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ABSTRACT. An error analysis is given for a fully-discrete
collocation method applied to periodic, elliptic pseudodiffer-
ential equations. The trial space consists of the trigonometric
polynomials of degree n, and the method can be implemented
efficiently using fast Fourier transform and multigrid tech-
niques. If the order of the pseudodifferential operator is an
integer, and if the exact solution is r times continuously dif-
ferentiable, then the error in the maximum norm is n−r log n.
This estimate is sharp, since it is of the same order as for
the trigonometric interpolant. As applications, we consider
Symm’s integral equation on closed curves and open arcs.

1. Introduction. We investigate a fully-discrete collocation method
for periodic, elliptic pseudodifferential equations, such as those arising
from boundary integral equations on closed curves. The method
uses equally-spaced collocation points, and a trial space consisting
of trigonometric polynomials, just as in our earlier paper [12]. This
approach leads to a very simple treatment of the principal part of
the operator, leaving only a smoothing operator to be handled by a
Nyström-like quadrature. Our aim here is to extend the analysis in
[12] by taking account of the quadrature errors, and also to eliminate
one factor of log n from the pointwise error estimates in the case when
the order of the pseudodifferential operator is an integer.

We shall not discuss in detail the practical implementation of the
method. The quadratures can be evaluated efficiently using the fast

Received by the editors on February 21, 1992.
AMS Subject classification (1991): 65R20, 65T10, 47G30, 45E05, 45F15, 42A10.
The second author was partially supported by the Priority Research Programme

“Boundary Element Methods” of the German Research Foundation DFG under
grant Nb. We 659/16-1 (guest programme) while he was visiting the University of
Stuttgart. The second and third authors were partially supported by the University
of New South Wales and the Australian Research Council during their respective
visits there.

Copyright c©1993 Rocky Mountain Mathematics Consortium

103
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Fourier transform, as was done for the trigonometric Galerkin method
in [10]. The FFT can also be used to precondition the linear system,
which is then well-suited to solution by fast multigrid iterations (see
[7]). Amosov [1] presents such a fast solution procedure.

We will show that the numerical solution un, a trigonometric poly-
nomial of degree n, satisfies the asymptotic error estimate

(1.1) ||un − u||Hs ≤ cns−t log n||u||Ht ,

for β < s < t < ∞, where β is the order of the pseudodifferential
operator, and where Hs is the Hölder-Zygmund space of order s. A
thorough treatment of this type of function space may be found in
[19], and we have described some relevant properties in our previous
papers [12] and [13]. For the moment, we simply point out that the
Hölder-Zygmund spaces of noninteger order coincide with the standard
Hölder spaces,

Hm+α = Cm,α, for m = integer ≥ 0 and 0 < α < 1;

however, when α = 1, the imbedding Cm,1 ⊂ Hm+1 is strict and
continuous.

In addition to (1.1), we prove some pointwise error estimates. If
s = integer ≥ 0 and if β ≤ s < t < ∞, then

(1.2) ||un − u||Cs ≤ cns−t(log n)2||u||Ht .

We obtain a sharper estimate when β is an integer:

(1.3) ||un − u||Cs ≤ cns−t log n||u||Ht .

Here, Cs is the usual space of s-times continuously differentiable
functions. The error estimates (1.1) and (1.2) were shown in [12] for
the pure collocation method (without quadratures) but (1.3) is new.

A trivial but instructive special case of our theory occurs when the
pseudodifferential operator is taken to be the identity operator. The
collocation solution un is then just the trigonometric interpolant to u,
for which the rate of convergence in (1.1) and (1.3) is known to be
sharp. This argument does not apply to our other error estimate (1.2)
if β is not an integer, because the order of the identity operator is zero.
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It is an open question as to whether or not (1.2) is sharp for noninteger
β.

There already exists a vast literature dealing with the special case
β = 0, i.e., with Cauchy singular integral equations. Error estimates
in Hölder spaces, for a variety of numerical methods, may be found
in [16] and [17], along with many references. The sharp pointwise
error estimate (1.3) was first shown for singular integral equations by
B. Silbermann in [18].

It is also possible to modify our method of analysis to obtain error
estimates in the Sobolev space Hs. If β ≤ s < t < ∞ and t − β > 1/2,
then

(1.4) ||un − u||Hs ≤ cns−t||u||Ht ,

a result obtained by Amosov [1].

Our paper is organized as follows. In Section 2, we formulate the
numerical method and state our main results. The key proofs are then
presented in Section 3, with a few technical lemmas being relegated to
the Appendix. Section 4 deals with the application of our estimates
to Symm’s integral equation, both on a closed curve and on an open
arc, the latter case being handled with the help of a cosine change of
variable.

2. Discrete collocation with trigonometric polynomials. Our
problem is to solve a (scalar) periodic pseudodifferential equation

(2.1) Bu = f on T,

where T = R/Z is the one-dimensional torus (i.e., the quotient group
obtained when the integers Z are viewed as an additive subgroup of
the reals R). In simple terms, the solution u and the right hand side
f can be viewed as 1-periodic, complex-valued functions defined on R.
We assume that the operator B has the form

B = B0 + K,

where the principal part B0 has a homogeneous symbol, and where K
is a smoothing operator.
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Denote the complex Fourier coefficients of u by

û(l) :=
∫
T

e−i2πlxu(x) dx, for l ∈ Z,

so that, at least formally,

u(x) =
∑
l∈Z

û(l)ei2πlx, for x ∈ T.

As discussed in [5] and [11], the operator B0 admits a Fourier series
representation

(2.2) B0u(x) =
∑
l∈Z

σ(x, l)û(l)ei2πlx, for x ∈ T,

where the global symbol σ : T × Z → C is C∞ in its first argument
and is homogeneous, say of degree β, in its second argument:

σ(x, l) = [l]βσ(x, sgn (l)), for x ∈ T and l ∈ Z.

Here we have used the notation

[ξ] :=
{
|ξ|, if ξ �= 0,
1, if ξ = 0,

and

sgn (ξ) :=

⎧⎨
⎩

1, if ξ > 0,
0, if ξ = 0,
−1, if ξ < 0.

The number β ∈ R is the order of the pseudodifferential operator B.
Our assumption on K means that it is an integral operator,

(2.3) Ku(x) :=
∫
T

k(x, y)u(y) dy, for x ∈ T,

with a C∞ kernel k : T2 → C.

To describe the numerical method, we define

el(x) := ei2πlx, for l ∈ Z and x ∈ T,
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and denote the space of trigonometric polynomials of degree n by

Tn := span {el : |l| ≤ n}.

We shall use Tn as the trial space, and since dim Tn = 2n + 1, it is
natural to choose 2n + 1 equally-spaced collocation points

(2.4) xm :=
m

2n + 1
, for m ∈ Z(n),

where Z(n) is the quotient group Z/(2n + 1)Z, in which addition is
defined modulo 2n + 1, so that xm+(2n+1) = xm ∈ T.

In the pure collocation method discussed in [12], the numerical
solution for (2.1) is a trigonometric polynomial ũn ∈ Tn satisfying

(2.5) (B0 + K)ũn(xm) = f(xm), for all m ∈ Z(n).

The fully-discrete collocation method differs only in that the exact
smoothing operator K is replaced by a discrete approximation Kn,
defined by applying a (periodic) rectangle rule to the integral in (2.3),
i.e.,

(2.6) Knu(x) :=
1

2n + 1

∑
m∈Z(n)

k(x, xm)u(xm), for x ∈ T.

Thus, the discrete collocation solution un ∈ Tn satisfies

(2.7) (B0 + Kn)un(xm) = f(xm), for all m ∈ Z(n).

By inserting the expansions

(2.8) ũn(x) =
n∑

l=−n

X̃l[l]−βel(x) and un(x) =
n∑

l=−n

Xl[l]−βel(x)

into (2.5) and (2.7), we obtain linear systems of order 2n + 1 for the
coefficients X̃l and Xl:
(2.9)

n∑
l=−n

ÃmlX̃l = Fm and
n∑

l=−n

AmlXl = Fm, for − n ≤ m ≤ n,
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where
(2.10)

Ãml := [l]−β(B0 + K)el(xm) and Aml := [l]−β(B0 + Kn)el(xm),

and where Fm = f(xm). The factor [l]−β included in the expansions
(2.8) improves the conditioning of the linear systems (2.9), a point
discussed in our earlier papers [12] and [13]. Note that

[l]−βB0el(xm) = σ(xm, sgn (l))el(xm),

so the method (2.7) is fully discrete provided the global principal
symbol σ is known explicitly.

For any continuous function f : T → C, let Lnf denote the
unique trigonometric polynomial of degree n that interpolates f at
the collocation points (2.4):

Lnf(xm) = f(xm), for all m ∈ Z(n).

Various properties of the resulting projection operator Ln are discussed
in [12]. Using Ln, we can write the pure collocation method (2.5) as

(2.11) LnBũn = Lnf,

and the discrete collocation method (2.7) as

(2.12) Ln(B + Kn − K)un = Lnf.

Our strategy is to view the equation for un as a perturbation of the
one for ũn.

Let C denote the space of continuous, 1-periodic functions, and
let || · ||C be the usual maximum norm. More generally, for s ∈
N0 = {0, 1, 2, . . . }, the space Cs consists of all s-times continuously
differentiable functions f : T → C, and is equipped with the norm

||f ||Cs :=
s∑

j=0

||Djf ||C ,

where D = d/dx. As in [12], we shall also make use of the Hölder-
Zygmund space Hs defined by

Hs := {f : f ∈ Cm and [Dmf ]α < ∞},
for s = m + α with m ∈ N0 and 0 < α ≤ 1,
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where [·]α is the seminorm

[g]α :=
{

suph>0 h−α||Δhg||C , if 0 < α < 1,
suph>0 h−1||Δ2

hg||C , if α = 1,

with (Δhg)(x) := g(x + h) − g(x) and Δ2
h = Δh ◦ Δh. We define Hs

for s ≤ 0 with the help of the periodic Bessel potential of order β ∈ R,
given by

(Λβf)(x) :=
∑
l∈Z

[l]β f̂(l)ei2πlx, for x ∈ T.

Indeed, with the definitions above, the operator

Λβ : Hs → Hs−β

is an isomorphism, with inverse Λ−β , whenever s > 0 and s − β > 0.
We make this mapping property valid for all s ∈ R by defining Hs for
s ≤ 0 to be the set of all periodic distributions f with Λβf ∈ Hs−β

for some (and hence all) β such that s − β > 0. The norm can be
defined by ||f ||Hs := ||Λβf ||Hs−β , because different choices of β will
yield equivalent norms. We point out that Hs coincides with the Besov
space Bs

∞,∞ for all s ∈ R; see [4, p. 144].

Our first set of results concerns the pure collocation method. In the
usual way, c denotes a generic constant which is always independent
of n and u, but which may take different values at different places.
Furthermore, to ensure that log n > 0, we always assume implicitly
that n ≥ 2.

Theorem 2.1. Suppose that B : Hs → Hs−β is invertible for some
(and hence all) s ∈ R. If t > β, then for all sufficiently large n and
for each f ∈ Ht−β there exists a unique collocation solution ũn ∈ Tn,
satisfying (2.11). Furthermore,

(2.13) ||ũn − u||Hs ≤ cns−t log n||u||Ht , for β < s < t < ∞,

where u ∈ Ht is the exact solution satisfying (2.1). When s ∈ N0,

(2.14) ||ũn − u||Cs ≤ cns−t(log n)2||u||Ht , for β ≤ s < t < ∞.
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When s ∈ N0 and β ∈ Z,

(2.15) ||ũn − u||Cs ≤ cns−t log n||u||Ht , for β ≤ s < t < ∞.

The estimate (2.13) is shown in [17, Chapter 8] for noninteger s,
and in [12] for arbitrary s. In [12] one also finds the proof of (2.14).
The estimate (2.15) is shown in [18] for the case β = 0, and our proof
for β ∈ Z is based on a similar approach. Note that the pointwise
values f(xm) in (2.5) make sense, because the assumptions t > β and
f ∈ Ht−β guarantee that f is continuous.

Our main set of results, for the fully-discrete collocation method, are
as follows.

Theorem 2.2. Suppose that B : Hs → Hs−β is invertible for some
(and hence all) s ∈ R. If t > β, then for all sufficiently large n and
for each f ∈ Ht−β there exists a unique discrete collocation solution
un ∈ Tn, satisfying (2.12). Furthermore,

(2.16) ||un − u||Hs ≤ cns−t log n||u||Ht , for β < s < t < ∞,

where u ∈ Ht is the exact solution, satisfying (2.1). When s ∈ N0,

(2.17) ||un − u||Cs ≤ cns−t(log n)2||u||Ht , for β ≤ s < t < ∞.

When s ∈ N0 and β ∈ Z,

(2.18) ||un − u||Cs ≤ cns−t log n||u||Ht , for β ≤ s < t < ∞.

For the case β = 0, the estimates (2.16) and (2.18) have already been
shown in the books [16, Satz 4.8.4] and [17, Theorem 8.8.14]. There,
one also finds further references.

Remark. Theorems 2.1 and 2.2 remain valid for systems of pseudo-
differential equations under the additional assumption that the opera-
tor C : Hs → Hs−β is invertible, where C is defined by

C := {[σ(x, +1)]−1P + [σ(x,−1)]−1Q}Λβ
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(see [12, Section 6] for notations, and also [18]). One first shows (2.16),
and then the rest follows from the proofs in Sections 3 and 5.

3. Error analysis. This section is devoted to proving Theorems 2.1
and 2.2. Our approach is a refinement of the one used in our earlier
paper [12], and we continue with the notation used there.

Given a function a : T → C, we use the same symbol a to denote the
corresponding pointwise multiplication operator, so that

(au)(x) := a(x)u(x), for x ∈ T.

The symbol a−1 will always denote the inverse of the operator and not
the function; thus, (a−1u)(x) = u(x)/a(x). As usual, we define the
projections P and Q by

Pu(x) :=
∑
l≥0

û(l)ei2πlx and Qu(x) :=
∑

l≤−1

û(l)ei2πlx, for x ∈ T.

Let A := BΛ−β , so that

(3.1) B = AΛβ.

The principal part of A is the operator A0 := B0Λ−β , which has the
Fourier series representation

A0u(x) =
∑
l∈Z

σ(x, l)[l]−βû(l)ei2πlx, for x ∈ T.

Thus, A is a classical pseudodifferential operator of order 0 or, in
other words, A is a singular integral operator with

A0 = aP + bQ,

where the coefficients a and b are defined by

a(x) := σ(x, +1) and b(x) := σ(x,−1) for x ∈ T.

In accordance with Theorem 2.1, we assume that B : Hs → Hs−β is
invertible. It follows that B must be elliptic with zero index and that
there exists a canonical factorization

b−1a = ρ+ρ− with ρ± ∈ C∞
± ,



112 W. MCLEAN, S. PRÖSSDORF AND W.L. WENDLAND

where
C∞

+ := {f ∈ C∞ : f̂(l) = 0 for all l ≤ −1},
C∞

− := {f ∈ C∞ : f̂(l) = 0 for all l ≥ 1}.

As in [12], we introduce the operators

(3.2) M := bρ+ and N := Pρ− + Qρ−1
+ ,

whose inverses are

(3.3) M−1 = ρ−1
+ b−1 and N−1 = Pρ−1

− + Qρ+.

We also define the smoothing operator

T := [ρ−, P ] + [ρ−1
+ , Q] + M−1KΛ−β ,

and hence obtain the representation

(3.4) A = M(N + T ),

used in proving the following stability properties of the pure collocation
method.

Lemma 3.1. For all sufficiently large n, the solutions of (2.1) and
(2.11) satisfy the following: if β < s, then

(3.5) ||ũn||Hs ≤ c log n||u||Hs ;

if s ∈ N0 and β ≤ s, then

(3.6) ||ũn||Cs ≤ c(log n)2||u||Cs ;

and if s ∈ N0, β ∈ Z and β ≤ s, then

(3.7) ||ũn||Cs ≤ c log n{||Pu||Cs + ||Qu||Cs}.

Proof. Recall from [12, Lemma 4.2] that

LnM±1Ln = LnM±1 and LnN±1Ln = N±1Ln.



TRIGONOMETRIC COLLOCATION METHOD 113

Eliminating f between (2.1) and (2.11), and using (3.1) and (3.4), we
obtain

LnM(N + T )Λβ ũn = LnM(N + T )Λβu.

Applying the operator LnM−1 to both sides of this equation, we find
that

Ln(N + T )Λβ ũn = Ln(N + T )Λβu.

Since LnΛβ ũn = Λβ ũn, it follows that LnNΛβ ũn = NΛβ ũn, so

(N + LnT )Λβ ũn = Ln(N + T )Λβu.

Now apply the operator Λ−βN−1 to both sides and obtain

(I + Λ−βN−1LnTΛβ)ũn = Λ−βN−1Ln(N + T )Λβu.

As n → ∞, the operator on the left hand side converges uniformly to
the invertible linear operator

I + Λ−βN−1TΛβ = Λ−βN−1M−1B : Hs → Hs,

because T is a smoothing operator, and because of the approximation
properties of Ln discussed, e.g., in [12, Theorem 2.1]. Therefore,
(I + Λ−βN−1LnTΛβ)−1 : Hs → Hs exists and is uniformly bounded
for all n sufficiently large, whence the estimate

||ũn||Hs ≤ c||Λ−βN−1Ln(N + T )Λβu||Hs

follows. If s ∈ N0, then the same argument is valid if Hs is replaced
by Cs. Hence, it suffices to prove the following: if β < s, then

(3.8) ||Λ−βN−1Ln(N + T )Λβu||Hs ≤ c log n||u||Hs ;

if s ∈ N0 and β ≤ s, then

(3.9) ||Λ−βN−1Ln(N + T )Λβu||Cs ≤ c(log n)2||u||Cs ;

and if s ∈ N0, β ∈ Z and β ≤ s, then

(3.10) ||Λ−βN−1Ln(N + T )Λβu||Cs ≤ c log n{||Pu||Cs + ||Qu||Cs}.
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These three inequalities are proved in Lemma 5.4 of the Appendix.

Stability for the fully-discrete collocation method can now be proved
using a standard perturbation argument that hinges on the following
estimate involving the operator Kn − K, restricted to the trial space
Tn.

Lemma 3.2. For any s, t ∈ R and r > 0,

||(Kn − K)v||Hs ≤ cn−r||v||Ht , provided v ∈ Tn.

Versions of this result appear in [16, Section 2.3] and [17, Proposition
8.8.13]; an outline of the proof is given at the end of the Appendix.

Lemma 3.3. The stability estimates of Lemma 3.1 remain valid,
with the same restrictions on s and β, if ũn is replaced throughout by
the discrete collocation solution un.

Proof. Eliminating f between (2.1) and (2.12) yields the equation

LnBun = LnB[u + B−1(K − Kn)un],

so we can look upon un as the pure collocation solution of the equation
whose exact solution is not u but u + B−1(K − Kn)un. Hence, the
stability estimate (3.5) implies

||un||Hs ≤ c log n||u + B−1(K − Kn)un||Hs ,

for n sufficiently large. By Lemma 3.2,

||B−1(K − Kn)un||Hs ≤ c||(K − Kn)un||Hs−β ≤ cn−r||un||Hs ,

and hence, if n is large enough so that cn−r log n ≤ 1/2, then

||un||Hs ≤ c log n||u||Hs + (1/2)||un||Hs .
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Thus, (3.5) holds with ũn replaced by un. The other two estimates can
be proved in the same manner.

We are now in a position to prove our main results.

Proof of Theorem 2.1. For any trigonometric polynomial v ∈ Tn,

(3.11) LnB(ũn − v) = LnB(u − v),

so ũn − v ∈ Tn is the collocation solution to the equation whose exact
solution is u − v. Therefore, the stability estimate (3.5) implies

||ũn − v||Hs ≤ c log n||u − v||Hs ,

and so

(3.12) ||ũn − u||Hs ≤ ||ũn − v||Hs + ||v − u||Hs ≤ c log n||u − v||Hs .

We introduce the notation

En(f,X ) := inf
v∈Tn

||f − v||X for f ∈ X ,

where X is any suitable periodic function space, and recall from [13,
Section 7] that

En(f,Hs) ≤ cns−t||f ||Ht , for −∞ < s < t < ∞.

Therefore, since (3.12) holds for all v ∈ Tn,

||ũn − u||Hs ≤ c log nEn(u,Hs) ≤ cns−t log n||u||Ht ,

which completes the proof of (2.13). In the same way, the error estimate
(2.14) follows from the stability estimate (3.6) and Jackson’s theorem:

(3.13) En(f, Cs) ≤ cns−t||f ||Ht for s ∈ N0 and s < t < ∞.

The remaining (and most interesting) error estimate (2.15) is not
quite so straightforward, due to the unusual form of the corresponding
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stability estimate (3.7). Indeed, we conclude from (3.11) that when
β ∈ Z,

(3.14)
||ũn − u||Cs ≤ ||ũn − v||Cs + ||v − u||Cs

≤ c log n{||P (u − v)||Cs + ||Q(u − v)||Cs}

for all v ∈ Tn. In [13, Section 7], we proved (3.13) by constructing a
convolution operator Qn : L2 → Tn with the property that

(3.15) ||(I −Qn)f ||Cs ≤ cns−t||f ||Ht , for s ∈ N0 and s < t < ∞.

Since Qn commutes with P and Q, by putting v := Qnu in (3.14) we
obtain

||ũn − u||Cs ≤ c log n{||(I −Qn)Pu||Cs + ||(I −Qn)Qu||Cs}
≤ cns−t log n||u||Ht ,

completing the proof of (2.15).

Proof of Theorem 2.2. This time, by (2.12),

Ln(B + Kn − K)(un − v) = LnB[(u − v) + B−1(K − Kn)v],

so Lemma 3.3 implies that

||un − v||Hs ≤ c log n||(u − v) + B−1(K − Kn)v||Hs

for all v ∈ Tn. By Lemma 3.2,

||B−1(K − Kn)v||Hs ≤ c{||u − v||Hs + ns−t||u||Ht},

and we find that

||un − u||Hs ≤ c log n{En(u,Hs) + ns−t||u||Ht} ≤ cns−t log n||u||Ht ,

which proves (2.16). The second error estimate (2.17) is proved in the
same way. However, in the case β ∈ Z,

||un − u||Cs ≤ c log n{||P (u − v)||Cs + ||Q(u − v)||Cs + ns−t||u||Ht},
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and we obtain (2.18) by putting v := Qnu as before in the proof of
(2.15).

4. The logarithmic-kernel integral equation. We will now
consider the implications of our theory for a simple but important
example, namely, Symm’s integral equation:

(4.1)
1
π

∫
Γ

log
1

|p − q|v(q) dsq = g(p), for p ∈ Γ.

Here, Γ ⊂ R2 is either a smooth closed curve or a smooth open arc,
ds is the element of arc-length along Γ, and |p − q| is the Euclidean
distance between the points p and q. We refer to [8] and [9] for some
applications of this and related integral equations. In what follows, the
logarithmic capacity (or transfinite diameter) of Γ is always assumed
to differ from 1, in order to ensure that (4.1) is uniquely solvable for
any right hand side g; this property of the equation is discussed, e.g.,
in [6] and [20].

We begin with the case when the curve Γ is closed. Let

γ : T → Γ ⊂ R2

be a C∞ parametrization of Γ, with a nonvanishing Jacobian: |γ′(x)| �=
0 for all x ∈ T. Put

u(x) :=
1
2π

v[γ(x)]|γ′(x)| and f(x) := g[γ(x)],

so that (4.1) is equivalent to (2.1) with

Bu(x) := −2
∫
T

log |γ(x) − γ(y)|u(y) dy, for x ∈ T.

We obtain the required decomposition B = B0 + K by putting

B0u(x) := −2
∫
T

log |2e−1/2 sin π(x − y)|u(y) dy,

Ku(x) := −2
∫
T

log
|γ(x) − γ(y)|

|2e−1/2 sin π(x − y)|u(y) dy.
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Indeed, the Fourier expansion

log |2 sin πx| =
∞∑

l=1

1
l

cos 2πlx =
1
2

∑
0�=l∈Z

1
[l]

ei2πlx

implies that

(4.2) B0u(x) = Λ−1u(x) =
∑
l∈Z

1
[l]

û(l)ei2πlx,

so B0 is a classical pseudodifferential operator of order −1. At the
same time, K has the form (2.3) with a C∞ kernel k : T2 → R.
(Note that B = B0 if Γ is a circle of radius e−1/2, parameterized
in the obvious way.) Recalling (2.8) (2.10), we see that the discrete
collocation solution is

un(x) =
n∑

l=−n

[l]Xle
i2πlx,

where X−n, . . . , Xn are found by solving the linear system

n∑
l=−n

{el(xm) + [l]Knel(xm)}Xl = f(xm), for − n ≤ m ≤ n.

Theorems 2.1 and 2.2 apply with β = −1.

Now suppose that Γ is an open arc. In this case, the solution v of
(4.1) will generally behave like v(p) = O(|p−p0|−1/2) near an end point
p0 of Γ. However, a cosine change of variable removes the endpoint
singularities and reduces (4.1) to a periodic integral equation.

To be more precise, assume that the arc Γ has the C∞ parametriza-
tion

ν : [−1, 1] → Γ ⊂ R2,

with a nonvanishing Jacobian: |ν′(ξ)| �= 0 for −1 ≤ ξ ≤ 1. Letting
ξ = cos 2πx for 0 ≤ x ≤ 1/2, we transform the integral equation (4.1)
into

(4.3) −2
∫ 1/2

0

log |γ(x) − γ(y)|u(y) dy = f(x), for 0 ≤ x ≤ 1/2,
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with γ(x) := ν(cos 2πx),

u(x) := v[γ(x)]| sin(2πx)ν′(cos 2πx)| and f(x) = g[γ(x)].

The functions u, f and γ extend naturally to 1-periodic, even functions
on the whole real line and are therefore well-defined on T. Thus, (4.3)
is equivalent to the periodic integral equation

(4.4) Beu(x) := −
∫
T

log |γ(x) − γ(y)|u(y) dy = f(x), for x ∈ T.

The operator Be acts on even functions and can be decomposed as
Be = Be0 + Ke, where

Be0u(x) := −
∫
T

log |2e−1(cos 2πx − cos 2πy)|u(y) dy,

Keu(x) :=
∫
T

ke(x, y)u(y) dy,

with

ke(x, y) :=

{
− log |ν(cos 2πx)−ν(cos 2πy)|

|2e−1(cos 2πx−cos 2πy)| , if x �≡ ±y mod 1,

− log |ν′(cos 2πx)|
2e−1 , if x ≡ ±y mod 1.

By our assumptions for ν, the function ke : T2 → R is C∞. Moreover,
ke is an even function with respect to each variable. Using the
trigonometric identity

cos 2πx − cos 2πy = −2 sin π(x + y) sin π(x − y),

it is easy to see that

(4.5) Be0u = B0u if u is even,

where B0 = Λ−1 is the operator, given by (4.2), that arises in the case
of a closed curve. It is natural to expand an even function u : T → C
into a Fourier cosine series,

u(x) =
∞∑

t=0

u�(l) cos 2πlx, for x ∈ T,
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where

u�(l) :=
û(l) + û(−l)

2
=

∫
T

u(x) cos 2πlx dx, for l ∈ N0.

Equations (4.2) and (4.5) then yield the representation

(4.6) Be0u(x) =
∞∑

l=0

1
[l]

u�(l) cos 2πlx, for x ∈ T.

Hence, our discrete collocation solution for (4.4) is

un(x) =
n∑

l=0

[l]Xl cos 2πlx,

where X0, . . . , Xn are found by solving the linear system

(4.7)
n∑

l=0

{cos 2πlxm + [l]κml}Xl = f(xm), for 0 ≤ m ≤ n,

with

κml :=
1

2n + 1

{
k(xm, 0) + 2

n∑
j=1

k(xm, xj) cos 2πlxj

}
.

We consider the integral equation (4.4) in the even subspace of Hs,
defined by

Hs
e := {v ∈ Hs : v(−x) = v(x) for all x ∈ T}.

It follows from (4.5), and from the unique solvability of (4.1), that

Be : Hs
e → Hs+1

e

is an invertible linear operator for all s ∈ R. Our error estimates in
Theorem 2.2 imply that, for −1 < s < t < ∞,

(4.8) ||un − u||Hs
e
≤ cns−t log n||u||Ht

e
,
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and for s ∈ N0 and s < t < ∞,

(4.9) ||un − u||Cs
e
≤ cns−t log n||u||Ht

e
,

where Cs
e is the even subspace of Cs. Likewise, by (1.4), if −1 ≤ s <

t < ∞ and t > −1/2, then

(4.10) ||un − u||Hs
e
≤ cns−t||u||Ht

e
,

where Hs
e is the even subspace of the Sobolev space Hs.

Remark. The discrete collocation method (4.7) for Symm’s integral
equation (4.1) in the case of an open curve Γ, was recently analyzed
by Atkinson and Sloan [3]. Under the assumption u ∈ Ht

e with
t > s > 1/2, these authors proved the estimate

||un − u||C ≤ cns−t||u||Ht
e
,

which follows also from (4.10) together with the imbedding property
C ⊂ Hs for s > 1/2. Our estimate (4.9), however, yields a sharper
result for u ∈ Ht

e with t > 0, namely,

||un − u||C ≤ cn−t log n||u||Ht
e
.

The estimates (4.8) and (4.10) were first proved by Prössdorf and
Silbermann [17, Chapter 3] by different methods. Estimate (4.9) is
new.

5. Appendix: Technical lemmas. In order to complete the sta-
bility proofs in Section 3, we must establish the inequalities (3.8) (3.10)
and prove Lemma 3.2. We begin with three preliminary results.

Lemma 5.1. Let B be any classical pseudodifferential operator on
T with order β. If s ∈ N0, β ∈ Z and β ≤ s, then

||Bu||Cs−β ≤ c{||Pu||Cs + ||Qu||Cs}.

Proof. Since the principal part of B has the form (aP + bQ)Λβ , it
suffices to consider the operators PΛβ and QΛβ . On the one hand, if
β ≥ 0, then

PΛβu(x) = û(0) + (2πi)−β(DβPu)(x),
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and on the other hand, if β ≤ −1, then

D−βPΛβu(x) = (2πi)−β[(Pu)(x) − û(0)].

These formulae, together with the analogous ones involving Q, imply
that

||PΛβu||Cs−β ≤ c||Pu||Cs and ||QΛβu||Cs−β ≤ c||Qu||Cs ,

for all β ∈ Z.

Now let Pn : L2 → Tn be the orthogonal projection, so that

Pnf(x) =
∑
|l|≤n

f̂(l)ei2πlx, for x ∈ T.

Versions of the following lemma may be found in [16, 17] and [18].

Lemma 5.2. For s ∈ N0,

||PPnf ||Cs ≤ c log n||f ||Cs , ||QPnf ||Cs ≤ c log n||f ||Cs ,

||PLnf ||Cs ≤ c log n||f ||Cs , ||QLnf ||Cs ≤ c log n||f ||Cs .

Proof. The projections Pn and Ln admit the representations

(5.1)

Pnf(x) =
∫
T

Dn(x − y)f(y) dy,

Lnf(x) =
1

2n + 1

∑
m∈Z(n)

Dn(x − xm)f(xm),

where Dn is the Dirichlet kernel,

(5.2) Dn(x) :=
∑
|k|≤n

ei2πkx =
sin π(2n + 1)x

sin πx
.

Therefore, because P is translation-invariant,

PPnf(x) =
∫
T

D+
n (x − y)u(y) dy,

PLnf(x) =
1

2n + 1

∑
m∈Z(n)

f(xm)D+
n (x − xm),
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where

D+
n (x) := PDn(x) =

n∑
k=0

ei2πkx = eiπnx sin π(n + 1)x
sin πx

.

The analogous formulae hold for QPnf and QLnf , with D+
n replaced

by

D−
n (x) := QDn(x) =

n∑
k=1

e−i2πkx = e−iπ(n+1)x sin πnx

sin πx
.

Hence, from the estimates

||D±
n ||L1 ≤ c

∫ 1/2

0

min(n, x−1) dx ≤ c log n

and
1

2n + 1

∑
m∈Z(n)

|D±
n (x − xm)| ≤ c log n, for x ∈ T,

we easily obtain the result in the case s = 0.

Now suppose s ≥ 1. Since D commutes with P, Q and Pn, the
estimates for PPnf and QPnf follow immediately from those in the
case s = 0. However, D and Ln do not commute, so a different approach
is needed to estimate PLnf and QLnf . We will prove that

(5.3) ||P (Ln − Pn)f ||Cs ≤ c log n||f ||Cs ;

the estimate for PLnf then follows from the triangle inequality and the
estimate for PPnf . The same argument with P replaced by Q yields
the estimate for QLnf .

Since P (Ln − Pn)f ∈ Tn, Bernstein’s inequality implies that

||P (Ln − Pn)f ||Cs ≤ cns||P (Ln − Pn)f ||C0 .

For all v ∈ Tn,

||P (Ln − Pn)f ||C0 = ||P (Ln − Pn)(f − v)||C0 ≤ c log n||f − v||C0 ,
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so
||P (Ln − Pn)f ||Cs ≤ cns log nEn(f, C0),

and the inequality (5.3) follows by Jackson’s theorem (3.13).

Similar estimates hold in the Hölder-Zygmund norms.

Lemma 5.3. For s ∈ R,

||PPnf ||Hs ≤ c log n||f ||Hs and ||QPnf ||Hs ≤ c log n||f ||Hs .

If s > 0, then

||PLnf ||Hs ≤ c log n||f ||Hs and ||QLnf ||Hs ≤ c log n||f ||Hs .

Proof. These estimates follow from Lemma 5.2 by the theory of
interpolation spaces, because if

s = (1 − θ)s0 + θs1 with s0 �= s1 and 0 < θ < 1,

then
Hs = (Cs0 , Cs1)θ,∞ for s0, s1 ∈ N0,

Hs = (Hs0 ,Hs1)θ,∞ for s0, s1 ∈ R;

see [19, p. 201] or [4, p. 152]. However, a more elementary approach
is also possible.

From the representation

(PPnf)(x) =
∫
T

D+
n (y)f(x − y) dy,

we see that for 0 < α ≤ 1,

[PPnf ]α ≤ ||D+
n ||L1 [f ]α ≤ c log n[f ]α,

which implies the estimate for PPnf in the case s > 0; the same
estimate holds for s ≤ 0 because PPn commutes with the Bessel
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potentials. We deal with PLnf much as in the proof of Lemma 5.2, by
showing that

||P (Ln − Pn)f ||Hs ≤ c log n||f ||Hs , for s > 0.

Indeed, we can prove this inequality in the same manner as (5.3),
because the generalized Bernstein’s inequality [12, equation (2.6)]
implies

||P (Ln − Pn)f ||Hs ≤ cns||P (Ln − Pn)f ||C0

for all s > 0. These same arguments go through with P and D+
n

replaced by Q and D−
n , giving the estimates for QPnf and QLnf .

We are now ready to prove the inequalities (3.8) (3.10). In fact,
because T is a smoothing operator, it suffices to establish the following
estimates.

Lemma 5.4. If β < s, then

||Λ−βN−1LnNΛβu||Hs ≤ c log n||u||Hs ;

if s ∈ N0 and β ≤ s, then

||Λ−βN−1LnNΛβu||Cs ≤ c(log n)2||u||Cs ;

and if s ∈ N0, β ∈ Z and β ≤ s, then

||Λ−βN−1LnNΛβu||Cs ≤ c log n{||Pu||Cs + ||Qu||Cs}.

Proof. The first inequality is an easy consequence of Lemma 5.3:
since P + Q = I, we have

||Λ−βN−1LnNΛβu||Hs ≤ c||(P + Q)LnNΛβu||Hs−β

≤ c log n||NΛβu||Hs−β

≤ c log n||u||Hs
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for s−β > 0. Likewise, the third inequality follows easily from Lemmas
5.1 and 5.2:

||Λ−βN−1LnNΛβu||Cs ≤ c{||PLnNΛβu||Cs−β + ||QLnNΛβu||Cs−β}
≤ c log n{||PNΛβu||Cs−β + ||QNΛβu||Cs−β}
≤ c log n{||Pu||Cs + ||Qu||Cs},

provided s − β ≥ 0 and β ∈ Z. However, the proof of the second
inequality is longer.

By the triangle inequality,

||Λ−βN−1LnNΛβu||Cs

≤ ||Λ−βN−1PnNΛβu||Cs + ||Λ−βN−1(Ln−Pn)NΛβu||Cs ,

so it suffices to show separately that

(5.4) ||Λ−βN−1PnNΛβu||Cs ≤ c log n||u||Cs

and

(5.5) ||Λ−βN−1(Ln − Pn)NΛβu||Cs ≤ c(log n)2||u||Cs .

The advantage of this splitting is that Pn commutes with P, Q and Λβ ,
whereas Ln does not. (The inequality (5.4) is of independent interest
because it arises in the proof of stability for trigonometric Galerkin
methods; cf., [13, Theorem 4.9].) We have

Λ−βN−1PnNΛβ = [Λ−β, N−1]PnNΛβ+N−1Pn[Λ−β, N ]Λβ+N−1PnN,

and recalling the formulae for N and N−1 in (3.2) and (3.3),

N−1PnN = {ρ−1
− P + ρ+Q + [P, ρ−1

− ] + [Q, ρ+]}Pn(Pρ− + Qρ−1
+ )

= ρ−1
− PPnρ− + ρ+QPnρ−1

+ + {[P, ρ−1
− ] + [Q, ρ+]}PnN.

Since [Λ−β , N−1] and [Λ−β , N ] are pseudodifferential operators of order
−β − 1, and since [P, ρ−1

− ] and [Q, ρ+] are smoothing operators, the
inequality (5.4) follows from Lemma 5.3 with the help of the imbeddings
Hs+ε ⊂ Cs ⊂ Hs for s ∈ N0 and ε > 0.
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To prove (5.5), we write

Λ−βN−1(Ln − Pn)NΛβ

= [Λ−β , N−1](Ln − Pn)NΛβ + N−1Λ−β(Ln − Pn)NΛβ ,

and recall from [13, Lemmas 4.6 and 4.7] that

||N−1v||Cs ≤ cε−1||v||Hs+ε , for ε > 0 and v ∈ Hs+ε,

with c independent of ε ∈ (0, 1]. Thus,

||Λ−βN−1(Ln − Pn)NΛβu||Cs ≤ c||[Λ−β , N−1](Ln − Pn)NΛβu||Hs+ε

+ cε−1||Λ−β(Ln − Pn)NΛβu||Hs+ε

≤ cε−1||(Ln − Pn)NΛβu||Hs+ε−β .

If v ∈ Tn, then Nv ∈ Tn and so, using the generalized Bernstein
inequality, Lemma 5.2 and then Lemma 5.1, we find that

||(Ln − Pn)NΛβu||Hs+ε−β = ||(Ln − Pn)N(Λβu − v)||Hs+ε−β

≤ cns+ε−β||(Ln − Pn)N(Λβu − v)||C0

≤ cns+ε−β log n||N(Λβu − v)||C0

≤ cns+ε−β log n{||P (Λβu − v)||C0

+ ||Q(Λβu − v)||C0}.

Putting v := QnΛbu and using (3.15),

||(Ln − Pn)NΛβu||Hs+ε−β

≤ cns+ε−β log n{||(I −Qn)PΛβu||C0 + ||(I −Qn)QΛβu||C0}
≤ cnε log n{||PΛβu||Hs−β + ||QΛβu||Hs−β}.

Hence,

||Λ−βN−1(Ln − Pn)NΛβu||Cs ≤ c(ε−1nε) log n||u||Hs ,

and the inequality (5.5) now follows by letting ε−1 = log n.

Our only remaining task is to estimate Kn − K.
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Proof of Lemma 3.2. Let v ∈ Tn, and recall the representations (5.1)
of Pn and Ln in terms of the Dirichlet kernel Dn. Since v = Pnv, we
see from the definition (2.6) of Kn that

Knv(x) =
1

2n + 1

∑
m∈Z(n)

k(x, xm)
∫
T

Dn(xm − y)v(y) dy

=
∫
T

v(y)
{

1
2n + 1

∑
m∈Z(n)

Dn(xm − y)k(x, xm)
}

dy

=
∫
T

v(y)Ln,yk(x, y) dy,

where Ln,y is the interpolation operator with respect to the variable y.
Thus,

Λα(K − Kn)v(x) =
∫
T

v(y)Λα
x (I − Ln,y)k(x, y) dy, for x ∈ T,

where Λα
x is the Bessel potential of order α with respect to the variable

x. The estimate for Kn − K now follows from the approximation
properties of Ln, because the kernel k is C∞. We omit the details.
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