − v̂5).
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FIGURE 3. A symmetric pair of triangles.

The assumption on S and the node points that we made in this section
are for the use of quadratic interpolation. There are other degrees of
interpolation that can be used, and the assumptions on the smoothness
of S and the definition of the nodes will change appropriately. But
the general process of refinement will still remain the same, and we
still subdivide ΔK ’s in the same way as we do for the quadratic
interpolation.

3. Interpolation. To define interpolation, introduce the basis
functions for quadratic interpolation on σ. Letting u = 1 − (s + t),
define

l1(s, t) = u(2u−1), l2(s, t) = t(2t−1), l3(s, t) = s(2s−1),
l4(s, t) = 4tu, l5(s, t) = 4st, l6(s, t) = 4su.

The functions lj(s, t) are quadratic Lagrange polynomials satisfying

li(ρj) = δij .

Define a corresponding set of basis functions {lj,K(q)} on ΔK :

lj,K(mK(s, t)) = lj(s, t), 1 ≤ j ≤ 6, 1 ≤ K ≤ N.

Given a function f ∈ C(S), define

(7) PNf(q) =
6∑

j=1

f(vj,K)lj,K(q), q ∈ ΔK ,



320 D. CHIEN

for K = 1, . . . , N . This is called the piecewise polynomial collocation
f on the nodes of the mesh {ΔK} for S.

Atkinson [3] shows that PN is a bounded projection operator and
||PN || = 5/3. Also, for any f ∈ C3(S),

||f − PNf ||∞ = O(δ̂3
N)

where δ̂N is the mesh size of the triangulation {Δ̂K,N} of Rj ’s.

Other kinds of interpolation can be used, such as piecewise cubic
interpolation in the parametrization variables, and, in this case, we
need ten node points, ρ1, . . . , ρ10, and ten basis functions for the
interpolation on σ.

4. The collocation method. To define the collocation method,
the solution function f(mK(s, t)), (s, t) ∈ σ, is approximated by a
quadratic polynomial (as in Section 3) in (s, t):

f(mK(s, t)) ≈ fN (mK(s, t)) ≡
6∑

j=1

fN (mK(ρj))lj(s, t)

=
6∑

j=1

fN (vj,K)lj(s, t).

The collocation method is given by solving the equation

(λ − PNK)fN = PNg.

A discussion of the collocation method is given in Atkinson [2, p.
54 62]. For S, a boundary of a bounded simply-connected region in
R3, we have Nv = 2(N + 1) node points.

The collocation method for solving (1) amounts to:

1) solving the linear system

(8) λfN (vi) −
∫

S

k(vi, Q)fN (Q) dSQ = g(vi), i=1, . . . , Nv

for the nodal values {fN (vi) | i = 1, . . . , Nv}.



PIECEWISE POLYNOMIAL COLLOCATION 321

2) using the interpolation formula (7) to extend the nodal values to
fN (Q) for general Q ∈ S.

Solving (8) reduces to solving the linear system

(9) λfN (vi) −
N∑

K=1

6∑
j=1

fN (vj,K)
∫

σ

k(vi, mK(s, t))lj(s, t)

· |DsmK(s, t) × DtmK(s, t)| ds dt = g(vi), i=1, . . . , Nv.

For notation,

DsmK(s, t) =
∂mK(s, t)

∂s
, DtmK(s, t) =

∂mK(s, t)
∂t

and
|DsmK(s, t) × DtmK(s, t)|

is the Jacobian determinant of the mapping mK(s, t) used in trans-
forming surface integrals over ΔK into integrals over σ.

A major problem with (9) is that DsmK and DtmK are inconvenient
to compute for many surfaces S. Therefore, we use an approximate
surface S̃N with a parametrization that is easy to differentiate. The
approximate surface S̃N is composed of elements Δ̃1, . . . , Δ̃K , with Δ̃K

an interpolant of ΔK . Define

m̃K(s, t) =
6∑

j=1

mK(ρj)lj(s, t) =

⎡
⎢⎢⎣

∑6
j=1 v1

j,K lj(s, t)∑6
j=1 v2

j,K lj(s, t)∑6
j=1 v3

j,K lj(s, t)

⎤
⎥⎥⎦ (s, t) ∈ σ

where vi
j,K is the i-th coordinate of mK(ρj). Thus, m̃K(s, t) inter-

polates mK(s, t) at {ρ1, . . . , ρ6}, and each component is quadratic in
(s, t).

Using this surface, we seek a collocation solution f̃N :

(10) f̃N (mK(s, t)) =
6∑

j=1

f̃N (vj,K)lj(s, t) (s, t)∈σ, K =1, . . . , N.
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It is obtained from the linear system

(11) λf̃N (vi) −
N∑

K=1

6∑
j=1

f̃N (vj,K)
∫

σ

k(vi, m̃K(s, t))lj(s, t)

· |Dsm̃K(s, t)×Dtm̃K(s, t)| ds dt = g(vi), i = 1, . . . , Nv.

The kernel function k(vi, Q) is being evaluated at points Q not on S,
and we assume k(vi, Q) extends smoothly and easily to such nearby
points Q.

The collocation method can be considered as a product integration
method. Define

KNf(P ) =
N∑

K=1

6∑
j=1

f(vj,K)
∫

σ

k(P, m̃K(s, t))lj(s, t)

· |Dsm̃K(s, t) × Dtm̃K(s, t)| ds dt

=
N∑

K=1

6∑
j=1

f(vj,K)ωj,K(P ), f ∈ C(S)

where

ωj,K(P ) =
∫

σ

k(P, m̃K(s, t))lj(s, t)

· |Dsm̃K(s, t) × Dtm̃K(s, t)| ds dt.

Applying this approximation to the integral equation (λ−K)f = g, and
using the ideas of the Nyström method, we obtain the linear system

λf̂N (vi) −
N∑

K=1

6∑
j=1

f̂N (vj,K)
∫

σ

k(vi, m̃K(s, t))lj(s, t)

· |Dsm̃K(s, t)×Dtm̃K(s, t)| ds dt = g(vi), i=1, . . . , Nv.

This is exactly the same system as in (11) for our modified collocation
method. The function f̂N is in C(S), and it is given by Nyström
interpolation away from the node points. The results of the two
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methods coincide at the node points, but they differ elsewhere. Write
the collocation solution as

f̃N (q) =
6∑

j=1

f̃(vj,K)lj,K(q), q ∈ ΔK

where the lj,K ’s are defined in Section 3. Then the relationship of the
two solutions is

f̂N (q) =
1
λ

{
g(q) +

N∑
K=1

6∑
j=1

f̂N (vj,K)

·
∫

σ

k(q, m̃K(s, t))lj(s, t)|Dsm̃K(s, t)×Dtm̃K(s, t)| ds dt

}

=
1
λ

{
g(q) +

N∑
K=1

6∑
j=1

f̃N (vj,K)ωj,K(q)
}

For the collocation method, f̃N can be shown to satisfy

||f − f̃N ||∞ = O(δ̂3
N)

when S is a smooth surface; this is based on results from Nedelec [8].
For piecewise smooth surfaces, it has been shown to be at least O(δ̂2

N)
(see Atkinson [3]). But for the Nyström method (see Atkinson [5])

(12) ||f − f̂N ||∞ ≤ C||(K −KN )f ||∞.

Thus, for the collocation method, we have the alternative error bound

max
1≤i≤Nv

|f(vi) − f̃N (vi)| ≤ C||K − KN )f ||∞.

With this as motivation, we examine the error ||(K −KN )f ||∞.

Atkinson [3] has shown that

|| |DsmK × DtmK | − |Dsm̃K × Dtm̃K | ||∞ = O(δ̂4)

when S is piecewise smooth, and thus we would expect the errors in
(12) to also be O(δ̂2). In fact, we can do better than that.
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Theorem 1. Let the kernel function k ∈ C2(Si×Sj), i, j = 1, . . . , J ,
and let S be a piecewise smooth surface in R3. Let δ̂ be the mesh size
of the triangulation {Δ̂K,N} of Rj’s. Then

||(K −KN )f ||∞ = O(δ̂4)

when f ∈ C4(Si) ∩ C(S), i = 1, . . . , J .

The proof of this is given in Section 7. As a remark, we have
the following new error bound for {f̃N (vi) | i = 1, . . . , Nv} of the
collocation method:

max
1≤i≤N

|f(vi) − f̃N (vi)| ≤ C||(K −KN )f ||∞ = O(δ̂4).

This is better than the error bound for ||f − f̃N ||∞ of the collocation
method, which only gives us O(δ̂3). The above results also show

||f − f̂N ||∞ = O(δ̂4),

for the Nyström method based on product integration.

5. The discrete collocation method. We discussed the collo-
cation method for solving integral equations in the previous section.
In practice, we have to evaluate many integrals when we try to solve
integral equations by using the collocation method, and usually these
must be done by time-consuming numerical integrations. Therefore,
we introduce a discrete collocation method in this section and study
the effects of the numerical integration errors.

Again, we consider the integral equation (1) and the assumptions for
the surface S and the kernel function k are the same as in Theorem 1.
As noted earlier, the integrals in (11),

(13)
∫

σ

k(vi, m̃K(s, t))lj(s, t) | Dsm̃K(s, t) × Dtm̃K(s, t)| ds dt

must still be evaluated, and numerical integration is the only practical
course. The principal method we have used is the 3-point rule

(14)
∫

σ

h(s, t) ds dt ≈ 1
6

6∑
j=4

h(ρj).
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This method has degree of precision two, integrating exactly all
quadratic polynomials.

The method (14) is used to evaluate the integrals in (13). The
resulting linear system is

(15) λf̌N (vi) − 1
6

N∑
K=1

6∑
j=4

f̌N (vj,K)k(vi, vj,K)

· |Dsm̃K(ρj)×Dtm̃K(ρj)| = g(vi), i=1, . . . , Nv.

The values {f̌N (vi) | i = 1, . . . , Nv} can be used to construct a
quadratic interpolant f̌N . We call f̌N the discrete collocation solution,
and it is more explicitly computable than f̃N or fN . For smooth
surfaces S, it has been shown that ||f − f̌N ||∞ = O(δ̂3), but we have
only O(δ̂2) convergence for piecewise smooth surfaces; see Atkinson [3].

The system (15) can also be interpreted as the linear system for a
Nyström method for solving (1). Introduce the integration scheme

∫
σ

h(mK(s, t))|Dsm̃K(s, t)×Dtm̃K(s, t)| ds dt ≈
6∑

j=4

ωj,Kh(mK(ρj)),

(16) ωj,K =
1
6
|Dsm̃K(ρj)×Dtm̃K(ρj)|, K =1, . . . , Nv.

Then define a numerical integral for all of S:
(17)∫

S

F (Q) dSQ =
N∑

K=1

∫
σ

F (mK(s, t))|DsmK(s, t)×DtmK(s, t)| ds dt

≈
N∑

K=1

6∑
j=4

ωj,KF (mK(ρj)).

Use this integration method to approximate the integral in (1).

Define

ǨNf(P ) =
N∑

K=1

6∑
j=4

fN (vj,K)ωj,Kk(P, vj,K).
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This leads to an approximating numerical integral equation,

(18) (λ − ǨN )hN = g.

The function hN ∈ C(S), and it is given by Nyström interpolation
away from the nodes. f̌N is also a function in C(S), and it is given
by the formula for quadratic isoparametric interpolation given in (10).
The functions f̌N and hN coincide at node points, but they differ
elsewhere. Following the discussion in Section 4, we use the error bound
for Nyström method,

||f − hN ||∞ ≤ C||(K − ǨN )f ||∞
in order to examine the error bound for the discrete collocation method
at the node points {vi}:

max
1≤i≤Nv

|f(vi − f̌N (vi)| ≤ C||(K − ǨN )f ||∞.

Theorem 2. Let the kernel function k ∈ C4(Si×Sj), i, j = 1, . . . , J ,
and let the surface S and f be as in Theorem 1. Let δ̂ be the mesh size
of the triangulation {Δ̂K,N} of the Rj’s. The numerical integration
rule is the 3-point rule (14). Then

||(K − ǨN )f ||∞ = O(δ̂4).

The proof is given in Section 7. Note that the new error bound for
the discrete collocation method at node points is

max
1≤i≤Nv

|f(vi) − f̌N (vi)| ≤ C||(K − ǨN )f ||∞ = O(δ̂4).

This also gives us
||f − hN ||∞ = O(δ̂4),

for the Nyström method.

6. Numerical examples. We give two sets of numerical examples
from Atkinson [4] using the methods analyzed in Section 5. All of the
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numerical examples of this paper were computed on an Apollo DN-3500
workstation.

The first set of numerical examples gives results for the numerical
integration (17). Consider the numerical evaluation of

(19) I =
∫

S

F (Q) dSQ, F (Q) = F (x, y, z) = (∂/∂nQ)(ez).

The exterior unit normal to S at Q is nQ. For S the ellipsoid given by

x2/a2 + y2/b2 + z2/c2 = 1.

We have

I =
2abπ

c2
[(c − 1)ec + (c + 1)e−c].

The normal derivative in the definition of F is done exactly. The results
of using (17) are given in Table 1. The column labelled Order gives
the logarithm to the base two of the ratios of successive errors. Thus,
for p = Order, the error at the node points is behaving like O(δ̂p).

TABLE 1. Numerical integration: Elliptical surface with

(a, b, c) = (1, .75, .75).

N Nv Error Order N Nv Error Order
8 18 2.39E–1 20 42 5.43E–2

32 66 3.28E–2 2.86 80 162 4.51E–3 3.59
128 258 2.51E–3 3.71 320 642 3.08E–4 3.87
512 1026 1.66E–4 3.92 1280 2562 1.97E–5 3.97

2048 4098 1.05E–5 3.98

The second surface we use is an elliptical paraboloid

x2/a2 + y2/b2 = z, 0 ≤ z ≤ c,

together with the cap of points (x, y, z) satisfying

x2/a2 + y2/b2 ≤ c, z = c.
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The numerical results for this surface are given in Table 2. The integral
and integrand are given in (19), the same as for Table 1. The numerical
example shows that the order of convergence approaches four more
slowly than for the ellipsoidal surface.

TABLE 2. Numerical integration: Elliptical paraboloid.

(a, b, c) = (.75, .6, .5) (a, b, c) = (1, 1, .3)
N Nv Error Order Error Order
8 18 −3.01E–2 −2.62E–2

32 66 −9.50E–3 1.66 −6.29E–3 2.06
128 258 −1.57E–3 2.60 −7.92E–4 2.99
512 1026 −1.80E–4 3.12 −7.85E–5 3.33

2048 4098 −1.72E–5 3.38 −6.88E–6 3.51
8192 16386 −1.48E–6 3.54 −5.58E–7 3.62

The second set of examples is for solving (15) for the integral equation

λf(P ) −
∫

S

f(Q)
∂

∂νQ
(|P−Q|2) dSQ = g(P ), P ∈S.

We solved this for a variety of surfaces S and true solutions f . Here
we given results for the surfaces used earlier, and the true solution is
taken to be

f(x, y, z) = ez.

The results for an ellipsoid are given in Table 3, and those for an
elliptical paraboloid are given in Table 4.

In the tables Ns = 1.5N is the order of the linear system (15) that
must be solved. Since the integration formula (17) does not involve
the vertices of elements ΔK , the linear system involves finding f̌N (vi)
where vi is the midpoint of a side ΔK . The values f̌N (vi) for vi a
vertex of some ΔK are found by Nyström interpolation, as noted in
the discussion following the Nyström approximating equation (18).
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TABLE 3. Ellipsoidal surface with (a, b, c) = (1, .75, .5) and λ = 30.

N NS Error Order N NS Error Order
8 12 5.46E–2 20 30 1.16E–2

32 48 7.81E–3 2.81 80 120 1.48E–3 3.45
128 192 6.61E–4 3.56 320 480 1.02E–4 3.86
512 768 4.47E–5 3.89

TABLE 4. Elliptical paraboloid surface

with (a, b, c) = (.75, .6, .5) and λ = 20.

N NS Error Order
8 12 2.14E–3

32 48 4.33E–4 2.31
128 192 6.52E–5 2.73
512 768 7.28E–6 3.16

The quantity Error is the maximum error at the nodes of the trian-
gulation defining the approximating surface,

Error = max
1≤i≤Nv

|f(vi) − f̌N (vi)|.

The column labelled Order gives the logarithm to the base two of the
ratios of successive errors.

The results in Table 4 would appear to indicate that the order of
convergence is less than four. But, comparing to Table 2 for a similar
type of surface, we see that the orders in Tables 2 and 4 are comparable
for the same values of N . Thus, we expect the value of Order to slowly
approach four as N increases, as in Table 2.

7. Proof of theorems. We prove Theorems 1 and 2 in this section
with a sequence of lemmas. In this section, for both Theorems 1 and
2, we always assume

i) The surface S is piecewise smooth, as defined in Section 2.

ii) The kernel function k(P, Q) ∈ C2(Si × Sj) for Theorem 1, and
k(P, Q) ∈ C4(Si × Sj) for Theorem 2, i, j = 1, . . . , J .
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iii) The unknown function f ∈ C4(Si) ∩ C(S), i = 1, . . . , J .

Proof of Theorem 1. For Theorem 1, consider the error
(20)

E1 = (K −KN )f(P )

=
N∑

K=1

∫
σ

k(P, mK(s, t))f(mK(s, t))|DsmK × DtmK | ds dt

−
N∑

K=1

∫
σ

k(P, m̃K(s, t))fN (mK(s, t))|Dsm̃K × Dtm̃K | ds dt

with fN denoting the piecewise quadratic interpolant of f . Decompose
E1 as

E1 = E11 + E12 + E13 + E14 + E15

E11 =
N∑

K=1

∫
σ

k(P, mK(s, t))f(mK(s, t))|DsmK × DtmK | ds dt

−
N∑

K=1

∫
σ

k(P, mK(s, t))f(mK(s, t))|Dsm̃K × Dtm̃K | ds dt

E12 =
N∑

K=1

∫
σ

k(P, mK(s, t))[f(mK(s, t)) − fN (mK(s, t))]

· |Dsm̃K × Dtm̃K | ds dt −
N∑

K=1

∫
σ

k(P, mK(s, t))[f(mK(s, t))

− fN (mK(s, t))]DsmK × DtmK | ds dt

E13 =
N∑

K=1

∫
σ

k(P, mK(s, t))[f(mK(s, t)) − fN (mK(s, t))]

· |DsmK × DtmK | ds dt

E14 =
N∑

K=1

∫
σ

[k(P, mK(s, t)) − k(P, m̃K(s, t))]fN(mK(s, t))

· |Dsm̃K × Dtm̃K | ds dt −
N∑

K=1

∫
σ

[k(P, mK(s, t))

− k(P, m̃K(s, t))]fN (mK(s, t))|DsmK × DtmK | ds dt
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E15 =
N∑

K=1

∫
σ

[k(P, mK(s, t)) − k(P, m̃K(s, t))]fN(mK(s, t))

· |DsmK × DtmK | ds dt

The following two lemmas examine errors on each single triangle ΔK ,
K = 1, . . . , N , and then we apply these to find the global error.

Lemma 3. Let f(s, t) = c1s
3 + c2s

2t + c3st
2 + c4t

3 where the ci’s
are real numbers. Let

Pn(s, t) =
6∑

i=1

f(qi)li(s, t)

be the Lagrange form of the interpolating polynomial. Then∫
σ

∂

∂s
[f(s, t) − Pn(s, t)] ds dt = 0∫

σ

∂

∂t
[f(s, t) − Pn(s, t)] ds dt = 0

Proof. By direction computation.

As in equation (5), we let

mK(s, t) = Fj(uv̂1 + tv̂2 + sv̂3) =

⎡
⎣x1(uv̂1 + tv̂2 + sv̂3)

x2(uv̂1 + tv̂2 + sv̂3)
x3(uv̂1 + tv̂2 + sv̂3)

⎤
⎦

for some j and u = 1 − s − t, (s, t) ∈ σ, xi ∈ C5(Rj), i = 1, 2, 3. Since
the xi are functions of s and t, and also of x and y, we use both xi(s, t)
and xi(x, y), with the context indicating which is intended.

Lemma 4. For each ΔK ,∣∣∣∣
∫

σ

k(P, mK(s, t))f(mK(s, t))(|DsmK×DtmK |

− |Dsm̃K×Dtm̃K |) ds dt

∣∣∣∣ ≤ Cδ̂5
K
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where δ̂K is the size of Δ̂K , and C depends on k, f and {Fj}.

Proof. Let

x̃i(s, t) =
6∑

j=1

xi(sj , tj)lj(s, t) where (sj , tj) = ρj , i = 1, 2, 3.

By using the Taylor error formula, we have

xi(s, t) − x̃i(s, t) = Hi(s, t) + Gi(s, t) + O(δ̂5
K)

where

(21)

Hi(s, t) =
1
3!

[(
s

∂

∂s
+ t

∂

∂t

)3

xi(0, 0)

−
6∑

j=1

(
sj

∂

∂s
+ tj

∂

∂t

)3

xi(0, 0)lj(s, t)
]
,

Gi(s, t) =
1
4!

[(
s

∂

∂s
+ t

∂

∂t

)4

xi(0, 0)

−
6∑

j=1

(
sj

∂

∂s
+ tj

∂

∂t

)4

xi(0, 0)lj(s, t)
]
,

and O(δ̂5
K) comes from the fifth derivative of xi(s, t). Note that the

derivatives of xi with respect to (s, t) give rise to formulas involving
v̂2 − v̂1 and v̂3 − v̂1. For example,

xi
s(s, t) = (∂/∂s)xi(uv̂1 + tv̂2 + sv̂3)

= ∇xi · (v̂3 − v̂1)

with ∇xi = [∂xi/∂x, ∂xi/∂y]T . Using the Taylor error formula and
expanding functions at (s, t) = (0, 0), we obtain

(22) |DsmK(s, t)×DtmK(s, t)| − |Dsm̃K(s, t)×Dtm̃K(s, t)|
= E4(s, t; v̂2−v̂1, v̂3−v̂1) + E5(s, t; v̂2−v̂1, v̂3−v̂1) + O(δ̂6)
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E4(s, t; v̂2 − v̂1, v̂3 − v̂1)

=
{
(x2

sx
3
t − x3

sx
2
t )[x

2
sH

3
t + x3

t H
2
s − x3

sH
2
t − x2

t H
3
s ]

+ (x3
sx

1
t − x1

sx
3
t )[x

3
sH

1
t + x1

t H
3
s − x1

sH
3
t − x3

t H
1
s ]

+ (x1
sx

2
t − x2

sx
1
t )[x

1
sH

2
t + x2

t H
1
s − x2

sH
1
t

− x1
t H

2
s ]

}
/|Dsm(0, 0)+Dtm(0, 0)|.

Note that xi
s and xi

t are the abbreviations of xi
s(0, 0) and xi

t(0, 0),
respectively, whereas Hi

s and Hi
t are functions of (s, t). E4 is the

collection of terms which are of order four in δ̂, and it has the following
property:

E4(s, t;−(v̂2 − v̂1),−(v̂3 − v̂1)) = E4(s, t; v̂2 − v̂1, v̂3 − v̂1).

We do not give the explicit formula of E5 here, but it is the collection
of terms which are of order five in δ̂. It is similar to E4, and it is an
odd function of δ̂:

E5(s, t;−(v̂2 − v̂1),−(v̂3 − v̂1)) = −E5(s, t; v̂2 − v̂1, v̂3 − v̂1).

Expanding k(P, mK(s, t)) and f(mK(s, t)) about (s, t) = (0, 0), we have
(23)

k(P, mK(s, t))f(mK(s, t))(|DsmK(s, t)×DtmK(s, t)|
− |Dsm̃K(s, t)×Dtm̃K(s, t)|)

= k(P, mK(0, 0))f(mK(0, 0))(E4 + E5)
+ k(P, mK(0, 0))[sfs(mK(0, 0)) + tft(mK(0, 0))]E4

+ [sks(P, mK(0, 0)) + tkt(P, mK(0, 0))]f(mK(0, 0))E4 + O(δ̂6).

By using Lemma 3, we know that∫
σ

E4(s, t; v̂2 − v̂1, v̂3 − v̂1) ds dt = 0.

Therefore,∫
σ

k(P, mK(s, t))f(mK(s, t))(|DsmK(s, t) × DtmK(s, t)|
− |Dsm̃K(s, t) × Dtm̃K(s, t)|) ds dt

= IE5(s, t; v̂2 − v̂1, v̂3 − v̂1) + O(δ̂6
K)
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where

IE5(s, t; v̂2 − v̂1, v̂3 − v̂1)

=
∫

σ

{
k(P, mK(0, 0))f(mK(0, 0))E5 + k(P, mK(0, 0))[sfs(mK(0, 0))

+ tft(mK(0, 0))]E4 + [sks(P, mK(0, 0)) + tkt(P, mK(0, 0))]
· f(mK(0, 0))E4

}
ds dt.

Thus, this shows that∫
σ

k(P, mK(s, t))f(mK(s, t))(|DsmK(s, t)×DtmK(s, t)|

− |Dsm̃K(s, t)×Dtm̃K(s, t)|) ds dt = O(δ̂5) for every ΔK .

Note that

(24) IE5(s, t;−(v̂2 − v̂1),−(v̂3 − v̂1)) = −IE5(s, t; v̂2 − v̂1, v̂3 − v̂1),

and this gives us the next lemma.

Lemma 5. E11 = O(δ̂4).

Proof. For every symmetric pair of triangles (see Figure 3), let

m1(s, t) = F (uv̂1 + tv̂2 + sv̂3)
m2(s, t) = F (uv̂1 + tv̂4 + sv̂5).

Then,

2∑
K=1

∫
σ

k(P, mK(s, t))f(mK(s, t))(|DsmK(s, t) × DtmK(s, t)|

− |Dsm̃K(s, t) × Dtm̃K(s, t)|) ds dt

= IE5(s, t; v̂2 − v̂1, v̂3 − v̂1) + IE5(s, t; v̂4 − v̂1, v̂5 − v̂1) + O(δ̂6
K).

Using (24) and (6), we have

IE5(s, t; v̂2 − v̂1, v̂3 − v̂1) + IE5(s, t; v̂4 − v̂1, v̂5 − v̂1)
= IE5(s, t; v̂2 − v̂1, v̂3 − v̂1) + IE5(s, t;−(v̂2 − v̂1),−(v̂3 − v̂1)) = 0.
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Thus, cancellation happens on each symmetric pair of triangles, and
the error contributed by each such pair of symmetric ΔK is O(δ̂6). If
there are n2

j triangles for each Rj , we have (n2
j −nj)/2 pairs of triangles

with error in O(δ̂6) and nj remaining triangles with error in O(δ̂5). We
can also see that δ̂ ≈ 1/nj . Therefore

E1 = (n2
j − nj)O(δ̂6) + njO(δ̂5) = C · O(δ̂4),

i.e., the global error from using the Jacobian determinant of the
approximate surface is O(δ̂4).

Lemma 6. E12 = O(δ̂5).

Proof. Let

f(mK(s, t)) − fN (mK(s, t)) = Hf,K(s, t) + O(δ̂4)

where

Hf,K(s, t) =
(
s

∂

∂s
+t

∂

∂t

)3

f(mK(, 0))−
6∑

j=1

(
sj

∂

∂s
+tj

∂

∂t

)3

f(mK(0, 0)).

Since
f(mK(s, t)) − fN (mK(s, t)) = O(δ̂3)

and
|DsmK × DtmK | − |Dsm̃K × Dtm̃K | = O(δ̂4)

for every (s, t) ∈ σ and for K = 1, . . . , N , we can conclude that∫
σ

k(P, mK(s, t))[f(mK(s, t))−fN (mK(s, t))]|DsmK × DtmK | ds dt

−
∫

σ

k(P, mK(s, t))[f(mK(s, t)) − fN (mK(s, t))]

· |Dsm̃K × Dtm̃K | ds dt = O(δ̂7).

Therefore, E12 = O(δ̂5).

Lemma 7. E13 = O(δ̂4).
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Proof. For every (s, t) in σ, we can expand about (s, t) = (0, 0) to
obtain

(25)∫
σ

k(P, mK(s, t))[f(mK(s, t))−fN (mK(s, t))]|DsmK×DtmK | ds dt

=
∫

σ

k(P, mK(0, 0))Hf,K(s, t)|Dsm(0, 0)×Dtm(0, 0)| ds dt + O(δ̂6).

Again, as the cancellation happens in Lemma 5, we have proved that
E13 is of order four.

Lemma 8. E14 = O(δ̂5).

Proof. Since k is a function of x1, x2, and x3, we first expand k about
m̃K(s, t) for each (s, t); and, subsequently, we expand the leading terms
about (0, 0), when we treat it as a function of s and t. Write

k(P, mK(s, t)) − k(P, m̃K(s, t)) = H1(s, t)kx1(P, mK(0, 0))

+ H2(s, t)kx2(P, mK(0, 0)) + H3(s, t)kx3(P, mK(0, 0)) + O(δ̂4).

By (22), we know that

|Dsm(s, t) × Dtm(s, t)| − |Dsm̃(s, t) × Dtm̃(s, t)| = O(δ̂4).

Therefore,

∫
σ

[k(P, mK(s, t))−k(P, m̃K(s, t))]fN (mK(s, t))|Dsm̃K×Dtm̃K | ds dt

−
∫

σ

[k(P, mK(s, t)) − k(P, m̃K(s, t))]fN (mK(s, t))

· |DsmK×DtmK | ds dt = O(δ̂7)

for each ΔK , and E14 is of order five.

Lemma 9. E15 = O(δ̂4).
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Proof. Using results from previous lemmas, we write

[k(P, mK(s, t)) − k(P, m̃K(s, t))]fN(mK(s, t))|DsmK×DtmK |
= [H1(s, t)kx1(P, mK(0, 0)) + H2(s, t)kx2(P, mK(0, 0))

+ H3(s, t)kx3(P, mK(0, 0))]|Dsm(0, 0)×Dtm(0, 0)| + O(δ̂6)

for every (s, t) ∈ σ and for every ΔK .

Integrate the final expression over σ, the unit simplex, and add the
contributions over all ΔK ’s together. We find that cancellation happens
again among every symmetric pair of triangles. Therefore, E15 is of
order four.

After analyzing errors E11−E15, the proof of Theorem 1 is completed.

Proof of Theorem 2. The proof of Theorem 2 is given in the second
part of this section. We prove Theorem 2, E2 = (K − ǨN )f(P ), by
using the following decomposition:

E2 = (K −KN )f(P )

=
N∑

K=1

∫
σ

k(P, mK(s, t))f(mK(s, t))|DsmK×DtmK | ds dt

−
N∑

K=1

6∑
j=4

1
6
f(vj,K)k(P, m̃K(ρj))|Dsm̃K(ρj)×Dtm̃K(ρj)|

= E21 + E22

with

E21 =
N∑

K=1

∫
σ

k(P, mK(s, t))f(mK(s, t))|DsmK×DtmK | ds dt

− 1
6

N∑
K=1

6∑
j=4

f(vj,K)k(P, mK(ρj))|DsmK(ρj)×DimK(ρj)|

E22 =
1
6

N∑
K=1

6∑
j=4

f(vj,K)k(P, mK(ρj))|DsmK(ρj)×DtmK(ρj)|

− 1
6

N∑
K=1

6∑
j=4

f(vj,K)k(P, m̃K(ρj))|Dsm̃K(ρj)×Dtm̃K(ρj)|.
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E21 is the error from the numerical integration, and E22 is the error
from using the approximate surface m̃.

Lemma 10. Let h be defined on S and h ∈ C4(S). Let mK(s, t) be
the parametrization of ΔK . Then, for each ΔK ,

(26)
∫

σ

h(mK(s, t)) ds dt − 1
6

6∑
j=4

h(mK(ρj)) = O(δ̂3
K)

where δ̂K is the size of Δ̂K .

Proof. Define

h̃(mK(s, t)) ≡
6∑

j=1

h(mK(ρj))lj(s, t).

Since ∫
σ

h̃(mK(s, t)) ds dt =
1
6

6∑
j=4

h(mK(ρj)),

we rewrite the equation (26) as

∫
σ

h(mK(s, t)) ds dt − 1
6

6∑
j=4

h(mK(ρj))

=
∫

σ

[h(mK(s, t)) − h̃(mK(s, t))] ds dt.

By using the Taylor error formula, we get

(27) h(mK(s, t)) − h̃(mK(s, t)) = Hh,K(s, t) + O(δ̂4
K)

where

Hh,K(s, t) =
1
3!

[(
s

∂

∂s
+ t

∂

∂t

)3

h(mK(0, 0))

−
6∑

j=1

(
sj

∂

∂s
+ tj

∂

∂t

)3

h(mK(0, 0)) lj(s, t)
]
.
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Note that O(δ̂4
K) in (27) is from the fourth derivative of h(mK(s, t)).

Hh,K is a degree three polynomial and its coefficients are O(δ̂3
K). Hence,

∫
σ

h(mK(s, t)) ds dt − 1
6

6∑
j=4

h(mK(ρj))(28)

=
∫

σ

[h(mK(s, t))−h̃(mK(s, t))] ds dt

=
∫

σ

[Hh,K(s, t)+O(δ̂4
K)] ds dt = O(δ̂3

K).

This lemma shows that this numerical integration method has degree
of precision two, and (28) will be examined more carefully to get E21

and E22.

Lemma 11. E21 = O(δ̂4).

Proof. As in formula (5), let mK(s, t) = Fj(uv̂1 + tv̂2 + sv̂3) for some
j and u = 1 − s − t, (s, t) ∈ σ, xi ∈ C5(Rj), i = 1, 2, 3. We can write
v̂i = (vi,x, vi,y) because the v̂i’s are points in the xy-plane. Hence,

xi
s =

∂xi

∂s
=

∂xi

∂x
(v3,x − v1,x) +

∂xi

∂y
(v3,y − v1,y)

and

xi
t =

∂xi

∂t
=

∂xi

∂x
(v2,x − v1,x) +

∂xi

∂y
(v2,y − v1,y).

Write

DsmK × DtmK = ||(v̂3 − v̂1) × (v̂2 − v̂1)||

⎡
⎢⎣

x2
xx3

y − x3
xx2

y

x3
xx1

y − x1
xx3

y

x1
xx2

y − x2
xx1

y

⎤
⎥⎦

= ||(v̂3 − v̂1) × (v̂2 − v̂1)|| · J(mK(s, t))
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where ||(v̂3− v̂1)×(v̂2− v̂1)|| is the area of Δ̂K . The above computation
shows that the integrals in E21 can be expressed as∫

σ

k(P, mK(s, t))f(mK(s, t))|DsmK×DtmK | ds dt

= ||(v̂3−v̂1)×(v̂2−v̂1)||
∫

σ

k(P, mK(s, t))f(mK(s, t))|J(mK(s, t))| ds dt.

Let

(29) h(mK(s, t)) = k(P, mK(s, t))f(mK(s, t))|J(mK(s, t))|.

Then h satisfies the assumptions in Lemma 10, and

∫
σ

k(P, mK(s, t))f(mK(s, t))|DsmK × DtmK | ds dt

(30)

− 1
6

6∑
j=4

f(vj,K)k(P, mK(ρj))|DsmK(ρj) × DtmK(ρj)|

= ||(v̂3−v̂1)×(v̂2−v̂1)||
[ ∫

σ

h(mK(s, t)) ds dt − 1
6

4∑
j=1

h(mK(ρj))
]
.

Since all the Δ̂K ’s in the same Rj are congruent, they all have the same
area, i.e., this quantity ||(v̂3 − v̂1) × (v̂2 − v̂1)|| is the same for every
triangle in Rj . From Lemma 10, the quantity in the brackets of the
equation (30) is of order three. We examine (28) again and we can find
the following. At first, Hh,K(s, t) is a polynomial with degree three.
Secondly, the coefficients of it are combinations of (v̂2−v̂1) and (v̂3−v̂1).
Therefore, Hh,K(s, t) is very similar to IE5(s, t; v̂2 − v̂1, v̂3 − v̂1), and
thus Hh,K(s, t) can be written as Hh,K(s, t; v̂2 − v̂1, v̂3 − v̂1). As
expected, Hh,K(s, t) also has the same important property as IE5:

Hh,K(s, t;−(v̂2 − v̂1),−(v̂3 − v̂1)) = −Hh,K(s, t; v̂2 − v̂1, v̂3 − v̂1).

This means that cancellation happens on any symmetric pair of tri-
angles, and the order of error can be improved from δ̂5 to δ̂6. Thus,
the global error of using the numerical integration method, the 3-point
rule, is of order δ̂4. This completes the proof of E21.
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Lemma 12. E22 = O(δ̂4).

Proof. For each K, mK(ρj) = m̃K(ρj), j = 1, . . . , 6. Then,

(31)

1
6

6∑
j=4

f(vj,K)k(P, mK(ρj))|DsmK(ρj)×DtmK(ρj)|

− 1
6

6∑
j=4

f(vj,K)k(P, m̃K(ρj))|Dsm̃K(ρj)×Dtm̃K(ρj)|

=
1
6

6∑
j=4

f(vj,K)k(P, mK(ρj))[|DsmK(ρj)×DtmK(ρj)|

− |Dsm̃K(ρj)×Dtm̃K(ρj)|]

.

Computing E4 in equation (23), we have

Hi
s(0, 1/2) + Hi

s(1/2, 1/2) + Hi
s(1/2, 0) = 0(32)

Hi
t(0, 1/2) + Hi

t(1/2, 1/2) + Hi
t(1/2, 0) = 0.(33)

Hence,
6∑

j=4

E4(ρj) = 0.

Thus, equation (31) is at least of order five for each K. But examining
carefully the terms which are of order five in (31), cancellation happens
between every symmetric pair of triangles. Therefore, E22 is of order
four globally.

Combining E21 and E22 completes the proof of E2.

8. Generalization. We have only presented results for using the
polynomial of degree two to approximate the unknown function f and
the surface S. There are other degrees of interpolation that can be
used, and the assumption on the smoothness of S and the definition of
the nodes will change appropriately. In order to obtain the results that
we have in this paper, we found that the following two properties have
to hold:
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1) No matter what kind of node points and basis functions have been
chosen, a generalized Lemma 3 has to be satisfied.

2) Cancellation happens over symmetric pairs of triangles.

We first state the generalized Lemma 3, and then we give the
general theorem for any degree of interpolation. Suppose we use
interpolation of degree d to approximate both the unknown function
and the piecewise smooth surface S.

Lemma 13. Let f(s, t) = c1s
d+1 + c2s

dt+ c3s
d−1t2 + · · ·+ cd+2t

d+1,
where ci’s are real numbers. Let {q1, . . . , qv} be node points in the unit
simplex and {l1, . . . , lv} be basis functions in the Lagrange form, where
v depends on d. Let

P(s, t) =
v∑

i=1

f(qi)li(s, t).

Then ∫
σ

∂

∂s
[f(s, t) − P(s, t)] ds dt = 0

∫
σ

∂

∂t
[f(s, t) − P(s, t)] ds dt = 0

Theorem 14. Suppose the interpolation satisfies the previous
lemma. Then

max
1≤i≤Nv

|f(vi) − f̃N (vi)| ≤ C||(K −KN )f ||∞ = O(δ̂e)

where e = d + 1 when d is an odd number and e = d + 2 when d is an
even number.

Proof. When d is an odd number, the cancellation in error does not
occur; and cancellation does occur over symmetric pairs of triangles
when d is an even number. The remaining proofs are completely
analogous to those given earlier for the quadratic case.

In analogy with the collocation method, we also give a generalization
for the discrete collocation method to other degrees of interpolation. In
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order to get the earlier results of this paper, we found that the following
two properties have to hold:

1) No matter what kind of node points and basis functions have been
chosen, generalized forms of (32) and (33) have to be satisfied.

2) Cancellation happens over symmetric pairs of triangles.

We first state the generalization of (32) (33), and then we give
the general theorem for any degree of interpolation. Suppose we use
interpolation of degree d to approximate both the unknown function
and the piecewise smooth surface S.

Lemma 15. Let f(s, t) = c1s
d+1 + c2s

dt+ c3s
d−1t2 + · · ·+ cd+2t

d+1,
where the ci’s are real numbers. Let {q1, . . . , qv} and {l1, . . . , lv} be
the same as for lemma 13. Define w1, . . . , wv as

wi =
∫

σ

li(s, t) ds dt, i = 1, . . . , v.

Let

P(s, t) =
v∑

i=1

f(qi)li(s, t).

Then
v∑

i=1

wi
∂

∂s
(f − P)(qi) = 0,

v∑
i=1

wi
∂

∂t
(f − P)(qi) = 0.

The numerical integration method we use for this case is based on
the interpolation, i.e.,

(34)
∫

σ

h(s, t) ds dt ≈
v∑

i=1

h(qi)wi.

Theorem 16. Suppose that the interpolation satisfies Lemma 15,
and use the numerical integration method (34). Then

max
1≤i≤Nv

|f(fi) − f̌N (vi)| ≤ C||(K − ǨN )f ||∞ = O(δ̂e),
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where e = d + 1 when d is an odd number and e = d + 2 when d is an
even number.

Proof. When d is an odd number, the cancellation in error does not
occur; and cancellation does occur over symmetric pairs of triangles
when d is an even number. The remaining proofs are completely
analogous to those earlier for the quadratic case.
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