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POSITIVE SOLUTIONS OF INTEGRO-DIFFERENTIAL
EQUATIONS WITH UNBOUNDED DELAY

I. GYÖRI AND G. LADAS

ABSTRACT. We obtain necessary and sufficient conditions
for the existence of a solution of the linear integro-differential
equation

ẋ(t) + bx(t) +

∫ t

−∞
c(t − s)x(s) ds = 0, t ≥ 0

which is positive for t > 0. We also obtain conditions for
the oscillation of all solutions of the Volterra-type integro-
differential equation of population dynamics

Ṅ(t) = N(t)

[
a − bN(t) −

∫ t

−∞
c(t − s)N(s) ds

]
, t ≥ 0.

1. Introduction. Our aim in this paper is to obtain necessary
and sufficient conditions for the existence of a solution of the linear
integro-differential equation

(1.1) ẋ(t) + bx(t) +
∫ t

−∞
c(t − s)x(s) ds = 0, t ≥ 0

which is positive for t > 0. We also obtain conditions for the oscillation
of all solutions of the Volterra-type integro-differential equation of
population dynamics

(1.2) Ṅ(t) = N(t)
[
a − bN(t) −

∫ t

−∞
c(t − s)N(s) ds

]
, t ≥ 0.

The literature concerning results of the above type is scarce. For
some related results, see [3] and [4] and the references cited therein.
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2. Positive solutions of integro-differential equations with
unbounded delay. Consider the linear integro-differential equation
with unbounded delay

(2.1) ẋ(t) + bx(t) +
∫ t

−∞
c(t − s)x(s) ds = 0, t ≥ 0

where

(2.2) b ∈ R, c ∈ C[[0,∞), R+] and 0 <

∫ ∞

0

c(s)e−γ0s ds < ∞

where γ0 is some real number.

Let B+ denote the space of initial functions B+={φ∈C[(−∞, 0],R+] :∫ 0

−∞ c(t − s)φ(s) ds is a continuous function on [0,∞)}. Note that the
set B+ contains the function

φ(t) = Meγ0t for −∞ < t ≤ 0 with M ∈ (0,∞).

With Equation (2.1) we associate an initial function of the form

(2.3) x(t) = φ(t) for −∞ < t ≤ 0 with φ ∈ B+.

When (2.2) holds, then the initial value problem (2.1) and (2.3) has a
unique solution on (−∞,∞), see Burton [1].

If we look for a positive solution of Equation (2.1) of the form
x(t) = eλt, we see that λ is a root of the characteristic equation

(2.4) λ + b +
∫ ∞

0

c(s)e−λs ds = 0.

The main result in this section is the following necessary and sufficient
condition for the existence of a solution of Equation (2.1) which is
positive for t > 0.

Theorem 2.1. Assume that (2.2) holds. Then the following state-
ments are equivalent.

(a) There is no φ ∈ B+ such that the initial value problem (2.1) and
(2.3) has a solution which is positive for t > 0.
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(b) The characteristic equation (2.4) has no real roots.

Proof. (a) ⇒ (b). Otherwise λ0 is a root of (2.4). Then x(t) = eλ0t is
a positive solution of Equation (2.1) for −∞ < t < ∞. Moreover, the
initial function φ for this solution is φ(t) = eλ0t for −∞ < t ≤ 0 and
clearly φ ∈ B+.

(b) ⇒ (a). Assume, for the sake of contradiction, that for some
φ ∈ B+ the solution x(t) of (2.1) and (2.3) is positive for t > 0. Then
from Equation (2.1) we see that

ẋ(t) + bx(t) ≤ 0, t ≥ 0

and so

(2.5) x(t) ≤ x(0)ebt, t ≥ 0.

Therefore, the Laplace transform of x(t),

X(s) =
∫ ∞

0

e−stx(t) dt,

exists for all Re s > b. From (2.2) and (2.5), it follows that the Laplace
transform of the integral term in (2.1) exists for all Re s > b + γ0.
Moreover,

∫ ∞

0

e−st

[ ∫ t

−∞
c(t − u)x(u) du

]
dt = G(s) + C(s)X(s)

for all Re s > b + γ0 where

G(s) =
∫ ∞

0

e−st

[ ∫ 0

−∞
c(t − u)φ(u) du

]
dt

and
C(s) =

∫ ∞

0

e−stc(t) dt.

Hence, by taking Laplace transforms on both sides of (2.1) we obtain

(2.6) [s + b + C(s)]X(s) = x(0) − G(s) for Re s > b + γ0.
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Let us denote by σx, σc and σg the abscissae of convergence of the
Laplace transforms X(x), C(s) and G(s) of the functions x(t), c(t) and

g(t) =
∫ 0

−∞
c(t − u)x(u) du,

respectively. Then X(s), C(s) and G(s) are analytic functions for

Re s > σx, Re s > σc and Re s > σg,

respectively. From the hypothesis that the characteristic equation (2.4)
has no real roots, it follows that

s + b + C(s) > 0 for s ∈ R

and therefore the function

x(0) − G(s)
s + b + C(s)

is analytic for all Re s > max{σc, σg}. Hence, we can extend (2.6) to
hold for all Re s > max{σx, σc, σg}. Then

(2.7) X(s) =
x(0) − G(s)
s + b + C(s)

for all Re s > max{σx, σc, σg}.
Our strategy is to show that (2.7) is valid for all Re s > −∞ and then

to prove that this leads to a contradiction.

Set
σ0 = max{σc, σg}.

First, we claim that

(2.8) σx ≤ σ0.

Otherwise (see Widder [5]), the point s = σx is a singularity of X(s).
Then from (2.7) we see that

∞ = lim
s→σx−

X(s) =
x(0) − G(σx)

σx + b + C(σx)
< ∞,
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which is a contradiction. Thus, (2.8) holds and so (2.7) holds for all
Re s > σ0. Now we claim that

(2.9) σc = σg = −∞.

Otherwise, one of the following three cases holds:

(i) −∞ ≤ σg < σc < ∞;

(ii) −∞ ≤ σc < σg < ∞; or

(iii) −∞ < σc = σg < ∞.

We will prove that (i) leads to a contradiction. A similar argument
may be used to show that (ii) and (iii) also lead to contradictions. It
follows from (2.8) and (i) that σx ≤ σ0 = σc. Then (see Widder [5]),
X(σc−) = ∞ and (2.7) yields the contradiction

0 < X(σc−) = lim
s→σc−

x(0) − G(s)
s + b + C(s)

= 0.

From (2.8) and (2.9) we see that (2.7) is valid for all Re s > −∞. As
X(s) > 0 for all s ∈ (−∞,∞), (2.7) yields that

(2.10) x(0) ≥ x(0) − G(s) > s + b + C(s) for s ∈ (−∞,∞).

Now for s ≤ 0, e−st ≥ (1/2)s2t2 and so

s + b + C(s) ≥ s + b + (1/2)s2

∫ ∞

0

t2c(t) dt → ∞ as s → −∞.

This contradicts (2.10) and the proof of the theorem is complete.

Remark 2.1. It is an elementary observation that Theorem 2.1
remains true if the initial condition (2.3) is replaced by the (possibly
discontinuous) initial condition

(2.3)′ x(t) = φ(t) for −∞ < t < 0 and x(0) = x0

where φ ∈ B+ and x0 ∈ R.
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The above remark enables us to obtain the following necessary con-
dition for the existence of a positive solution for the integro-differential
equation

(2.11) ẏ(t) + by(t) +
∫ t

0

c(t − s)y(s) ds = 0, t ≥ 0.

See also [4].

Corollary 2.1. Assume that (2.2) holds and that the equation (2.11)
has a positive solution on [0,∞). Then Equation (2.4) has a real root.

Proof. Let y(t) be a positive solution of Equation (2.11) on [0,∞).
Then the function

x(t) =
{

y(t), t > 0
0, t ≤ 0

is a solution of (2.1) with initial function φ(t) = 0 for −∞ < t ≤ 0.
On the other hand φ ∈ B+ and x(t) > 0 for 0 < t < ∞. Therefore,
by Theorem 2.1, Equation (2.4) has a real root. The proof is complete.

3. Oscillation in Volterra’s integro-differential equation.
Consider the Volterra-type integro-differential equation of population
dynamics

(3.1) Ṅ(t) = N(t)
[
a − bN(t) −

∫ t

−∞
c(t − s)N(s) ds

]
, t ≥ 0

where

(3.2) a ∈ (0,∞), b ∈ [0,∞), c ∈ C[[0,∞),R+]

and

0 <

∫ ∞

0

c(s) ds < ∞.

This equation arises in models for the variation of the population of
a species where the death rate depends on not only the population at
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time t, but on the population at all previous times s ≤ t in a manner
distributed in the past by the delay kernel c(s) (see Cushing [2]).

Let B+ denote the space of initial functions B+ = {φ ∈ C[(−∞, 0],
(0,∞)] :

∫ 0

−∞ c(t − s)φ(s) ds is a continuous function on [0,∞)}.
By a solution of (3.1) on (−∞,∞) we mean a function N ∈

C[(−∞,∞),R] ∩ C1[[0,∞),R] which satisfies (3.1) for t ≥ 0 and such
that the function φ(t) = N(t) for t ≤ 0 is in B+.

Clearly, every solution of (3.1) is positive for all t. With Equation
(3.1) we associate an initial function of the form

(3.3) N(t) = φ(t) for t ≤ 0 where φ ∈ B+.

When (3.2) holds, the initial value problem (3.1) and (3.3) has a unique
solution N(t) on (−∞,∞) (see Burton [1]).

Observe that (3.1) has a unique positive equilibrium N∗ and that

N∗ =
a

b +
∫ ∞
0

c(s) ds
.

Let N(t) be the unique positive solution of the initial value problem
(3.1) and (3.3) and set N(t) = N∗ex(t) for − ∞ < t < ∞. Then
x(t) satisfies the initial value problem

(3.4) ẋ(t) + bN∗[ex(t) −1] + N∗
∫ t

−∞
c(t−s)[ex(s) −1] ds = 0, t ≥ 0

and

(3.5) x(t) = ln
φ(t)
N∗ , −∞ < t ≤ 0.

The linearized equation associated with Equation (3.4) is

(3.6) ẏ(t) + bN∗y(t) + N∗
∫ t

−∞
c(t − s)y(s) ds = 0, t ≥ 0.

If we look for a positive solution of (3.6) of the form

y(t) = eλt, −∞ < t < ∞
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we see that λ satisfies the characteristic equation of (3.6), namely,

(3.7) λ + bN∗ + N∗
∫ ∞

0

c(s)e−λs ds = 0.

In Theorem 2.1 we proved that if (3.7) has no real roots, then (3.6)
has no positive solutions on (−∞,∞). The next theorem shows that
the same result is true for (3.4). In this sense, the following result may
be thought of as being a linearized oscillation result for Volterra-type
integro-differential equations.

Theorem 3.1. Assume that (3.2) holds and that Equation (3.7) has
no real roots. Let N(t) be the unique solution of (3.1) and (3.3). Then
N(t) − N∗ has at least one zero in the interval (−∞,∞).

Proof. Assume, for the sake of contradiction, that N(t) − N∗ has no
zero in the interval (−∞,∞). We will assume that N(t) > N∗ for all
t. The case where N(t) < N∗ for all t is similar and will be omitted.
Set

N(t) = N∗ex(t) for −∞ < t < ∞.

Then x(t) > 0 for all t and x(t) satisfies (3.4).

Since ex − 1 ≥ x for x ≥ 0, it follows from (3.4) that

ẋ(t) + bN∗x(t) + N∗
∫ t

−∞
c(t − s)x(s) ds ≤ 0, t ≥ 0

and

bN∗ + N∗
∫ t

−∞
c(t − s)

x(s)
x(max{s, 0})

x(max{s, 0})
x(t)

ds ≤ − ẋ(t)
x(t)

for t ≥ 0. Set α(t) = −ẋ(t)/x(t) for t ≥ 0. Then α(t) > 0 for t ≥ 0 and
for all t1, t2 ∈ [0,∞),
(3.8)

α(t) ≥ bN∗ + N∗
∫ t

−∞
c(t − s)

x(s)
x(max{s, 0})e

∫ t

max{s,0} α(u) du
ds, t ≥ 0.

Define the sequence of functions {βn(t)} for n ≥ 0 as follows:

β0(t) = 0 for t ≥ 0
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(3.9)

βn+1(t) = bN∗ + N∗
∫ t

−∞
c(t − s)

x(s)
x(max{s, 0})e

∫ t

max{s,0} βn(u) du

for t ≥ 0 and n ≥ 0.

Then it can be easily seen that the functions βn(t) are well defined and
continuous on [0,∞) for all n ≥ 0. On the other hand, 0 ≤ β0(t) ≤ α(t)
for 0 ≤ t < ∞ and, clearly,

0 ≤ β0(t) ≤ β1(t) ≤ · · · ≤ βn(t) ≤ · · · ≤ α(t), 0 ≤ t < ∞.

Thus, the limit β(t) = limn→+∞ βn(t) exists and is an integrable
function on any compact subinterval of [0,∞). Moreover, for t ≥ s ≥ 0,

0 ≤ β(t) ≤ α(t) and e

∫ t

max{0,s} β(u) du
= lim

n→+∞ e

∫ t

max{s,0} βn(u) du
.

Combining these facts, we see that β(t) satisfies the equation

β(t) = bN∗ + N∗
∫ t

−∞
c(t − s)

x(s)
x(max{s, 0})e

∫ t

max{s,0} β(u) du
, t ≥ 0.

Set

y(t) =

{
x(0)e

∫ t

0
β(u) du

, 0 ≤ t < ∞,
x(t), −∞ < t < 0.

Then y(t) is a positive and continuous function on (−∞,∞) and is
continuously differentiable on [0,∞). Moreover,

y(s)
y(max{s, 0}) =

x(s)
x(max{s, 0}) , s ≥ 0

and

β(t) =
−ẏ(t)
y(t)

and e

∫ t

max{s,0} β(u) du
=

y(max{s, 0})
y(t)

, t ≥ s ≥ 0.

Thus, y(t) satisfies

−ẏ(t)
y(t)

= bN∗ + N∗
∫ t

−∞
c(t − s)

x(s)
x(max{0, s})

y(max{s, 0})
y(t)

ds,
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or, equivalently,

(3.10) ẏ(t) = −bN∗y(t) −
∫ t

−∞
c(t − s)y(s) ds for t ≥ 0,

where we used the fact that x(s) = y(s) for all s ≤ 0 and x(s) =
x(max{0, s}) for all s ≥ 0. Since (3.10) has a solution y(t) which is
positive on (−∞,∞), it follows from Theorem 2.1 that its characteristic
equation (3.7) has a real root. This is a contradiction and the proof of
the theorem is complete.

The next result is a partial converse of Theorem 3.1.

Theorem 3.2. Assume that (3.2) holds and that there exists δ0 > 0
such that the equation

(3.11) λ + (1 + δ0)bN∗ + (1 + δ0)N∗
∫ ∞

0

c(t)eλt dt = 0

has a real root. Then Equation (3.1) has a positive solution N(t) such
that

(3.12) N(t) > N∗ for −∞ < t < ∞.

Proof. Since (3.11) has a real root and (3.2) is satisfied, it follows
that (3.16) has a negative root. Moreover, there exists δ ∈ (0, δ0] such
that the equation

(3.13) λ + (1 + δ)bN∗ + (1 + δ)N∗
∫ ∞

0

c(t)eλt dt = 0

has exactly two negative real roots −α1 and −α2 such that 0 < α1 < α2.
By virtue of (3.13) it can be easily seen that
(3.14)

αi = (1 + δ)bN∗ + (1 + δ)N∗
∫ t

−∞
c(t− s)

e−αis

e−αi max{s,0} e

∫ t

max{s,0} αi du
ds



INTEGRO-DIFFERENTIAL EQUATIONS 387

for all t ≥ 0 and i = 1, 2. Define two sequences {βn}∞n=0 and {xn}∞n=0

as follows:

β0(t) = α1 for t ≥ 0,

x0(t) =

{
εe

−
∫ t

0
β0(u) du for t ≥ 0

ε for t < 0,

βn+1(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

bN∗ exn(t)−1
xn(t) + N∗ ∫ t

−∞ c(t − s)

· exn(s)−1
xn(max{s,0})e

∫ t

max{s,0} βn(u) du
ds for t ≥ 0

α1 for t < 0

and

xn+1(t) =

{
εe

−
∫ t

0
βn+1(u) du

, for t ≥ 0,
ε, for t < 0,

for all n ≥ 0, where ε ∈ (0, 1) is such that

(3.15) (eε − 1)/ε ≤ 1 + δ.

Note that βn(t) is well defined and a locally integrable function on
(−∞,∞) for all n ≥ 0. We claim that for all n ≥ 0,

(3.16) 0 ≤ βn(t) ≤ α2 for t ≥ 0.

The proof of the claim is by induction. First, (3.16) is satisfied for
n = 0. Assume that (3.16) is satisfied for an index n ≥ 1. Then, by
definition,

(3.17) 0 < εe−α2t ≤ xn(t) ≤ ε for t ≥ 0

and
xn(t) = ε for t < 0.

Thus, (3.15) yields

exn(u) − 1
xn(u)

≤ eε − 1
ε

≤ δ + 1 for u ≥ 0.
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Hence,

βn+1(t) ≤

⎧⎪⎪⎨
⎪⎪⎩

bN∗(1 + δ) + N∗(1 + δ)
∫ t

−∞ c(t − s)

· xn(s)
xn(max{2,0})e

∫ t

max{s,0} α2 du
ds, t ≥ 0,

α2, t < 0.

Since (xn(s))/(xn(max{s, 0})) = 1 for all s, the last inequality and
(3.5) yield (3.16) and hence the claim is proved.

We now show that the limit β(t) = limn→+∞ βn(t) exists for all
t ∈ (−∞,∞). By the definition of {βn(t)} we have
(3.18)

βn+1(t) = bN∗ exn(t) − 1
xn(t)

+ N∗
∫ t

0

c(t − s)
exn(s) − 1

xn(s)
e

∫ t

s
βn(u) du

ds

+ N∗ eε − 1
ε

∫ 0

−∞
c(t − s)e

∫ t

0
βn(u) du

ds

= bN∗ exn(t) − 1
xn(t)

+ N∗
∫ t

0

c(t − s)
exn(s) − 1

xn(s)
e
−

∫ t

s
βn(u) du

ds

+ N∗ eε − 1
ε

∫ ∞

0

c(u) due
−

∫ t

0
βn(u) du

for all t ≥ 0 and n ≥ 0. By virtue of (3.17), we see that for all n ≥ 1
and t ≥ 0,

∣∣∣∣exn(t) − 1
xn(t)

− exn−1(t) − 1
xn−1(t)

∣∣∣∣ ≤ a|xn(t) − xn−1(t)|

= a

∣∣∣∣e−
∫ t

0
βn−1(u) du

∣∣∣∣
≤ ab

∫ t

0

|βn(u) − βn−1(u)| du,

where a > 0 and b > 0 are some constants. Moreover, for all t ≥ s ≥ 0
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and n ≥ 1,∣∣∣∣exn(s) − 1
xn(s)

e

∫ t

s
βn(u) du − exn−1(s) − 1

xn−1(s)
e

∫ t

s
βn−1(u) du

∣∣∣∣
≤

∣∣∣∣exn(s) − 1
xn(s)

− exn−1(s) − 1
xn−1(s)

∣∣∣∣e
∫ t

s
βn(u) du

+
exn−1(s) − 1

xn−1(s)

∣∣∣∣e
∫ t

s
βn(u) du − e

∫ t

s
βn−1(u) du

∣∣∣∣
≤ c1e

α2(t−s)

∫ s

0

|xn(u) − xn−1(u)| du

+ c2e
α2(t−s)

∫ t

s

|βn(u) − βn−1(u)| du

≤ ceα2(t−s)

∫ t

0

|βn(u) − βn−1(u)| du

where c = c1 + c2 and c1, c2 ∈ (0,∞) are some constants. Combining
these inequalities with (3.18), we find that for all n ≥ 1 and t ≥ 0,

|βn+1(t) − βn(t)| ≤ c1

∫ t

0

|βn(u) − βn−1(u)| du

+ c2

∫ t

0

c(t − s)eα2(t−s)

∫ s

0

|βn(u) − βn−1(u)| du ds.

Let T > 0 be an arbitrary but fixed number. Then for some d > 0
and for all t ∈ [0, T ] we have

|βn+1(t) − βn(t)| ≤ d

∫ t

0

|βn(u) − βn−1(u)| du, n ≥ 1.

By induction this yields that there exists a constant m > 0 such that

|βn+1(t) − βn(t)| ≤ md
tn

n!
for all t ∈ [0, T ] and for all n ≥ 1.

This implies that {βn(t)}∞n=0 converges to a function p(t) uniformly on
[0, T ] and hence by the definition of {xn(t)}∞n=0, we have

x(t) = lim
n→+∞xn(t) =

{
εe

−
∫ t

0
β(u) du for t ≥ 0,

ε for t < 0,
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and this convergence is uniform on (−∞, T ]. Thus, β(t) and x(t) satisfy

β(t) =

⎧⎪⎪⎨
⎪⎪⎩

bN∗ ex(t)−1
x(t)

+N∗ ∫ t

−∞ c(t − s) ex(s)−1
x(max{s,0}) e

∫ t

max{s,0} β(u) du
ds for t≥0

α1 for t<0.

Since β(t) = −(ẋ(t)/x(t)) for t ≥ 0, we find that x(t) satisfies (3.1)
on [0, T ] with initial condition x(t) = ε for t ≤ 0. On the other hand,
(3.17) yields

0 < εe−α2t ≤ x(t) ≤ ε for t ∈ [0, T ].

Thus, Equation (3.1) has a solution x(t) which is positive on (−∞, T ].
As T is an arbitrary positive number, (3.1) has a solution which is
positive on (−∞,∞). The proof of the theorem is complete.
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