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STABILITY OF EQUILIBRIA IN A
CLASS-AGE-DEPENDENT EPIDEMIC MODEL

CARLOS ESPINA-VALENCIA

ABSTRACT. An SIS model with subpopulations and where
the infectivity of an infected person is a function of age in
the infected class is considered. The existence of equilibria
and threshold conditions are established. The global asymp-
totic stability of the disease-free (zero) equilibrium below the
threshold and, under certain conditions, the local asymp-
totic stability of the endemic (positive) equilibrium above the
threshold are proved. Perturbations of the equilibrium to-
gether with a stability theorem in nonlinear integral equations
are used to prove the stability of the endemic equilibrium.

1. Introduction. For most infectious disease models the infectious
contact number, which is the average number of contacts of an infective
during his infectious period, has been identified as one of the threshold
quantities which determines the behavior of the infectious disease [14].
In this work we obtain thresholds for some models for which infection
does not confer immunity. Models for gonorrhea and AIDS can be
included in this type of models.

The population under consideration is divided into classes. The
susceptible class consists of those individuals who can incur the disease
but are not yet infective. The infective class consists of those who
are transmitting the disease to others. Usually S(t), I(t), denote the
number of individuals, respectively, in each of the classes. The total
population S(t) + I(t) = N is usually assumed to be constant. It
is convenient to normalize so that S(t) + I(t) = 1; in this way, the
functions measure fractions of the total population. If recovery does
not confer immunity, then the model is called an SIS model, since
the individuals move from the susceptible class to the infective class
and then back to the susceptible class upon recovery. SIS models are
appropriate for some bacterial agent diseases such as meningitis, plague,
and venereal diseases, and for protozoan agent disease such as malaria
and sleeping sickness. SI models can be used for modeling AIDS.
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To say that an infectious disease is endemically stable corresponds to
saying that there is an equilibrium point of the model with a positive
number (fraction) 0 < I∞ < 1 of infectious people, called the endemic
equilibrium; and that starting from any initial condition with nonzero
number of infective, the number (fraction) I(t) of infectives approaches
the equilibrium number (fraction) I∞ as time goes to infinity. The
technical term for this behavior of the model is global stability of the
endemic equilibrium. The equilibrium where the number of infective is
0 is called the disease-free equilibrium. Similarly, if from any positive
initial condition the number of infectives approaches 0 when time goes
to infinity, we say that the disease free-equilibrium of the model is
globally stable of that the disease dies out. Where the global stability
has been impossible to prove, we usually settle for local asymptotic
stability, where the approach to the equilibrium is required only for
initial conditions in a neighborhood of the equilibrium.

For nearly all models the disease dies out or remains endemic depend-
ing on whether the threshold quantity is below or above 1. Recently, it
has been recognized that some models with nonlinear contact rates or
with variable population size can have more than one important thresh-
old quantity. In this particular model we consider only the threshold
quantity which determines the stability (in the sense we have defined
it) of the equilibria. For SIS models with the most commonly accepted
nonlinear disease transmission terms, the addition of vital dynamics
(births and deaths) only changes the thresholds and the equilibrium
points as long as the population size remains constant. Of course, the
behavior would be different if the total population were growing.

Sometimes it is convenient to subdivide the population into subpop-
ulations to account for different contact rates. Each group is homo-
geneous in the sense that individuals belonging to it have the same
transmission coefficients. Moreover, the contacts between individuals
depend only on the group to which they belong. These models are
referred to as heterogeneous or n-subpopulations models. Some use-
ful models consider one or more time delays. References for models of
diseases without immunity can be found in [15].

Age structure has been incorporated into epidemic models for several
reasons, one of which is that in some infectious diseases like childhood
diseases and in influenza contact rates depend strongly on age; another
is the necessity of having models closer to reality than the traditional
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epidemic models; finally, age-dependent models arise in diseases that
are vertically transmitted from parent to newborn offspring. To for-
mulate an SIS age-dependent model the population is usually divided
into susceptibles and infected classes, where x(a, t) and y(a, t) are the
densities in these respective classes, so that

∫ b

a
x(s, t) ds,

∫ b

a
y(s, t) ds,

denote the proportions of the population in each class that have age
in the age-interval (a, b) at time t. The earliest age-structured models
were stated by Bernoulli [3] and McKendrick [19] and more recently
by Hoppensteadt [17]. Busenberg and Cooke [4] and El Doma [10]
considered vertically transmitted diseases. Childhood diseases were
studied by Anderson and May [1] and by Dietz and Schenzle [9]. In-
fluenza, where contacts rates between individuals in different age groups
vary has been modelled by Gripenberg [13] and Greenhalgh [12]. Age-
dependent models have also been studied in [2, 5, 7, 24]. Much of
this previous work has been built upon finding threshold conditions for
the disease to become endemic and describing the stability of steady-
state solutions, often under the assumption that the age structure of
the total population is fixed.

Recently, Busenberg, et al. [6] ruled out the possibility of oscillations
in these models by proving, for a quite general SIS model, that there is a
threshold quantity ρ (the spectral radius of certain map), depending on
the parameters of the equation, such that if ρ ≤ 1 the only equilibrium
is the disease-free equilibrium which is globally asymptotically stable
and if ρ > 1 there is a unique endemic equilibrium which is globally
asymptotically stable.

Class-age-dependent models differ from the usual chronological-age-
dependent models in that they consider an infectivity that depends
on the age in the infected class. The infected class may include both
exposed (latent) and infectious people. This allows, as the individual
ages, a latent period with zero infectivity followed by an infectious
period with positive infectivity and then by a removed period (if there
is one) with zero infectivity. Hethcote and Thieme [16] considered
an SIRS model of this type with subpopulations. They proved the
existence and local stability of an endemic equilibrium. For further
references on class-age dependent models, see [16].

2. A class-age-dependent model. In this section we formulate
the SIS model with class-age dependent infectivity and with n subpop-
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ulations. This model is a modification of one formulated by Hethcote
and Thieme [16]. In class-age-dependent models it is assumed that the
infectivity depends on the age in the infected class. The total infectivity
of the infected people is the integral over all class ages of the infectivity
at each age times the density of infected persons with class age a. As
usual, Sj denotes the fraction of susceptibles in subpopulation j and Ij

is the fraction of infected individuals in subpopulation j. Thus

(2.1) Ij(t) =
∫ ∞

0

xj(t, a) da

where xj(t, a) denotes the density of infected individuals at time t with
class age a, the lapse of time since infection.

λjk(a) denotes the effective contact rate with individuals in subpop-
ulation j by an infected individual in subpopulation k with class age
a. The normalized infectivity impact Jj(t) in subpopulation j at time
t is given by

(2.2) Jj(t) =
n∑

k=1

∫ ∞

0

βjk(a)xk(t, a) da

where

(2.3) βjk(a) = (Nk/Nj)λjk(a).

Let μj denote the birth and mortality rate in subpopulation j, and
γj(a) the class-age-dependent rate of movement from the infected to
the susceptible class in the j subpopulation.

The equations for the densities of the infected subpopulations are

(∂t + ∂a)xj(t, a) = −[μj + γj(a)]xj(t, a)(2.4)
xj(t, 0) = Sj(t)Jj(t)(2.5)

for t, a > 0, t �= a, a �= aj ≤ ∞. Here aj is the maximum class age at
removal, γj(a) is continuous on [0, aj) and γj(a) = 0 for a > aj . Sj(t)
and Ij(t) are the fractions of the population in susceptible and infected
classes; hence,

Sj(t) + Ij(t) = 1 for t ≥ 0.
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For the infected subpopulation the following equation can be obtained
from (2.4) by integrating with respect to a

(2.6) I ′j(t) = (1 − Ij)Jj(t) − μjIj −
∫ ∞

0

γj(a)xj(t, a) da.

All parameters in the equations are nonnegative. We assume μj > 0
or

∫ ∞
0

γj(a) da = ∞ which implies that no individual may stay infected
forever. The expression

(2.7) hj(a) = exp
(
− μja −

∫ a

0

γj(s) ds

)

is the probability of still being infected at time a after infection began,
and [μj +γj(a)]hj(a) is the rate at which infected individuals leave the
infected class at time a after infection began. Our assumptions imply
that hj(a) → 0 as a → ∞ and

(2.8)
∫ ∞

0

[μj + γj(a)]hj(a) da = 1.

The conditions aj < ∞,
∫ aj

0
γj(a) da = ∞ with γj(a) = 0 for a > aj

hold for a disease with finite period of infectivity. The condition∫ ∞
0

γj(a) da < ∞ would correspond to a disease with lifelong carriers.

The product γj(a)hj(a) gives the rate at which a just-infected indi-
vidual of the j-th class will be susceptible again at time a after infection
began. If aj = ∞ we impose the following conditions on γj :

(a) γj(a)hj(a) is monotone nonincreasing for large a > 0.

(b) μj > 0 or lim inf aγj(a) > 1 as a → ∞.

If γj is absolutely continuous, (a) is equivalent to γ′
j(a) ≤ γj(a)μj +

γj(a)] for large a. Furthermore, since
∫ ∞
0

γj(a)hj(a) da ≤ 1, γj(a)hj(a)
→ 0 as a → ∞. Also (a) implies γj(t+a)hj(t+a) ≤ const γj(a)hj(a) for
t, a ≥ 0 and t large. Assumption (b) implies that ahj(a) → 0 for a → ∞
and

∫ ∞
0

hj(a) da < ∞. Note that Hj =
∫ ∞
0

a[μj + γj(a)]hj(a) da =∫ ∞
0

hj(a) da is the average class age at leaving the infected class and
Hj < ∞. These implications of (a) and (b) are also satisfied if aj < ∞.
We use the condition

∫ ∞
0

γj(a) da < ∞ if we want to model diseases
with lifelong carriers.



514 C. ESPINA-VALENCIA

Furthermore, we assume

i) βjk(a) ≥ 0 and βjk is continuous on [0, ak] and (ak,∞)

ii) βjk is bounded on [0,∞)

iii) the matrix with components
∫ ∞
0

βjk(a) da is irreducible.

Assumption iii) means that the population is epidemiologically con-
nected or that the infection will spread over all subpopulations. If
both βjk(a) and γj(a) are constants, then this model reduces to an SIS
model with n subpopulations with births and deaths.

3. Existence and uniqueness of the endemic equilibrium. To
the model (2.1) (2.5) we add the initial conditions

(3.1) xj(0, a) ≥ 0, Ij(0) =
∫ ∞

0

xj(0, a) da < 1.

For equilibrium (i.e., time-independent) solutions x∗
j (a), the model

takes the form

I∗j =
∫ ∞

0

x∗
j (a) da

x∗′
j (a) = −[μj + γj(a)]x∗

j (a)
x∗

j (0) = (1 − I∗j )J∗
j

(3.2) J∗
j =

n∑
k=1

∫ ∞

0

βjk(a)x∗
k(a) da.

We can obtain a fixed point equation for Uj = x∗
j (0). Integrating the

x∗
j -equations, we have

x∗
j (a) = hj(a)Uj(3.3)

I∗j =
( ∫ ∞

0

hj(a) da

)
Uj(3.4)

Uj = (1 − I∗j )J∗
j(3.5)

J∗
j =

n∑
k=1

( ∫ ∞

0

βjk(a)hk(a) da

)
Uk,(3.6)
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where hj(a) is given by (2.7). Hence

(3.7) Uj = [1 − ηjUj ]
n∑

k=1

αjkUk

where

(3.8) ηj =
∫ ∞

0

hj(a) da, αjk =
∫ ∞

0

βjk(a)hk(a) da.

Equation (3.7) can be transformed into

(3.9) Uj = Fj(U) =
∑n

k=1 αjkUk

1 + ηj (
∑n

k=1 αjkUk)
.

Thus, the endemic equilibrium is a fixed point of F given by U = F (U),
where U = (U1, . . . , Un), F = (F1, . . . , Fn). We use a fixed point
theorem mentioned in the Appendix to prove the following theorem.

Theorem 3.1. Let αjk =
∫ ∞
0

βjk(a)hk(a) da and assume that the
conditions of Section 2 are satisfied, then

(a) If the spectral radius ρ([αjk]) ≤ 1, then x∗
j (a) = 0, I∗j = 0 is the

unique nonnegative equilibrium of the epidemic model (2.1) (2.5).

(b) If ρ([αjk]) > 1, then there exists a unique positive endemic
equilibrium solution of (2.1) (2.5). Moreover, 0 < I∗j < 1 for j =
1, . . . , n.

Proof. (a) If ρ[αjk] ≤ 1, by Theorem in the Appendix, U =
(0, 0, . . . , 0) is the only nonnegative solution of (3.9); hence from (3.3)
and (3.4), x∗

j = 0, I∗j = 0 is the unique nonnegative equilibrium solution
of the epidemic model.

(b) If ρ[αjk] > 1, again Theorem in the Appendix implies that there
exists a unique positive solution of (3.9), i.e., Uj > 0, j = 1, . . . , n.
Moreover, ηjUj < 1, j = 1, . . . , n. Hence, from (3.3) and (3.4) there
exists a unique positive endemic equilibrium solution of the model. The
result 0 < I∗j < 1 follows from (3.4) and (3.5).
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4. A stability result on integral equations. To prove the local
asymptotic stability of the endemic equilibria we need a result on the
stability of integral equations. Consider the equation

(4.1) u + A ∗ u = f(u, v)

which is to be solved for u : [0,∞) → Rm. A is an m × m matrix of
functions continuous on [0,∞) called the integral kernel of (4.1) and∫ ∞
0

||A(t)|| dt < ∞. A ∗ u is the convolution

(A ∗ u)(t) =
∫ t

0

A(s)u(t − s) ds.

The forcing function f maps C([0,∞),Rm)×C([0,∞),Rp) into C([0,
∞),Rm) when v : [0,∞) → Rp is a given, continuous function. Assume

(4.2) f(0, 0) = 0.

Hence v = 0, u = 0 is an equilibrium of (4.1). Let ||v||t = sup{||v(s)|| :
0 ≤ s ≤ t}, where ||v(s)|| = sup{|vj(s)|, 1 ≤ j ≤ n}.

Definition 4.1. The zero solution of (4.1) is stable if, for any ε > 0
there exists δ > 0 such that for any continuous solution u of (4.1),
||v||∞ ≤ δ implies ||u||∞ ≤ ε.

Definition 4.2. The zero solution of (4.1) is locally asymptotically
stable if it is stable and if there exists δ > 0 such that ||v||∞ < δ and
v(t) → 0 as t → ∞ implies u(t) → 0 as t → ∞.

We make the following assumptions:

Assumption (1). det (E + Â(z)) �= 0 for z ∈ C and Re z ≥ 0 where
Â(t) =

∫ ∞
0

exp(−zt))A(t) dt is the Laplace transform of A and E is the
identity matrix.

Note: Usually the solution R of the matrix convolution equation

(4.3) R + A ∗ R = A = R + R ∗ A
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is called the resolvent kernel associated with A. Any solution of (4.1)
can be expressed as

(4.4) u = −R ∗ f(u, v) + f(u, v).

According to a result of Paley and Wiener, if
∫ ∞
0

||A(t)|| dt < ∞,
the previous assumption is a necessary and sufficient condition for the
existence of an integrable resolvent kernel R(t), [20].

Assumption (2). There exist ρ > 0 and functions gi : [0, ρ] →
[0,∞), i = 1, 2, such that

(4.5)
(a) gi(r) → 0 as r → 0 and gi is nondecreasing
(b) for any t > 0, ||u||t, ||v||∞ ≤ ρ implies

(4.6) |f(u, v)(t)| ≤ ||u||tg1(||u||t) + g2(||v||∞)

(c) limt→∞ ||f(u, v)(t)|| ≤ limt→∞ ||u(t)||g1(limt→∞ ||u(t)||)+
g2(limt→∞ ||v(t)||) if

(4.7) ||u||∞, ||v||∞ ≤ ρ.

The main idea in the proof of the next theorem was communicated
by Horst Thieme.

Theorem 4.2. Under the previous assumptions (0, 0) is a locally
asymptotically stable solution of (4.1).

Proof. First we prove the local stability of the equilibrium. Let
g = max(g1, g2). Then g : [0, ρ] → [0,∞), g(r) → 0 as r → 0 and g is
nondecreasing. Further, for any t > 0

(4.8) ||f(u, v)(t)|| ≤ ||u||tg(||u||t) + g(||v||∞)

if
||u||t, ||v||∞ ≤ ρ.
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Let v0 =
∫ ∞
0

||R(t)|| dt. Choose ε0 > 0, ε0 < ρ such that

(4.9) g(r) ≤ η if 0 ≤ r ≤ ε0

where
η(v0 + 1) < 1.

Now let ε > 0, ε < ε0 < ρ. Choose δ > 0 such that

(4.10) ||u||δ ≤ ε0 and g(r) <
1 − η(v0 + 1)

1 + v0
ε for |r| ≤ δ.

Assume that ||v||∞ ≤ δ. From (4.4)

||u||δ ≤ ||R ∗ f(u, v)||δ + ||f(u, v)||δ.

Using the definitions of the convolution and of v0:

||u||δ ≤ (v0 + 1)||f(u, v)||δ.

From (4.8) and the assumption that g is nondecreasing, we have

||f(u, v)||δ ≤ ||u||δg(||u||δ) + g(||v||∞).

It follows that

||u||δ ≤ (v0 + 1)||u||δg(||u||δ) + (v0 + 1)g(||v||∞).

From (4.9) and (4.10), we obtain

||u||δ ≤ (v0 + 1)η||u||δ + (v0 + 1)g(||v||∞),

therefore,

||u||δ ≤ (v0 + 1)g(||v||∞)
1 − (v0 + 1)η

< ε.

We have verified that for some δ > 0, ||v||∞ ≤ δ implies ||u||δ < ε.
Moreover, if ||u||t = ε for some t, say the first one, it follows by a similar
argument as above that ||u||t < ε which would be a contradiction.
Hence, ||u||t < ε for all t and, consequently, ||u||∞ ≤ ε. This proves
the local stability of (0, 0).
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Secondly, we prove the asymptotic stability of (0, 0). Using Fatou’s
Lemma, it follows from (4.4) that

lim
t→∞ ||u(t)|| ≤ (v0 + 1) lim

t→∞ ||f(u(t), v(t))||

and, from assumption (4.7),

lim
t→∞ ||u(t)|| ≤ (v0 + 1)[η lim

t→∞ ||u(t)|| + g( lim
t→∞ ||v(t)||)].

If v(t) → 0 as t → ∞, then limt→∞ ||u(t)|| ≤ (v0 +1)η limt→∞ ||u(t)||
and, since (v0 + 1)η < 1, we conclude u(t) → 0 as t → ∞. This proves
the asymptotic stability of (0, 0).

5. Local stability of the endemic equilibrium.

Definition 5.1. An equilibrium x∗
j (a) of model (2.1) (2.5) is called

locally stable if for any ε > 0 there exists δ > 0 such that if

(5.1)
∫ ∞

0

|xj(0, a) − x∗
j (a)| da ≤ δ

for j = 1, . . . , n, then

(5.2)
∫ ∞

0

|xj(t, a) − x∗
j (a)| da < ε.

In addition, if the last integral approaches 0 as t → ∞, we say that the
equilibrium is locally asymptotically stable.

Let us assume that there is an endemic equilibrium, hence ρ ≥ 1. To
find conditions for local asymptotic stability to hold, we translate the
equilibrium to the origin by letting

(5.3)

xj(t, a) = x∗
j (a) + yj(t, a)

Ij(t) = I∗j + uj(t)
Jj(t) = J∗

j + wj(t).
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Then

(∂t + ∂a)yj(t, a) = −[μj + γj(a)]yj(t, a)
(5.4)

yj(t, 0) = −uj(t)[J∗
j + wj(t)] + wj(t)(1 − I∗j )(5.5)

uj(t) =
∫ ∞

0

yj(t, a) da(5.6)

wj(t) =
n∑

k=1

∫ ∞

0

βjk(a)yk(t, a) da.(5.7)

Solving (5.4) along characteristics, we obtain

(5.8) yj(t, a) =

{
hj(a)zj(t − a) for t > a

hj(a)
hj(a−t)yj(0, a − t) for t < a

where hj(a) is given by (2.7) and

(5.9) zj(t) = yj(t, 0).

We now transform the problem (5.4) (5.7) into an integral equation
for zj(t) separating uj and wj into two parts which depend on zj(t) =
yj(t, 0) and on yj(0, a).

Thus,

(5.10) uj = hj ∗ zj +
◦
uj

with

(5.11)
◦
uj(t) =

∫ ∞

0

hj(a + t)
hj(a)

yj(0, a) da

where f ∗ g =
∫ t

0
f(t − s)g(s) ds is the convolution of f and g.

Furthermore,

(5.12) wj =
n∑

k=1

(βjkhk) ∗ zk +
◦
wj
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with

(5.13)
◦
wj(t) =

n∑
k=1

∫ ∞

0

βjk(a + t)
hk(a + t)

hk(a)
yk(0, a) da.

Substituting into (5.5), we obtain the integral equation

(5.14)

zj = −(hj ∗ zj +
◦
uj)

(
J∗

j +
n∑

k=1

bjk ∗ zk +
◦
wj

)

+
( n∑

k=1

bjk ∗ zk +
◦
wj

)
(1 − I∗j )

with

(5.15) bjk = βjkhk.

Equation (5.14) can be written as

(5.16) z + A ∗ z = f(z,
◦
u,

◦
w)

where z = [z1, . . . , zn]T ,
◦
u = [

◦
u1, . . . ,

◦
un]T ,

◦
w = [

◦
w1, . . . ,

◦
wn]T ,

A(s) = [ajk(s)] with

(5.17) ajk(s) = J∗
j hj(s)δjk − (1 − I∗j )bjk(s)

and

(5.18)
fj(z,

◦
u,

◦
w) = −(hj ∗ zj +

◦
uj)

( n∑
k=1

bjk ∗ zj +
◦
wj

)

− J∗
j

◦
uj +

◦
wj(1 − I∗j ).

The next lemma states the local stability of the 0 solution of the
integral equation (5.14) with unknown function u = z and with function
v = (

◦
u,

◦
w).
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Lemma 4.2. Assume that A given by (5.17) has an integrable
resolvent kernel; then for every ε > 0 there exists δ > 0 such that
if

|◦uj(t)| + | ◦wj(t)| ≤ δ for j = 1, . . . , n, t ≥ 0 and

|◦uj(t)| + | ◦wj(t)| → 0 for t → ∞
then |zj(t)| ≤ ε for t ≥ 0 and zj(t) → 0 for t → ∞, j = 1, . . . , n.

Proof. To apply Theorem 4.2 to equation (5.16), let u = z and
v = (

◦
u,

◦
w). Note that

∫ ∞
0

||A(t)|| dt < ∞ since each entry of A is
integrable, hence by Paley and Wiener’s result, det (E + Â(z)) �= 0 for
z ∈ C and Re z ≥ 0. We need only to verify (4.5), (4.6) and (4.7). We
can see that

|fj(z,
◦
u,

◦
w)(t)| ≤

(
||zj ||t

∫ ∞

0

hj(s) ds + |◦uj(t)|
)

·
(
||zj ||t

n∑
k=1

∫ ∞

0

bjk(s) ds + | ◦wj(t)|
)

+ J∗
j |

◦
uj(t)| + (1 − I∗j )| ◦wj(t)|.

Let

M1 = max
{ ∫ ∞

0

hj(s) ds

}
, M2 = max

{ n∑
k=1

∫ ∞

0

bjk(s) ds

}

and
J∗ = max{J∗

j , 1 − I∗j } for 1 ≤ j ≤ n.

Since ||zj ||t = ||uj ||t ≤ ||u||t and |◦uj(t)|, | ◦wj(t)| ≤ ||v||∞, we have

|fj(u, v)(t)| ≤ (M1||u||t + ||v||∞)(M2||u||t + ||v||∞) + J∗||v||∞.

Hence, for ||u||t, ||v||∞ ≤ ρ,

|fj(u, v)(t)| ≤ ||u||tg1(||u||t) + g2(||v||∞)

where

g(r) = M1M2r, g2(r) = [(M1 + M2 + 1)ρ + J∗]r.
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This shows that conditions (4.5) and (4.6) hold.

Similarly, from (5.18)

|fj(u, v)(t)| ≤
( ∫ ∞

0

hj(s)|zj(t − s)| ds + |◦u(t)|
)

·
( n∑

k=1

∫ ∞

0

bjk(s)|zj(t − s)| ds + | ◦wj(t)|
)

+ J∗
j |

◦
uj(t)| + (1 − I∗j )| ◦wj(t)|.

For simplicity, let z̄j denote limt→∞ |zj(t)|. Note that

z̄j ≤ lim
t→∞ ||u||t = ū, lim

t→∞ |◦u(t)| ≤ lim
t→∞ ||v(t)|| = v̄ and

lim
t→∞ | ◦w(t)| ≤ lim

t→∞ ||v(t)|| = v̄.

Hence, applying Fatou’s Lemma,

lim
t→∞ |fj(u, v)(t)| ≤

(
z̄j

∫ ∞

0

hj(s) ds+v̄

)(
z̄j

( n∑
k=1

∫ ∞

0

bjk(s) ds

)
+v̄

)

+ J∗
j v̄ + (1 − I∗j )v̄,

hence,
lim

t→∞ |fj(u, v)(t)| ≤ (M1ū + v̄)(M2ū + v̄) + J∗v̄;

therefore,
lim

t→∞ ||fj(u, v)(t)|| ≤ ūg1(ū) + g2(v̄),

hence condition (4.7) holds.

To finish the proof, we remark that we now can apply Theorem 4.2
since |◦uj(t)| + | ◦wj(t)| ≤ δ for every j implies ||(◦u,

◦
w)||∞ = ||v||∞ ≤ δ

and |◦uj(t)| + | ◦wj(t)| → 0 as t → ∞ implies v(t) → 0 as t → ∞.

Lemma 5.3.

(a) |◦uj(t)| + | ◦wj(t)| ≤ const
(∑n

k=1

∫ ∞
0

|yk(0, a)| da
)

(b) |◦uj(t)|+ | ◦wj(t)| → 0 as t → ∞ if
∫ ∞
0

|yk(0, a)| da < ∞ for all k.
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Proof. Result (a) follows from the definitions of
◦
uj(t) and

◦
wj(t),

the boundedness of βjk(a) and hj(a + t)/hj(a) ≤ 1. Result (b) is a
consequence of the definitions and hj(a+ t)/hj(a) → 0 as t → ∞.

As we already remarked in the note after assumption (1), det (E +
Â(z)) �= 0 for z ∈ C, Re z ≥ 0 is equivalent to the existence of an
integrable resolvent kernel R(t).

The next theorem whose proof is in [16] gives a sufficient condition
for the previous property to hold.

Theorem 5.4. Consider an integral kernel A(s) = [ajk(s)] with

ajk(s) = δjkgj(s) − fjk(s)

where

i) gj, fjk are nonnegative integrable functions,

ii) (f̂jk(0)) is a nonnegative irreducible matrix with eigenvalue 1 and
a corresponding positive eigenvector U > 0.

Then
det (E + Â(z)) �= 0 for z ∈ C, Re z ≥ 0

provided Re ĝj(z) ≥ 0 for all pure imaginary z ∈ C, j = 1, . . . , n.

In our case gj(z) = J∗
j hj(s) and fjk(s) = (1 − I∗j )bjk(s). We can see

that assumption i) in this theorem is clearly satisfied and assumption
ii) follows if we note that the conclusion of Theorem 3.1 (b) says that
equation (3.7), which is equivalent to

Uj = (1 − I∗j )
n∑

k=1

̂βjkh(0)Vk

has a positive vector solution U > 0.

The condition Re ĝj(z) ≥ 0 for pure imaginary z is equivalent to

Re
∫ ∞

0

exp(−μja −
∫ a

0

γj(s) ds) exp(−za) da ≥ 0 for z = ir, r ∈ R

or to

(5.19)
∫ ∞

0

exp(−μja −
∫ a

0

γj(s) ds) cos ra da ≥ 0 for r ∈ R.
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This condition is satisfied if the exponential appearing in the inte-
grand is a convex function since, in general, if we assume that f(a) is
any integrable nonincreasing convex positive function, by partitioning
the interval [0,∞) at the points ak = kπ/r, k = 0, 1, . . . , we can write

∫ ∞

0

f(a) cos ra da =
∞∑

k=0

(−1)kbk

where b0 ≥ 0 and 0 ≤ bk+1 ≤ bk, k = 0, 1, 2, . . . .

We can see that condition (5.19) holds if

a) γj(a) is constant or

b) γ′
j(a) ≤ (μ+γj(a))2 for a ≥ 0 in case γj(a) is absolutely continuous

on [0, aj ].

Note that d/dt(1/γj(a)) ≥ 0 implies this last inequality, hence the
condition is satisfied if the mean periods of infectivity are nondecreasing
functions of the age. If condition (5.19) holds, all conditions of Theorem
5.4 are met and we can conclude that det (E + Â(z)) �= 0 and A has an
integrable resolvent kernel.

Now we can state the following

Theorem 5.5. If
∫ ∞
0

exp(−μja − ∫ a

0
γj(s) ds) cos ra da ≥ 0 for

r ∈ R, the endemic equilibrium of the epidemic model (2.1) (2.5) is
locally asymptotically stable.

Proof. By Lemma 5.3(b), |◦uj(t) + | ◦wj(t)| → 0, for all j. Hence, by
Lemma 5.2 given ε > 0, we can find δ1 > 0 such that if |◦uj(t)| +
| ◦wj(t)| < δ1 for all j, then |zj(t)| < ε/(2M1) where, as before,
M1 = maxj

{∫ ∞
0

hj(a) da
}
, and zj(t) → 0 as t → ∞. Let δ =

min{δ1/n × C, ε/2} where C is the constant in Lemma 5.3 (a). If∫ ∞
0

|yj(0, a)| da≤δ for all j, then by Lemma 5.3 (a), |◦uj(t)|+| ◦wj(t)|<δ1.



526 C. ESPINA-VALENCIA

Moreover,
(5.20) ∫ ∞

0

|yj(t, a)| da =
∫ t

0

|yj(t, a)| da +
∫ ∞

t

|yj(t, a)| da∫ ∞

0

|yj(t, a)| da =
∫ t

0

hj(a)|zj(t − a)| da +
∫ ∞

0

hj(t + a)
hj(a)

|yj(0, a)| da∫ ∞

0

|yj(t, a)| da <
ε

2M1

∫ ∞

0

hj(a) da +
∫ ∞

0

|yj(0, a)| da

in view of (5.8) and hj(a + t)/hj(a) < 1.

Therefore, if
∫ ∞
0

|yj(0, a)| ≤ δ, then by (5.20),
∫ ∞
0

|yj(t, a)| da <
ε/2 + ε/2 = ε. Since yj(t, a) = xj(t, a) − x∗

j (a), we have proved that
the endemic equilibrium is stable.

To show that it is asymptotically stable, let ε1 > 0 be given. By
Lemma 5.2 let δ be such that if

∫ ∞
0

|yj(0, a)| da ≤ δ for all j, then
|zj(t)| < ε1 and limt→∞ |zj(t)| = 0. Given ε > 0, let τ ≥ 0 such that
for all j

(5.21) |zj(t)| <
ε

3M1
for t ≥ τ

and

(5.22)
∫ ∞

0

|hj(u + T )| du <
ε

3ε1
.

Choose τ1 ≥ 2τ so that

(5.23)
∫ ∞

t

|yj(t, a)| da < ε/3 for t ≥ τ1.

Now

(5.24)

∫ ∞

0

|yj(t, a)| da =
∫ τ

0

|yj(t, a)| da +
∫ t

τ

|yj(t, a)| da

+
∫ ∞

t

|yj(t, a)| da.

Hence, if t ≥ τ1, then t ≥ 2τ and, by (5.21),
(5.25)∫ τ

0

|yj(t, a)| da =
∫ τ

0

hj(a)|zj(t − a)| da <
ε

3M1

∫ τ

0

hj(a) da ≤ ε

3
.
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Also by (5.22),
(5.26)∫ t

τ

|yj(t, a)| da =
∫ t

τ

hj(a)|zj(t − a)| da < ε1

∫ t

τ

hj(a) da

= ε1

∫ t−τ

0

hj(u + τ ) du ≤ ε1

∫ ∞

0

hj(u + τ ) <
ε

3
.

Hence, using (5.23) (5.26), if t ≥ τ1,∫ ∞

0

|yj(t, a)| da <
ε

3
+

ε

3
+

ε

3
= ε.

Therefore,

lim
t→∞

∫ ∞

0

|yj(t, a)| da = 0.

6. Global stability of the disease-free equilibrium. For the rest
of this section we assume that the condition ρ ≤ 1 for the existence of
a unique (disease-free) equilibrium holds (Theorem 3.1). In the next
theorem we prove the global stability of such equilibrium.

Theorem 6.1. If ρ < 1 then for j = 1, . . . , n, xj(t, a) → 0 and
Ij(t) → 0 as t → ∞. Hence, under the threshold, the disease-free
equilibrium is globally stable.

Proof. Consider the model (2.1) (2.5). Solving along characteristics
we obtain

(6.1) xj(t, a) =

{
hj(a)xj(t − a, 0) for t > a

hj(a)
hj(a−t)fj(a − t) for t < a

where fj(a) def= xj(0, a) and hj(a) is given in (2.7). Using definition
(2.2) of Jj(t) and relation (6.1), we can write

(6.2)

Jj(t) =
n∑

k=1

∫ t

0

βjk(t − s)hk(t − s)xk(s, 0) ds

+
n∑

k=1

∫ ∞

0

hj(t + s)
hj(s)

βjk(t + s)fj(s) ds.
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Notice that, by (2.5),

(6.3) 0 ≤ xj(t, 0) ≤ Jj(t).

Since the βjk(a) are bounded for a ≥ 0 and limt→∞ hj(t) = 0, then
by taking the upper limit in (6.3), we obtain, using Fatou’s Lemma,

(6.4) lim
t→∞xj(t, 0) ≤

n∑
k=1

lim
t→∞

∫ t

0

βjk(t − s)hk(t − s)xk(s, 0) ds.

Denote
lim

t→∞ xj(t, 0) = x̄j

hence

x̄j ≤
n∑

k=1

lim
t→∞

( ∫ t

0

βjk(t − s)hk(t − s) ds

)
x̄k.

Since, for any measurable function F (t)
∫ t

0
F (t− s) ds =

∫ t

0
F (s) ds, we

obtain

(6.5) x̄j ≤
n∑

k=1

( ∫ ∞

0

βjk(s)hk(s) ds

)
x̄k.

We can write (6.5) in vector form

(6.6) x̄ ≤ Ax̄

where x̄ = [x̄1, . . . , x̄n]T and A = [αjk], with αjk =
∫ ∞
0

βjk(s)hk(s) ds.
Since A is a nonnegative irreducible matrix, Perron-Frobenius theory
implies ρ is an eigenvalue with corresponding eigenvector y > 0. Thus,
for all j,

(6.7) ρyj =
n∑

k=1

αjkyk, yj > 0.

Assume x̄ �= 0, then we can choose τ > 0 such that yk ≥ τ x̄k for all k
and yj = τxj for some j. Then

(6.8) ρyj ≥
n∑

k=1

αjkτ x̄k ≥ τ x̄j = yj .
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Since ρ < 1 and yj > 0, we obtain a contradiction, hence x̄ = 0.
Therefore,

(6.9) lim
t→∞ xj(t, 0) = x̄j = 0.

Since xj(t, 0) ≥ 0, we have limt→∞ xj(t, 0) = 0. Therefore, from (6.1),

(6.10) lim
t→∞xj(t, a) = 0.

Now, using Fatou’s Lemma in (2.1),

0 ≤ lim
t→∞ Ij(t) ≤

∫ ∞

0

lim
t→∞ xj(t, a) da.

Therefore, for all j,

(6.11) lim
t→∞ Ij(t) = 0.

7. Summary and remarks. We have proved the following
assertions about class-age-dependent models with subpopulations and
without a removed class.

a) Under the threshold (ρ ≤ 1), the unique equilibrium is the disease-
free equilibrium which is globally stable when ρ < 1.

b) Above the threshold (ρ > 1) there is an endemic equilibrium
which, under reasonable conditions (5.19), is locally asymptotically
stable.

Previous results for SIS models [18, 6] suggest that conditions (5.19)
are sufficient but not necessary and that in case b) the endemic
equilibrium is also globally stable.

Appendix

We assume the usual order on Rn
+: if x, y ∈ Rn

+, x ≤ y makes
sense componentwise. A function F : Rn

+ → Rn
+ is called monotone

nondecreasing if x ≤ y implies F (x) ≤ F (y).
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Definition. A function F : Rn
+ → Rn

+ is called strictly sublinear if
for fixed x ∈ intRn

+ and for a fixed r ∈ (0, 1) there exists ε > 0 such
that

F (rx) ≥ (1 + ε)rF (x).

For a proof of the following theorem, see [13, 17].

Theorem. Assume

1) F : Rn
+ → Rn

+ is a continuous, monotone nondecreasing, strictly
sublinear and bounded function.

2) F (0) = 0 and F ′(0) is irreducible.

Then

a) F (x) does not have a nontrivial fixed point on the boundary of
Rn

+.

b) F (x) has a fixed point p > 0 if and only if ρ(F ′(0)) > 1, where ρ
is the spectral radius of F ′(0). If a positive fixed point exists, then it is
unique.
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