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WIENER-HOPF-HANKEL OPERATORS
FOR SOME WEDGE DIFFRACTION PROBLEMS

WITH MIXED BOUNDARY CONDITIONS

E. MEISTER, F.-O. SPECK, F.S. TEIXEIRA

ABSTRACT. An operator theoretic approach is used to
study problems of diffraction of time-harmonic electromag-
netic (or acoustic) waves by right angle wedges Ωw such that
one of the faces is perfectly conducting (soft) and the other
either nonconducting (hard) or imperfectly conducting (with
a finite impedance). The correspondent boundary value prob-
lems for the two dimensional Helmholtz equation are shown to
be well posed in the energy space H1(R2\Ωw). These prob-

lems are reduced to equivalent integral equations in L+
2 (R) of

Wiener-Hopf-Hankel type, which can be explicitly solved by
obtaining canonical generalized factorizations of certain non-
rational 2 × 2 matrix-valued symbols.

1. Introduction. In this paper we consider the diffraction prob-
lem of an electromagnetic (or acoustic) wave by a rectangular wedge
{(x, y, z) ∈ R3 : x < 0, y < 0} one of whose faces is perfectly conduct-
ing (or soft) and the other face has a prescribed impedance, either finite
or infinite. The wedge is supposed to be immersed in a homogeneous
and lossy medium, and we assume a time-harmonic incident field with
only one component, parallel to the edge x = y = 0, z ∈ R of the
wedge.

Splitting the total field into the incident and diffracted field, the above
assumptions, together with Maxwell’s equations, lead to the following
boundary value problem Pλ for the two dimensional Helmholtz equa-
tion in the exterior of Ωw = {(x, y) ∈ R2;x ≤ 0, y ≤ 0},

(Δ + k2
0)u(x, y) = 0, (x, y) ∈ Ω = R2\Ωw(1.1) (
∂

∂y
− λ

)
u(x, 0+) = f(x), x < 0(1.2)

u(0+, y) = g(y), y < 0(1.3)
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where Δ denotes the Laplacian, u is the scalar potential associated
to the diffracted field, f and g correspond with the incident field on
the boundary ∂Ω, k0 stands for the wave number which, as usual, we
assume to fulfill the conditions

(1.4) Re k0 > 0, Im k0 > 0,

and λ = k0/η, for η denoting the normalized impedance of the face
{(x, 0, z) ∈ R3 : x < 0} of the wedge. We also have either Reλ > 0
and Imλ > 0 or λ = 0 (for the hard/soft case).

For the particular case of an incident plane wave, this problem has
been studied by several authors (see [1, 6, 8, 14, 15, 21]), who had
proposed different function-theoretic methods to obtain its particular
solution in analytical form.

Here we shall present a new operator-theoretic approach to the prob-
lem, in a Sobolev space setting, following a method already developed
in [19, 20] for the perfectly conducting wedge. This yields the repre-
sentation of the resolvent as a continuous operator between the data
and resolution spaces and makes it possible to obtain more information
about a priori estimates, stability, regularity, asymptotic behavior and
well-posed settings for numerical methods.

In Section 2, after giving a rigorous formulation to the boundary
value problem (1.1) (1.3) in the energy norm space H1(Ω), for general
data in the trace spaces H±1/2(R−), we decompose the problem into an
auxiliary Sommerfeld half-plane type problem and a particular wedge
problem (with a homogeneous Dirichlet boundary condition instead of
(1.3)). The former can be explicitly solved by inverting an equivalent
scalar Wiener-Hopf operator (see [16, 19]). The latter (Problem P0

λ)
is seen to be equivalent, in the sense of Theorem 3.3, to a system
of pseudodifferential equations of combined Wiener-Hopf and Hankel
type. This system will be discussed separately in Sections 4 and 5 for
the cases λ = 0 and λ �= 0, respectively. It turns out that for the
mixed boundary value problem (λ = 0) the system can be reduced,
by symmetrization and lifting, to a scalar Hankel integral equation
in L+

2 (R) which is uniquely solvable, thus yielding the existence and
uniqueness of the solution to this boundary value problem, as well as
an explicit formula for it.

For the impedance case (λ �= 0), the system of pseudodifferential
equations is no more decoupled as before. However, by exploiting some
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particular symmetry properties, we reduce it to a scalar second-order
integral equation of Wiener-Hopf type (see (5.11)), where an undetected
compatibility condition becomes apparent. Then the incorporation of
this condition allows us to deduce a new scalar equation involving only
the sum of a Wiener-Hopf and a Hankel operator. The study of the
solvability properties of this last equation can be done by associating
with it a certain Riemann-Hilbert problem in [L+

2 (R)]2 with a 2 × 2
symbol of piecewise-continuous functions, which is seen to be of normal
type and has zero index [11]. But, unfortunately, it is a nonrational
symbol that does not fit into the classes for which factorization methods
are presently available (see [7] and [13]). Therefore, the invertibility
of the correspondent operator, and consequently the existence and
uniqueness of solution to the impedance boundary-value problem, needs
a more sophisticated approach and is planned to be treated in a
forthcoming publication.

2. Formulation of Pλ and reduction to a simpler boundary
value problem. In what follows, we will use the same notations and
basic results which were introduced already in [20, Section 2] and can
be consulted for details.

Let R± = {x ∈ R : ±x > 0} and Ω denote the unbounded Lipschitz
domain defined in (1.1), whose boundary we represent as the union of
the origin with the half-lines

(2.1) Γ1 = {(x, 0) : x < 0} and Γ2 = {(0, y) : y < 0},
which we will identify with R−.

Because of energy considerations, the natural space to formulate the
boundary value problem (1.1) (1.3) is the Sobolev space H1(Ω). Then,
by the trace theorems, we must take the Cauchy data in the trace spaces
H−1/2(Γ1) and H1/2(Γ2), which makes clear the following general
formulation to problem (1.1) (1.3) (see [3, 5, 12] for background):

Problem Pλ. Find a weak solution u ∈ H1(Ω) of the Helmholtz
equation

(2.2) (Δ + k2
0)u = 0 in Ω,

which satisfies the boundary conditions

(2.3)
(
∂

∂y
− λ

)
u∣∣

Γ1

= f
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and

(2.4) u∣∣
Γ2

= g

where u|Γi
represents the trace of u on Γi (i = 1, 2), ∂u/∂y|Γ1

denotes
the trace of ∂u/∂y on Γ1 and f ∈ H−1/2(R−), g ∈ H1/2(R−) are given
distributions.

In order to get a simpler problem which afterwards can be reduced
to certain pseudodifferential equations of Wiener-Hopf-Hankel type, it
is convenient to consider firstly an auxiliary Sommerfeld “half-plane”
type problem (corresponding to the “wedge face” Γ2). For this, let

R2
r = {(x, y) : x > 0}, R2

l = R2\R2
r

denote the right and left half-spaces, and let Γ′
2 = {(0, y) : y > 0}

represent the “complementary half-plane.”

Problem PS . Find a weak solution w ∈ L2(R2), with wl,r = w|
R2

l,r

∈
H1(R2

l,r), which is a solution to the Helmholtz equation

(2.5) (Δ + k2
0)w = 0 in R2

l,r

and satisfies the boundary conditions

(2.6) wl,r
0 = wl,r(x, ·)|x=∓0 = g in Γ2

and the transmission conditions

(2.7)
wl

0 − wr
0 = 0

wl
1 − wr

1 = 0
in Γ′

2

where wl,r
0 ∈ H1/2(R) and wl,r

1 ∈ H−1/2(R) are the traces on x = 0 of
wl,r and ∂wl,r/∂x, respectively, and g ∈ H1/2(R−) is given.

For this problem, there is a unique solution w, which is easily obtained
explicitly by inverting an equivalent scalar Wiener-Hopf operator (see,
e.g., [10, Section 2], [16 or 19]). Furthermore, it was shown in [20]
that this function w is such that w ∈ H1(R2) (which is a consequence
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of imposing the same boundary data g on both sides of the screen)
and it is also a weak solution of the Helmholtz equation in R2\Γ2 (due
to the transmission conditions (2.7)). Therefore, w|Ω is a function in
H1(Ω) which satisfies the Helmholtz equation in Ω, whose trace on the
boundary ∂Ω belongs to H1/2(∂Ω). This trace is given by

(2.8) w∣∣
∂Ω

=

{
w∣∣

Γ1

in Γ1

g in Γ2.

Then, by superposition and the use of the substitution

(2.9) v = u− w∣∣
Ω

we reduce Problem Pλ to the following one:

Problem P0
λ. Find a solution v ∈ H1(Ω) to the Helmholtz equation

(2.10) (Δ + k2
0)v = 0 in Ω

such that

(2.11)
(
∂

∂y
− λ

)
v∣∣

Γ1

= f ′

and

(2.12) v∣∣
Γ2

= 0

where f ′ ∈ H−1/2(R−) is a given distribution.

Indeed, just by linearity, we have

Proposition 2.1. Problems Pλ and P0
λ are equivalent in the follow-

ing sense:

(i) Given f ∈ H−1/2(R−) and g ∈ H1/2(R−) and letting w be
a solution to Problem PS, then u is a solution to Problem Pλ if and
only if the function v defined in (2.9) is a solution to Problem P0

λ with
f ′ = f − (∂w/∂y − λw)|Γ1

.
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(ii) Problem Pλ is uniquely solvable if and only if Problem P0
λ is

uniquely solvable.

The above proposition reduces our original Problem Pλ to Problem
P0

λ, on which we will concentrate our attention from now on.

The relevance of this reduction lies in the fact that in Problem P0
λ

we have a homogeneous Dirichlet boundary condition on Γ2. As it was
shown in [19, 20], this means that we can give a further equivalent
formulation to Problem Pλ as a mixed boundary-transmission problem
of the type of Sommerfelds’ half-plane problem, then allowing its
reduction to an equivalent Wiener-Hopf-Hankel system of equations
(see the next section).

Indeed, if there exists a solution v ∈ H1(Ω) of Problem P0
λ, its

restriction v− to the third quadrant Q3 of R2 is a function in H1(Q3)
with zero trace on Γ2. Then, its odd extension to R2

− = {(x, y) ∈ R2 :
y < 0}, given by

v−o (x, y) =
{
v−(x, y), (x, y) ∈ Q3

−v−(−x, y), (x, y) ∈ Q4

is a function in H1(R2
−) which furthermore satisfies the Helmholtz

equation in R2
− (see [20, Section 3]). Therefore, it is straightforward to

verify that Problem P0
λ has the following equivalent formulation, where

R2
+ stands for the upper half-space and Γ′

1 = {(x, 0) : x > 0}.

Reformulation of P0
λ. Given f ′ ∈ H−1/2(R−), look for a function

v ∈ L2(R2), such that v+ = v|
R2

+
∈ H1(R2

+) satisfies the Helmholtz

equation

(2.14) (Δ + k2
0)v

+ = 0 in R2
+

v−o = v|
R2

−
∈ H1(R2

−) is an odd function (with respect to x), which is

a solution of the Helmholtz equation

(2.15) (Δ + k2
0)v

−
0 = 0 in R2

−;

v+ satisfies the boundary condition

(2.16) v+
1 − λv+

0 = f ′ in Γ1
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where v+
1 = ∂v/∂y(·, y)|y=+0 ∈ H−1/2(R) and v+

0 = v(·, y)|y=+0 ∈
H1/2(R). Moreover, the following transmission conditions must be
verified:

v+
0 − v−o0 = 0(2.17)

in Γ′
1

v+
1 − v−o1 = 0(2.18)

where v−o0 = v−o (·, y)|y=−0 ∈ H1/2(R) and v−o1 = ∂v−o /∂y(·, y)|y=−0 ∈
H−1/2(R).

3. Equivalence to a system of integral equations. The
last formulation to Problem P0

λ makes it possible to use the so-called
representation formula for the solution of Sommerfeld half-plane type
problems in terms of the Cauchy data on y = 0. From [10, Theorem
2.1] we readily obtain

Theorem 3.1. A function v ∈ L2(R2) with v|
R2

±
∈ H1(R2

±) is a

solution to (2.14) (2.18) if and only if it is represented by

(3.1) v(x, y) = F−1
ξ→x{v̂+

0 (ξ)e−t(ξ)yh(y) + v̂−o0(ξ)e
t(ξ)yh(−y)}

for almost all (x, y) ∈ R2, where
(3.2)

v̂+
0 (ξ) = Fx→ξv

+
0 (x) =

∫
R

eixξv+
0 (x) dx, v̂−o0(ξ) = Fx→ξv

−
o0(x)

are the Fourier transforms of the data v+
0 , v

−
o0 in the trace space

H1/2(R), h represents the Heaviside unit-step function and

(3.3) t(ξ) = (ξ2 − k2
0)

1/2, ξ ∈ R

for the branch of the square root that tends to +∞ as ξ → ±∞, with
branch cuts Γ± = {z ∈ C : z = ±k0 ± iτ, τ > 0}.

It is convenient to introduce as a new ansatz the jump vector (see
(2.17), (2.18)):

(3.4)
(
ϕ−

0

ϕ−
1

)
=
(
v+
0 − v−o0

v+
1 − v−o1

)
∈ H−

1/2(R) ×H−
−1/2(R)
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where H−
±1/2(R) denote the closed subspaces of H±1/2(R) formed by

all the functions (distributions) whose support is contained in R− [4].
As an easy consequence of Theorem 3.1, we have

Corollary 3.2. The Dirichlet data (on y = 0) of a solution v to
(2.14) (2.18) are related to the jump vector (ϕ−

0 , ϕ
−
1 )T by

(3.5)
(
v+
0

v−o0

)
= B

(
ϕ−

0

ϕ−
1

)
where B = F−1σBF : H1/2(R) × H−1/2(R) → [H1/2(R)]2 is the
invertible convolution (or pseudodifferential) operator with symbol:

(3.6) σB = − 1
2

[−1 1
t

1 1
t

]
.

Proof. The result is obtained by direct computation, noting that (3.1)
yields

(3.7) v+
0 = −Av+

1 and v−o0 = Av−o1

where A is the invertible pseudodifferential operator (of order −1)

(3.8) A = F−1 1
t
F : H−1/2(R) → H1/2(R).

From relations (3.7) we also have

(3.9)
(
v+
1 − λv+

0

v−o1

)
= F−1 diag [−(t+ λ), t]F

(
v+
0

v−o0

)
and, therefore, by the use of (3.5), (3.6), it holds

(3.10) C

(
ϕ−

0

ϕ−
1

)
=
(
v+
1 − λv+

0

v−o1

)
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where C = F−1σcF : H−
1/2(R) × H−

−1/2(R) → [H−1/2(R)]2 is the
pseudodifferential operator with symbol σc given by

(3.11) σc = − 1
2

[
t+ λ − t+λ

t
t 1

]
.

In the usual Sommerfeld half-plane problem, the restrictions to R−

of the trace functions v+
1 − λv+

0 and v−o1 are known. However, in our
problem, only the boundary data function f ′ is given (see (2.16)), and
the boundary condition in the lower bank of Γ1 is replaced by the
property of v−o1 to be odd. Let us now make use of this condition.
For, let r± denote the restriction operators to R±, respectively, and let
lo : H−1/2(R±) → H−1/2(R) stand for the operators of odd extension
which are continuous (see [9]). Obviously, we have lor−v−o1 = lor+v

−
o1 =

lor+v
+
1 where in the last equality we used the transmission condition

(2.18). Consequently, lor−v−o1 = (1/2)lor+(v−o1 +v+
1 ) or yet, from (3.7),

(3.8),

(3.12) lor−v−o1 =
1
2
lor+A

−1(v−o0 − v+
0 ) = − 1

2
lor+A

−1ϕ−
0

where A−1 = F−1tF (see (3.8)). Moreover, if J denotes the reflection
operator in Hs(R) (s ∈ R), defined by (for smooth functions in a dense
subspace)

(3.13) Jϕ(x) = ϕ(−x), x ∈ R

we get, from (3.12) by restriction to R− together with the identity
r−lor+ = −r−J :

r−v−o1 = − 1
2
r−lor+A−1ϕ−

0 =
1
2
r−JA−1ϕ−

0 .

Furthermore, as JA−1 = A−1J due to the fact that t is an even
function, we finally obtain

(3.14) r−v−o1 =
1
2
r−A−1Jϕ−

0 .

Going back to the system of equations (3.10), by taking the restriction
to R− and using the boundary condition (2.16) and (3.14), we have

(3.15) r−C
(
ϕ−

0

ϕ−
1

)
=
(

f ′
1
2 r−A

−1Jϕ−
0

)
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from which we can derive a system of pseudodifferential equations for
the ansatz (ϕ−

0 , ϕ
−
1 )T . It is convenient to start by representing C in

the matrix operator form (see (3.11))

(3.16) C = − 1
2

[
A−1

λ −A−1
λ A

A−1 I

]
: H−

1/2(R) ⊕H−
−1/2(R)

→ H−1/2(R) ⊕H−1/2(R)

where A is the operator defined by (3.8), I stands for the identity
operator in H−1/2(R) and Aλ denotes the bounded operator

(3.17) Aλ = F−1 1
t+ λ

F : H−1/2(R) → H1/2(R)

(since t+ λ �= 0 on R) with inverse given by

(3.18) A−1
λ = F−1(t+ λ)F .

Then a straightforward computation yields

(3.19) r−

[
A−1

λ −A−1
λ A

A−1(I + J) I

](
ϕ−

0

ϕ−
1

)
=
(−2f ′

0

)
.

Thus, every solution v to the boundary value problem (2.14) (2.18)
is such that their traces v+

0 and v−o0 on y = ±0 determine a solu-
tion (ϕ−

0 , ϕ
−
1 )T to the above system of pseudodifferential equations of

Wiener-Hopf-Hankel type by (3.5).

Conversely, it is easy to recognize that if (ϕ−
0 , ϕ

−
1 )T is a solution of

(3.19), then (v+
0 , v

−
o0)

T given by (3.5) are the traces on y = ±0 of a
solution to the boundary-transmission problem (2.14) (2.18), which is
given by the representation formula in Theorem 3.1.

We summarize these results in the following equivalence theorem.

Theorem 3.3. Problem P0
λ is uniquely solvable if and only if

the system of pseudodifferential equations (3.19) is uniquely solvable.
Moreover, we have:

(i) If (ϕ−
0 , ϕ

−
1 )T is a solution to (3.19), then the restriction to Ω

of the function v in (3.1) with (v+
0 , v

−
o0) given by (3.5) is a solution to

Problem P0
λ.
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(ii) If v ∈ H1(Ω) is a solution to Problem P0
λ, then its trace v+

0 on
y = +0 and the odd extension v−o0 of its trace v−0 on Γ′

1 are such that
(see (3.5), (3.6))

(3.20)
(
ϕ−

0

ϕ−
1

)
= B−1

(
v+
0

v−o0

)
= F−1

[
1 −1
−t −t

]
F
(
v+
0

v−o0

)
is a solution to (3.19).

From now on, we shall concentrate our attention on system (3.19).
For later convenience, we start by giving an alternative form to that
system of equations. Therefore, let us consider its second equation and
write it in the form

(3.21) A−1(I + J)ϕ−
0 + ϕ−

1 = ϕ+
1

where ϕ+
1 is a distribution in H−1/2(R) whose support is contained in

R+, i.e., ϕ+
1 ∈ H+

−1/2(R). Moreover, by applying the reflection operator
J to both sides of (3.22) and noting that J2 = I and JA−1 = A−1J ,
we also have:

(3.22) A−1(J + I)ϕ−
0 + Jϕ−

1 = Jϕ+
1 .

Subtracting both sides of equations (3.21) and (3.22), we get

(3.23) ϕ−
1 + Jϕ+

1 = Jϕ−
1 + ϕ+

1

where the left-hand side is an element of H−
−1/2(R) and the right-

hand side is an element of H+
−1/2(R). Then, because of H+

−1/2(R) ∩
H−

−1/2(R) = {0} (see [4]), it follows from (3.23) that ϕ−
1 = −Jϕ+

1 or
yet ϕ+

1 = −Jϕ−
1 . So, substituting this result in (3.21), we conclude

that the second of equations (3.19) can be written in the equivalent
form:

(3.24) A−1(I + J)ϕ−
0 + (I + J)ϕ−

1 = 0.

Similarly, by introducing an auxiliary distribution ψ+ ∈ H+
−1/2(R), we

can write the first of equations (3.19) as

(3.25) A−1
λ ϕ−

0 −A−1
λ Aϕ−

1 = −2lof ′ + ψ+.
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Furthermore, applying J to both sides of the above equation, we also
get

(3.26) A−1
λ Jϕ−

0 −A−1
λ AJϕ−

1 = 2lof ′ + Jψ+.

Let us introduce the vector

(3.27) ϕ
∼

+ = (Jϕ−
0 , Jϕ

−
1 , ψ

+)T ∈ H+
1/2(R) ×H+

−1/2(R) ×H+
−1/2(R)

and write equations (3.26), (3.25) and (3.24) in the matrix form
(3.28)⎡⎢⎣A

−1
λ −A−1

λ A 0
0 0 I

A−1 I 0

⎤⎥⎦ϕ
∼

+ =

⎛⎝ 2
2
0

⎞⎠ lof ′ +

⎡⎢⎣ 0 0 I

A−1
λ −A−1

λ A 0
−A−1 −I 0

⎤⎥⎦Jϕ
∼

+

where J is now defined element-wise. Noting that⎡⎢⎣ 0 0 I

A−1
λ −A−1

λ A 0
−A−1 −I 0

⎤⎥⎦
−1

=
1
2

⎡⎢⎣ 0 Aλ −A
0 −A−1Aλ −I
2I 0 0

⎤⎥⎦
it follows easily from the above expressions that the system of equations
(3.19) has the equivalent representation:
(3.29)

1
2

⎡⎢⎣ −I −A Aλ

−A−1 −I −A−1Aλ

2A−1
λ −2A−1

λ A 0

⎤⎥⎦ϕ
∼

+ =

⎛⎜⎝ Aλ

−A−1Aλ

2

⎞⎟⎠ lof ′ + Jϕ
∼

+

with ϕ
∼

+ defined by (3.27). It is clear that after applying the Fourier

transform to both sides of (3.29), we get a particular Riemann-Hilbert
problem for the real line involving Fϕ

∼
+ = ϕ̂

∼
+ and the reflected vector

Jϕ̂
∼

+, thus having an additional symmetry condition. We shall use this

fact in the next section to solve explicitly system (3.9) for the particular
case λ = 0, corresponding to the Dirichlet/Neumann boundary value
problem P0

0 (see (2.11)). The general case (λ �= 0), corresponding to
the impedance problem P0

λ, will be discussed in Section 5.
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4. The mixed problem P0
0 . Taking λ = 0 in (3.29) we have (see

(3.17)):

(4.1)
1
2

⎡⎣ −I −A A
−A−1 −I −I
2A−1 −2I 0

⎤⎦ϕ
∼

+ =

⎛⎝Aλ

−1
2

⎞⎠ lof ′ + Jϕ
∼

+.

From the last two equations we can eliminate the auxiliary distribution
ψ+ and consequently we reduce (4.1) by a two by two system. For this,
let us multiply by two the second equation and add it with the third.
We get

(4.2) −2Jϕ−
1 − ψ+ = 2ϕ−

1 + Jψ+

where the left- and right-hand sides are in H+
−1/2(R) and H−

−1/2(R),
respectively. Therefore,

(4.3) ψ+ = −2Jϕ−
1 .

Substituting this result in the first and the third of equations (4.1), we
obtain

(4.4)
1
2

[ −I −3A
−A−1 I

](
Jϕ−

0

Jϕ−
1

)
=
(
A
−1

)
lof ′ +

(
ϕ−

0

ϕ−
1

)
.

Moreover, we can reduce this system to a scalar equation of different
type. Indeed, from the second of equations (4.4), it holds that

(4.5) Jϕ−
0 = A(J − 2I)ϕ−

1 + 2Alof ′,

and thus,

(4.6) ϕ−
0 = A(I − 2J)ϕ−

1 − 2Alof ′,

expressing ϕ−
0 in terms of ϕ−

1 and the data f ′. Putting (4.5) into the
first of equations (4.4), we obtain precisely the same equation, which
we write in the more suggestive form

(4.7) −2AJϕ−
1 +Aϕ−

1 = 2Alof ′ + ϕ−
0 .
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This equation is reducible to a Hankel equation in L+
2 (R) (for the

unknown Jϕ−
1 ), as we show in the next proposition.

Let us introduce some notation. By t± we denote the square root
functions

(4.8) t±(ξ) = (ξ ± k0)1/2 = |ξ ± k0|1/2 e
i
2 arg(ξ±k0), ξ ∈ R

with branch cuts Γ±, respectively, and arg(ξ − k0) ∈ ]−3π/2, π/2],
arg(ξ + k0) ∈ ]−π/2, 3π/2], such that t = t−t+ holds (see (3.3)). Also,
let A+ denote the invertible convolution operator (cf. [4])

(4.9) A+ = F−1 1
t+

F : H+
−1/2(R) → L+

2 (R)

with inverse given by

(4.10) A−1
+ = F−1t−1

+ F : L+
2 (R) → H+

−1/2(R).

We have:

Proposition 4.1 (Lifting to L+
2 ). Equation (4.7) is equivalent to the

Hankel equation in L+
2 (R):

(4.11) −2ϕ+ − P+KcJϕ
+ = f+

where P+ : L2(R)→L+
2 (R) is the usual projection operator (multiplica-

tion by the characteristic function of R+), Kc the pseudodifferential
operator

(4.12) Kc = F−1kF : L2(R) → L2(R) with symbol k = − i
t−
t+

and f+ denotes the function

(4.13) f+ = 2P+A+l
of ′

in the sense that there is a bijective (and bicontinuous) relation between
the solutions of (4.7) and (4.11), given by

(4.14) ϕ+ = A+Jϕ
−
1 (ϕ−

1 = JA−1
+ ϕ+).
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Proof. Suppose that ϕ−
1 is a solution to equation (4.7) for a given

distribution f ′. Then, by use of the Fourier transformation, we have
(see (3.8))

(4.15) − 2
1
t
Jϕ̂−

1 +
1
t
ϕ̂−

1 = 2
1
t
l̂of ′ + ϕ̂−

0

where ϕ̂−
1 = Fϕ−

1 , etc. Now, let ϕ+ be the function given by (4.14),
whose Fourier transform is (see (4.9)) ϕ̂+ = (1/t+)Jϕ̂−

1 which yields

(4.16) Jϕ̂−
1 = t+ϕ̂

+ and ϕ̂−
1 = it−Jϕ̂+

since Jt+ = it−J (see (4.8)). Substituting these results in (4.15) we
get (by noting that t = t−t+)

−2ϕ̂+ + i
t−
t+

Jϕ̂+ = 2
1
t+

l̂of ′ + t−ϕ̂−
0 .

Then, taking the inverse Fourier transformation and making use of (4.9)
and (4.12), we have

−2ϕ+ −KcJϕ
+ = 2A+l

of ′ + ψ−

with ψ− = F−1t−ϕ̂−
0 ∈ L−

2 (R), i.e., ψ− is an L2-function supported in
R−. Applying the operator P+ to both sides of the last equation, we
see that ϕ+ satisfies the Hankel equation (4.11). Reciprocally, it is now
obvious that any solution ϕ+ of (4.11) gives a solution ϕ−

1 of equation
(4.7) through (see (4.16)) ϕ−

1 = F−1it−Fϕ̂+ = JF−1t+Fϕ+ =
JA−1

+ ϕ+.

Following the notation already used in [18, 20], let us write equation
(4.11) in the form

(4.17) K−2ϕ
+ = f+

with

(4.18) K−2 = −2I −K
where I now denotes the identity operator on L+

2 (R) and K is the
Hankel operator

(4.19) K = P+KcJ|
L

+
2

(R)
: L+

2 (R) → L+
2 (R).
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A study of this class of Hankel equations can be found in [18, 19].
In particular, equation (4.17) was already considered in [20, Section 4
and Section 5]. Therefore, we will omit the details and will now present
only the essential steps to show the invertibility of operator K−2.

Let T : [L+
2 (R)]2 → [L+

2 (R)]2 be the Wiener-Hopf operator associ-
ated with K−2, whose presymbol G is given by (see [18, Theorem 3.2]
or [20, Theorem 2.1])

(4.20) G =
1
2

[ −Jk 1
4 − kJk k

]
=

1
2

[−i t+
t−

1

3 −i t−
t+

]
.

It was proved in [18] that the invertibility of T implies the invertibility
of K−2. Furthermore, as it is well known, the invertibility of T is
equivalent to the existence of a canonical generalized factorization
relative to L2 of the matrix-valued functionG (see [2, 11]), G = G−G+,
and its inverse is given by

(4.21) T−1 = F−1G−1
+ P+

2 G
−1
− F : [L+

2 (R)]2 → [L+
2 (R)]2

with P+
2 denoting the projection operator from [L̂2(R)]2 onto [L̂+

2 (R)]2

along [L̂−
2 (R)]2. Moreover, it follows from Theorem 3.3 in [18] that the

inverse of K−2 is expressed in terms of T−1 by

(4.22) K−1
−2 = ΠT−1A

where Π : [L2(R)]2 → L2(R) and A : L+
2 (R) → [L+

2 (R)]2 are the
operators defined by

(4.23) Π
(
f1
f2

)
= f1, Af+ =

1
2

(
0

(−2I + K)f+

)
with K defined in (4.19).

The existence of a canonical generalized factorization for G, as well
as the explicit factors were obtained in [20] (see also [17] for a general
discussion of matrices of that type). In fact, we have (see (4.20))

(4.24) G =
[

0 −1
2√

3
2 0

][ 1 i√
3

t−
t+

i√
3

t+
t−

1

][√
3 0

0 −1

]
= C1SC2
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and the generalized factorization S = S−S+ was presented in [20,
equation (4.29)] (see also [7]):

(4.25) S± =
(

4
3

)1/4
[

cosh
(

1
3 log γ±

) t−
t+

sinh
(

1
3 log γ±

)
t+
t−

sinh
(

1
3 log γ±

)
cosh

(
1
3 log γ±

) ]
,

where

(4.26) γ+ =
t+ − t−√

2k0

, γ− = i
t+ + t−√

2k0

and log represents the principal branch of the logarithm. Thus, it
follows that

(4.27) G = G−G+ = (C1S−)(S+C2)

is a canonical generalized factorization of G.

Consequently, the Wiener-Hopf operator T is invertible, with its
inverse given explicitly by (4.21) and factors G± given above. Then
the invertibility of K−2 follows with inverse (4.22).

As an immediate corollary of Proposition 4.1, we see that equation
(4.7) is uniquely solvable and, moreover, using (4.13), (4.14) and (4.17),
we have that

(4.28) ϕ−
1 = JA−1

+ K−1
−2f

+ = 2JA−1
+ K−1

−2P+A+l
of ′.

The function ϕ−
0 was given in terms of ϕ−

1 and f ′ by formula (4.6).
Then it is clear that the system of pseudodifferential equations of
Wiener-Hopf-Hankel type (3.19) is uniquely solvable, and consequently
we obtain from Theorem 3.3 the following result:

Theorem 4.2. For every f ′ ∈ H−1/2(R−), Problem P0
0 has a unique

solution that can be obtained by restricting to Ω the function v given by
the representation formula (3.1), with (v+

0 , v
−
o0)

T given by (3.5) where

ϕ−
0 = A(I − 2J)ϕ−

1 − 2Alof ′(4.29)
ϕ−

1 = 2JA−1
+ K−1

−2P+A+l
of ′(4.30)
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Remark. We would like to point out that the existence and uniqueness
of a solution to Problem P0

0 was already known from [12]. However,
in [12] the result was established by variational methods, in a noncon-
structive approach.

5. The impedance problem P0
λ . In Section 3 we reduced the

boundary-value problem P0
λ to a system of pseudodifferential equations

of Wiener-Hopf-Hankel type (see Theorem 3.3 and (3.19)). Moreover,
we have proved that this system can be transformed into an equivalent
3×3 system of functional equations (see (3.29)) which can be described
in the Fourier space as a special Riemann-Hilbert problem. Actually,
taking the Fourier transforms on both sides of (3.29) and using (3.8)
and (3.17), we obtain

(5.1) Gϕ̂
∼

+ =

⎛⎜⎝
1

t+λ

− t
t+λ

2

⎞⎟⎠ l̂of ′ + Ĵϕ
∼

+

where the hat stands for the Fourier transformation and G denotes now
the matrix-valued function:

(5.2) G =
1
2

⎡⎢⎣ −1 −1
t

1
t+λ

−t −1 − t
t+λ

2(t+ λ) −2 t+λ
t 0

⎤⎥⎦ .
One first idea to solve (5.1) could be to lift it to [L+

2 (R)]3 by the
use of Bessel potential operators and try to get a generalized canonical
factorization for the lifted symbol G0. But, unfortunately, it turns
out that G0 is L2-singular (see [2]) and, therefore, such a factorization
does not exist. So it is natural to exploit more carefully the symmetry
properties of equations (5.1) to obtain a further simplification.

With this objective, let us decompose ϕ
∼

+ into its even and odd

components

(5.3) ϕ
∼

+ = ϕ
∼

+
e + ϕ

∼
+
o .

From (5.1) we obtain two separated systems

(5.4) Gϕ̂
∼

+
e = ϕ̂

∼
+
e
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and

(5.5) Gϕ̂
∼

+
o =

⎛⎜⎝
1

t+λ

− t
t+λ

2

⎞⎟⎠ l̂of ′ − ϕ̂
∼

+
o

because F maps even functionals into even, and odd into odd ones.

The algebraic solution of (5.4) and (5.5) is an eigenvalue problem.
We must study

(5.6)

G− I =
1
2

⎡⎢⎣ −3 −1
t

1
t+λ

−t −3 − t
t+λ

2(t+ λ) −2 t+λ
t −2

⎤⎥⎦ ,

G+ I =
1
2

⎡⎢⎣ 1 −1
t

1
t+λ

−t 1 − t
t+λ

2(t+ λ) −2 t+λ
t 2

⎤⎥⎦
where I now represents the identity matrix. It is easily seen that
rank (G − I) = 2 and rank (G + I) = 1, i.e., ±1 are eigenvalues of
G, independent of ξ and λ. We simply get the eigenvectors⎛⎜⎝

1
t+λ

−t
t+λ

2

⎞⎟⎠ and

⎛⎜⎝
1
t

1
0

⎞⎟⎠ ,

⎛⎜⎝
1

t+λ

0
−1

⎞⎟⎠ .

Then, the algebraic solution of (5.4) and (5.5) lead us to the form of
the solutions of (5.1)

(5.7) ϕ̂
∼

+ =

⎛⎜⎝
2

t+λ

0
0

⎞⎟⎠ l̂of ′ +

⎛⎜⎝
1
t

1
0

⎞⎟⎠ ϕ̂o1 +

⎛⎜⎝
1

t+λ

0
−1

⎞⎟⎠ ϕ̂o2 +

⎛⎜⎝
1

t+λ

− t
t+λ

2

⎞⎟⎠ ϕ̂e

where ϕo1, ϕo2 and ϕe are unknown scalar odd and even distributions
in H−1/2(R), respectively.

Now we must look for a “plus” functional of this form, imposing that
the restriction to R− of ϕ

∼
+ is the zero vector

(5.8) r−ϕ
∼

+ = 0∼.



248 E. MEISTER, F.-O. SPECK, F.S. TEIXEIRA

This leads to the following system of equations, now written in operator
form, by the use of (3.8) and (3.17)

(5.9) r−

⎡⎣A Aλ Aλ

1 0 −A−1Aλ

0 −1 2

⎤⎦⎛⎝ϕo1

ϕo2

ϕe

⎞⎠ =

⎛⎝ 2r−Aλl
of ′

0
0

⎞⎠ .

We can replace the unknowns in terms of ϕe by writing the last two
equations as {

r−ϕo1 = r−A−1Aλϕe

r−ϕo2 = 2r−ϕe,

and, thus,

(5.10)
{
ϕo1 = lor−A−1Aλϕe

ϕo2 = 2lor−ϕe,

which gives us from the first of equations (5.9) the following second-
order integral equation of Wiener-Hopf type:

(5.11) r−Alor−A−1Aλϕe + 2r−Aλl
or−ϕe + r−Aλϕe = 2r−Aλl

of ′.

For what follows, a precise discussion of the functional spaces turns
out to be important. It is immediately seen from the last equation that
if it has a solution, then the odd extension onto R of r−Aλϕe must
belong to H1/2(R), or equivalently,

(5.12) r−Aλϕe ∈ H̃1/2(R−).

Remark. From (3.27) and the last of equations (5.7), we have
2ϕe − ϕo2 = ψ+ and, consequently,

ϕe =
1
4

(I + J)ψ+.

Moreover, it follows from (3.25) and (3.26) that

Aλϕe =
1
4

[(ϕ−
0 + Jϕ−

0 ) −A(ϕ−
1 + Jϕ−

1 )]
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where ϕ−
0 , ϕ

−
1 are the jumps ansatzs defined in (3.4). Using (3.7) and

the fact that v−o0 and v−o1 are odd functions (distributions), we have yet
Aλϕe = (v+

0 + Jv+
0 )/2, and, therefore,

r−Aλϕe =
1
2

(r−v+
0 + r−Jv+

0 ).

The compatibility condition (5.12) can now be understood as being a
natural one, due to the fact that r−v+

0 (and then also r−Jv+
0 ) must be

a function in H̃1/2(R−). Indeed, r−v+
0 is the trace of v ∈ H1(Ω) on Γ1,

which has a zero trace on Γ2 (see (2.12)). Thus, (r−v+
0 , 0) is the trace

of v on the Lipschitz boundary ∂Ω = Γ1 ∪ Γ2, and this implies that
r−v+

0 ∈ H̃1/2(R−) (taking Γ1 as a copy of R−, see [20] for details).

We are now going to show that by incorporating in (5.11) the
compatibility condition (5.12), we get a scalar equivalent equation (of
higher complexity) involving only the sum of a Wiener-Hopf operator
with a Hankel operator. For this purpose, define

(5.13) ϕ− = r−Aλϕe ∈ H̃1/2(R−)

and note that

(5.14) r−A−1Aλϕe = r−ϕe − λϕ−

where we used the identity A−1Aλ = I −λAλ. From (5.11), (5.13) and
(5.14), we readily obtain

(5.15) r−[(A+ 2Aλ)lor−ϕe + (I − λA)loϕ−] = 2r−[Aλl
of ′]

where the functions in brackets are odd functions in H1/2(R). This
allows us to use the odd extension operator in both sides of (5.15),
getting

(A+ 2Aλ)lor−ϕe + (I − λA)loϕ− = 2Aλl
of ′

or yet

(5.16) loϕ− = 2(I − λA)−1Aλl
of ′ − (I − λA)−1(A+ 2Aλ)lor−ϕe

with
(I − λA)−1 = F−1 t

t− λ
F : H1/2(R) → H1/2(R)
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being a pseudodifferential operator (of order zero). A direct computa-
tion yields

(5.17) (I − λA)−1Aλ = F−1 t

t2 − λ2
F : H−1/2(R) → H1/2(R)

and
(5.18)

Bλ = (I − λA)−1(A+ 2Aλ) = F−1 3t+ λ

t2 − λ2
F : H−1/2(R) → H1/2(R).

Applying the restriction operator r− to both sides of (5.16), and using
(5.13), (5.17) and (5.18) we finally obtain

(5.19) r−Aλϕe + r−Bλl
or−ϕe = r−

(
F−1 2t

t2 − λ2
F
)
lof ′.

This equation can be written as an integral (or pseudodifferential)
equation of Wiener-Hopf-Hankel type. For this objective, let ϕe (an
even functional in H−1/2(R)) be decomposed in the form

(5.20) ϕe = (I + J)φ+ with φ+ = l0r+ϕe ∈ H+
−1/2(R)

which also yields

(5.21) lor−ϕe = −(I − J)φ+.

Then, from (5.19), we get the Wiener-Hopf Hankel equation:

(5.22) r−(Aλ −Bλ)φ+ + r−(Aλ +Bλ)Jφ+ =
1
2
r−(Aλ +Bλ)lof ′

where Aλ∓Bλ denote the (invertible) convolution or pseudodifferential
operators:

(5.23) Aλ −Bλ = F−1 −2
t− λ

F : H−1/2(R) → H1/2(R)

and

(5.24) Aλ +Bλ = F−1 4t
t2 − λ2

F : H−1/2(R) → H1/2(R).
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We summarize in the next theorem the results obtained so far (see
Section 3, Theorem 3.3):

Theorem 5.1. Problem P0
λ is uniquely solvable if and only if the

Wiener-Hopf-Hankel equation (5.22)is uniquely solvable. Moreover, if
φ+ is a solution to (5.22), then a solution of Problem P0

λ can be obtained
by restriction to Ω of the function v given by the representation formula
(3.1), with (v+

0 , v
−
o0)

T given by (3.5) and
(5.25)(
ϕ−

0

ϕ−
1

)
= −

(
2Aλ

0

)
lof ′ −

(
A
1

)
ϕo1 −

(
Aλ

0

)
ϕo2 +

(
Aλ

−A−1Aλ

)
ϕe

where

ϕe = (I + J)φ+(5.26)
ϕo1 = lor−A−1Aλ(I + J)φ+(5.27)

and

(5.28) ϕo2 = 2lor−Jφ+.

Proof. For necessity of the Wiener-Hopf-Hankel equation, it remains
only to prove (5.25) (5.28), which are obtained by direct computation,
using (3.27), (5.7), (5.10) and (5.20). Sufficiency is proved by inspec-
tion.

The resulting Wiener-Hopf-Hankel equation cannot be solved by the
approach presented at the end of Section 4.

But, in the sense of the ideas presented in [18], we can associate with
equation (5.22) an equivalent Riemann-Hilbert problem in [L+

2 (R)]2,
whose solvability can be studied through the determination of a gen-
eralized (canonical) factorization [2] of its presymbol. More precisely,
equation (5.22) can be written in the equivalent form

(5.29) (Aλ −Bλ)φ+ + (Aλ +Bλ)Jφ+ =
1
2

(Aλ + Bλ)lof ′ + Ψ+
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where Ψ+ is a suitable function in H+
1/2(R). By symmetrization (i.e.,

applying J to both sides of (5.29)) we get further

(5.30) (Aλ −Bλ)Jφ+ + (Aλ +Bλ)φ+ = −1
2

(Aλ + Bλ)lof ′ + Jψ+.

Let

(5.31) φ
∼

+ = (φ+, ψ+) ∈ H+
−1/2(R) ×H+

1/2(R).

Using Fourier transformation and (5.23), (5.24), we can write equations
(5.29) and (5.30) in the following matrix form (after some elementary
computations)

(5.32) G′φ̂
∼

+
= f̂

∼
+ Jφ̂

∼
+

where G′ and f̂ are given by:

(5.33) G′ =
1
2t

[
t+ λ 1

2 (t2 − λ2)

2 3t+λ
t+λ −(t+ λ)

]
, f̂

∼
=
( −1

2

− 1
t+λ

)
l̂of ′

From this system of equations we readily obtain an equivalent Riemann-
Hilbert problem in [L+

2 (R)]2. Indeed, following the usual lifting proce-
dure [10], let us introduce the new ansatz vector (see (4.8))

(5.34) φ
∼

+
0 = (φ+

0 , ψ
+
0 )T = F−1diag [t−1

+ , t+]Fφ
∼
∈ [L+

2 (R)]2.

Then a direct computation shows that (5.32) is equivalent to

(5.35) G′
0φ̂∼

+
0 = f̂o

∼
+ Jφ̂

∼
+
0

with

(5.36) G′
0 = −i

[ t+
t−

t+λ
2t

t2−λ2

4t2

−3t+λ
t+λ

t−
t+

t+λ
2t

]
, f̂0 =

(
i

2t−
−it−
t+λ

)
l̂of ′

To prove the existence and uniqueness of solution to the Riemann-
Hilbert problem (5.35) we are led to obtaining a canonical generalized
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factorization [2] for its presymbol G′
0. This has been achieved for

the case λ = 0, as in this case G′
0 coincides (up to a constant non-

singular matrix) with the matrix-valued function G defined in (4.20).
However, for λ �= 0, the referred methods are not suitable to get
(even a function-theoretic) factorization for G′

0, due to the fact that
G′

0 is not of Daniel’s or Krapkhov’s form (see [7]). Nevertheless, the
existence of a generalized factorization for G′

0 (with a priori arbitrary
but symmetric partial indices) can be easily established by using the
well-known criteria for piecewise continuous matrix-valued functions
(see [2, Chapter 8], [11, Chapter 5]). Indeed, we have

Lemma 5.2. The matrix-valued function G′
0 in (5.36) is L2-non-

singular, with zero total index.

Proof. Using the above cited criteria, we associate with G′
0 the

matrix-valued function G̃ : Ṙ × [0, 1] → C2×2 defined by{
G̃(ξ, μ) = G′

0(ξ + 0)μ+ (1 − μ)G′
0(ξ), ξ ∈ R, μ ∈ [0, 1]

G̃(∞, μ) = G′
0(−∞)μ+ (1 − μ)G′

0(∞), μ ∈ [0, 1].

The first statement in the lemma is equivalent to

g̃(ξ, μ) = det G̃(ξ, μ) �= 0, (ξ, μ) ∈ Ṙ × [0, 1]

which easily follows by direct computation. Indeed, infinity being the
only discontinuity point of G′

0, we have

g̃(ξ, μ) = detG′
0(ξ) = −1 �= 0, ξ ∈ R

and
g̃(∞, μ) = − 1

4
(1 − 2μ)2 − 3

4
�= 0, μ ∈ [0, 1].

The proof ends by noting that the curve g̃ has a zero winding number
with respect to the origin.

As a final remark, we would like to point out that the method
used so far to handle problem Pλ can also be used to deal with the
boundary-value problem obtained by replacing the Dirichlet boundary
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condition on Γ2 (see (2.4)) by a Neumann condition. In this situation,
for λ = 0, we get also a Neumann condition on Γ1, a problem which
was already treated in [20]. In the case λ �= 0, similar results to those
obtained for Problem Pλ can be derived, with slight modifications (the
compatibility condition is more evident here). Only the problem with
two impedance conditions (one on Γ1, the other on Γ2) cannot directly
be studied by the present method, due to the impossibility of using the
reduction procedure followed in Section 2. So a new method is being
developed to investigate this last problem, which will be the subject of
the forthcoming paper.

REFERENCES

1. J.J. Bowman, T.B.A. Senior and P.L.E. Uslenghi (ed.), Electromagnetic and
acoustic scattering by Simple Shapes, Hemisphere Publishing Corporation, New
York, 1987.

2. K. Clancy and I.C. Gohberg, Factorization of matrix functions and singular
integral operators, Oper. Theory: Adv. Appl. 3 1981.

3. M. Costabel, Boundary integral operators on Lipschitz domains: Elementary
results, SIAM J. Math. Anal. 19 (1988), 613 626.

4. G.I. Eskin, Boundary value problems for elliptic pseudodifferential equations,
Amer. Math. Soc., Providence, R.I., 1981.

5. P. Grisvard, Elliptic problems in nonsmooth domains, Pitman Publishing Inc.,
London, 1985.

6. F.C. Karal, Jr. and S.N. Karp, Diffraction of a skew plane electromagnetic
wave by an absorbing right-angled wedge, Comm. Pure Appl. Math. XI (1958),
495 533.

7. A.B. Lebre, Wiener-Hopf operators and factorization of symbols, Ph.D. Thesis,
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