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A QUADRATURE METHOD FOR CAUCHY
INTEGRAL EQUATIONS WITH WEAKLY
SINGULAR PERTURBATION KERNEL

GIUSEPPE MASTROIANNI AND SIEGFRIED PRÖSSDORF

ABSTRACT. The authors study the mean weighted conver-
gence of the quadrature method for solving integral equations
over the arc (−1, 1) with Cauchy kernel and with a perturba-
tion kernel not necessarily regular. Error estimates in uniform
norm are also given.

1. Introduction. Many problems in aerodynamics and elasticity
lead to a singular integral equation with Cauchy kernel of the form

(1.1) a(x)u(x) +
b(x)
π

∫ 1

−1

u(t)
t − x

dt +
∫ 1

−1

k(x, t)u(t) dt = f(x)

on the interval (−1, 1) (see, e.g., [1, 16, 19]). The first integral in
(1.1) is to be interpreted as the Cauchy principal value. Hereby a, b
and f are given Hölder continuous functions, and k is a given smooth
or weakly singular kernel function.

The problem we are interested in is to find an approximation to the
unknown solution u by using projection methods (like collocation or
Galerkin schemes) or quadrature procedures with orthogonal polyno-
mials as trial functions. There is already a considerable literature on
this subject in the case of regular kernel k (see, e.g., the surveys [9,
6 8, 12, 22, 23, 13 15, 24] and the references given by the same
authors). In most of these papers the following strategy is employed.
For given functions a and b, one introduces two sets of orthogonal poly-
nomials which are denoted by {pn} and {qn}, where Dpn = qn−χ with
D being the dominant part of Equation (1.1) and χ the index of D
(see Section 2). For a given value of n, we use Gauss-type quadrature
rules based on the zeros of pn and collocate at the zeros of qn−χ. In
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the case of constant coefficients a and b, the polynomials pn and qn

turn out to be Jacobi polynomials corresponding to the weight func-
tions w(t) = w(α,β)(t) = (1 − t)α(1 + t)β, −1 < α, β < 1, and 1/w(t),
respectively. If, for example, k ∈ Cr+λ([−1, 1]2) and f ∈ Cr+λ[−1, 1],
where r is a nonnegative integer and 0 < λ ≤ 1, and |α| = |β| = 1/2,
χ = 0 or χ = 1, then in [14] the corresponding quadrature method
is proved to converge in the weighted space L2

w(−1, 1) with the rate
O(n−r−λ) as n → ∞.

In the present paper we prove that the quadrature method, under
certain additional assumptions for a and b, converges in the space
L2

w(−1, 1) with the error bound O(n−r−λ log n), provided only that
k is a kernel of the form k(x, t) = [h(x, t) − h(x, x)]/(t − x), where
h ∈ Cr+λ([−1, 1]2), f ∈ Cr+λ[−1, 1], and α, β are arbitrary numbers
satisfying −1 < α, β < 1 and χ = 0 or χ = 1. Moreover, error
estimates in uniform norms are given. The crucial point in our analysis
are bounds of the quadrature error for the perturbation kernel k which
are founded on thorough estimates for the distances between the zeros
of the orthogonal polynomials pn and qn (Section 3). Further ideas
of Junghanns and Silbermann [14] and Elliott [5 8] are used. In
Sections 2 and 3 the quadrature method is studied when a and b are
real constants and in Section 4 when a and b are real-valued functions.

2. Singular integral equations with constant coefficients.
Consider the singular integral equation with Cauchy kernel of the form

(2.1) au(x) +
b

π

∫ 1

−1

u(t)
t − x

dt +
∫ 1

−1

k(x, t)u(t) dt = f(x),

x ∈ (−1, 1), where a and b are given real constants such that a2+b2 > 0,
and k is a regular or weakly singular kernel function,

(2.1)′ k(x, t) =
h(x, t) − h(x, x)

t − x

with h ∈ Cλ([−1, 1]2), 0 < λ ≤ 1.

Notice that if k is a weakly singular kernel of the form

k(x, t) =
m(x, t)
|x − t|μ , 0 ≤ μ < 1,
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with m ∈ Cν([−1, 1]2), then the representation (2.1)′ holds, where
h(x, t) = (t − x)|t − x|−μm(x, t) ∈ Cλ([−1, 1]2) with λ = min(1 − μ, ν)
(see, e.g., [19]).

The quadrature method under consideration, like most of the poly-
nomial approximation methods for solving equation (2.1), is essentially
based on the well-known relation (see, e.g., [9, 5, 6, 13 15])

(2.2) D(p(α,β)
n ) = − 2−χb

sin(πα0)
p
(−α,−β)
n−χ ,

where

(2.3) (Dv)(t) = aw(x)v(x) +
b

π

∫ 1

−1

w(t)v(t)
t − x

dt, −1 < x < 1,

is the dominant part of Equation (2.1), and {p(α,β)
n }n∈N is the sequence

of orthonormal Jacobi polynomials with respect to the weight function
w(x) = w(α,β)(x) = (1 − x)α(1 + x)β, that is, p

(α,β)
n is a polynomial

of degree n with positive leading coefficient and
∫ 1

−1
p
(α,β)
n p

(α,β)
m w =

δn,m(p(−α,−β)
n−χ ≡ 0 for n − χ < 0). The numbers α, β and χ involved

are defined as follows:

a + ib = (a2 + b2)1/2eiπα0 , 0 < |α0| < 1,

−1 < α := μ − α0, β := ν + α0 < 1,

μ and ν are integers, χ := −(α + β) = −(μ + ν).

Denote by L2
w = L2

w(−1, 1) the Hilbert space of all complex-valued
functions on (−1, 1) which are quadratic integrable with respect to the
weight w. The space L2

w is equipped with the scalar product

(u, v)w =
1
π

∫ 1

−1

u(t)v(t)w(t) dt

and the norm ||u||w = [(u, u)w]1/2. As an immediate consequence of
(2.2), the operator D defined by (2.3) and acting from L2

w to L2
1/w is

Fredholm with index χ (see also [11, 18]). Moreover, D is invertible if
χ = 0, invertible from the right if χ = 1 (in this case D(Pn−1) = Pn−2
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with Pn−1 being the set of all real polynomials of degree ≤ n) and
invertible from the left if χ = −1 (in which case D(Pn−1) + C = Pn).

Let tk = tm,k, k = 1, . . . , m, and xj = xm,j , j = 1, . . . , m−χ, be the
zeros of the polynomials p

(α,β)
m and p

(−α,−β)
m−χ , respectively, i.e.,

p(α,β)
m (tk) = 0, p

(−α,−β)
m−χ (xj) = 0.

Choose now a Gauss-type quadrature formula with the weight w and
the nodes tk such that

(2.4)
∫ 1

−1

g(t)w(t) dt =
m∑

k=1

λm,kg(tk), g ∈ P2m−1,

where λm,k = λm,k(w) stands for the Christoffel numbers. Then

(2.5) (Dvm)(xj) =
b

π

m∑
k=1

λm,k
vm(tk)
tk − xj

, j = 1, . . . , m − χ,

holds for any polynomial vm of degree m − 1 (see, e.g., [15, Lemma
1.15]; cf. also Lemma 4.2).

We consider the following quadrature method for the approximate
solution of Equation (2.1). Determine ξk = ξm,k, k = 1, . . . , m, such
that

(2.6)
m∑

k=1

λm,k

[
b/π

tk − xj
+ k(xj , tk)

]
ξk = f(xj), j = 1, . . . , m − χ.

In the case χ = 1, it is necessary to give an additional condition in
order to define the solution of (2.1) uniquely, e.g.,

(2.7)
∫ 1

−1

u(t) dt = 0

which can be approximated by

(2.8)
m∑

k=1

λm,kξk = 0.
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In practice, the most frequent case is that of an unknown function
u which is unbounded at both the endpoints 1 and −1. Then the
representation

u(t) = (1 − t)α(1 + t)βv(t)

holds, where v is continuous, provided the given functions f(x) and
k(x, t) are smooth enough, and α, β are real numbers satisfying −1 < α,
β < 1.

Given 0 < λ ≤ 1, an integer r ≥ 0, and a subset A⊆ [−1, 1]2, we
denote by Cr+λ(A) the class of all functions on A whose r-th derivatives
belong to Lipλ(A). The main results of the present paper are as follows.

Theorem 2.1. Assume −1 < α, β < 1, χ = 0 or χ = 1,
k ∈ Cr+λ([−1, 1]2) and f ∈ Cr+λ[−1, 1], r ≥ 0, 0 < λ ≤ 1. If the
problem (2.1) (for χ = 0) or (2.1), (2.7) (for χ = 1) has a unique
solution u = wv, v ∈ L2

w, then the system of equations (2.6) or (2.6),
(2.8), respectively, is uniquely solvable for all sufficiently large m and

(2.9) ||v − vm||w = O

(
1

mr+λ

)
,

where

vm(t) =
m∑

k=1

p
(α,β)
m (t)

(t − tk)p(α,β)′
m (tk)

ξk

is the Lagrange interpolation polynomial corresponding to the solution
of (2.6) or (2.6), (2.8), respectively.

Theorem 2.2. Assume that χ = 0 and |α| ≤ 1/2 or that χ = 1 and
−1 < α < 0, h ∈ Cr+λ([−1, 1]2) (recall (2.1)′) and f ∈ Cr+λ[−1, 1],
where r ≥ 0 and 0 < λ ≤ 1. Then the assertion of Theorem 2.1 remains
true with the error bound

(2.10) ||v − vm||w = O

(
log m

mr+λ

)
.

Theorem 2.3. Assume the hypotheses of Theorem 2.2 are satisfied.
If r + λ > γ, where γ := max(α, β) + 1, then v ∈ C[−1, 1], and

(2.11) max
−1≤t≤1

|v(t) − vm(t)| = O

(
log m

mr+λ−γ

)
.
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Further, if r + λ > 1/2, then v is continuous on any closed set
Δ ⊂ (−1, 1) and

(2.12) max
Δ

|v(t) − vm(t)| = O

(
log m

mr+λ−1/2

)
.

Remark . Theorems 2.1 and 2.3 (under additional assumptions) were
proved in [14] for the case |α| = |β| = 1/2.

Note that Theorem 2.3 guarantees, for example, the uniform conver-
gence in [−1, 1] and estimate (2.11) in the following particular cases:

1) r ≥ 1 and χ = 0, if r + λ > γ = 1 + |α|,
2) r ≥ 1 and χ = 1, if r + λ > γ = 1 + max(α,−1 − α),

3) r = 0 and χ = 1, if λ > γ = 1 + max(α,−1 − α).

3. The proof of the main results. In the following the symbol “C”
stands for some positive constant taking a different value each time it
is used. It will always be clear what variables and indices the constants
are independent of. If A and B are two expressions depending on some
variables, then we write

A ∼ B iff |AB−1| ≤ C and |A−1B| ≤ C
uniformly for the variables in consideration.

In order to prove the theorems of the preceding section, we need the
following auxiliary results. In particular, we shall use the following
lemma that can be found in [2].

Lemma 3.1 (Jackson). For any function f ∈ Cr([−1, 1]2), r ≥ 0,
and for any positive integer n, there exists an algebraic polynomial
Pn(x, y) of degree n in x and y separately such that

(3.1) |f(x, y) − Pn(x, y)| ≤ Cn−rΩr

(
f ;

1
n

)
, −1 ≤ x, y ≤ 1,

where

Ωr(f ; δ) = max
0≤i≤r

ω(fr−i
i ; δ), fr−i

i =
∂rf

∂xr−i∂yi
, δ > 0,
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and

ω(fr−i
i ; δ) = max

h1+h2≤δ
|fr−i

i (x + h1, y + h2) − fr−i
i (x, y)|, h1, h2 ≥ 0.

Let k(x, t) ∈ Cr([−1, 1]2). For any continuous function f , we define
the operator K by

(3.2) (Kf)(x) =
∫ 1

−1

k(x, t)f(t)w(t) dt.

If L
(1)
m g denotes the Lagrange polynomial interpolating the bounded

function g on the zeros tk, k = 1, 2, . . . , m of p
(α,β)
m , then we set

Gm(x) =
∫ 1

−1

L
(1)
m,t{k(x, t)vm(t)}w(α,β)(t) dt,

where L
(1)
m,t is the interpolating operator L

(1)
m acting on the function

k(x, t)vm(t) with respect to the variable t. Obviously,

(3.3) Gm(x) =
m∑

k=1

λm,k(w(α,β))k(x, tk)vm(tk).

Further, denoting by L
(2)
m−χg, χ = −(α + β) ∈ {0, 1}, the Lagrange

polynomial interpolating g on the zeros xj , j = 1, 2, . . . , m − χ, of
p
(−α,−β)
m−χ , for any polynomial vm ∈ Pm−1 we define the operator Km

by

(Kmvm)(x) = (L(2)
m−χGm)(x) =

m−χ∑
j=1

lm−χ,j(x)Gm(xj)

=
m−χ∑
j=1

lm−χ,j(x)
[ m∑

k=1

λm,k(w(α,β))k(xj , tk)vm(tk)
]
,(3.4)

where lm−χ,j(x) are the fundamental Lagrange polynomials corre-
sponding to the knots xj , j = 1, 2, . . . , m − χ.
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Notice that if k(x, t) is a polynomial of degree m− 2 in the variables
x and t separately, then by well-known properties of the Gaussian rules
and of the Lagrange polynomials, we have

(3.5) (Kmvm)(x) =
∫ 1

−1

k(x, t)vm(t)w(α,β)(t) dt = (Kvm)(x),

or, that is the same (K − Km)vm = 0.

Therefore, for any function k(x, t) and for any polynomial Q of degree
m − 2 in the variables x and t separately, we get

[(K − Km)vm](x) =
∫ 1

−1

[k(x, t) − Q(x, t)]vm(t)w(α,β)(t) dt

−
m−χ∑
j=1

lm−χ,j(x)
{ m∑

k=1

λm,k(w(α,β))[k(xj , tk)(3.6)

− Q(xj , tk)]vm(tk)
}

.

Finally, setting

||g||∞ = sup
[−1,1]2

|g(x, y)|,

we can state the following

Lemma 3.2. Assume k ∈ Cr([−1, 1]2), r ≥ 0 and α, β ∈ (−1, 1).
Then

(3.7) ||(K − Km)vm||w(−α,−β) ≤ C||rmk||∞||vm||w(α,β) ,

where rmk is the remainder of the Jackson polynomial corresponding
to the function k (see Lemma 3.1), and C = 2

√
2[B(1 + α, 1 + β)B(1−

α, 1 − β)]1/2 with B the Euler function.

Proof. Let rmk = k − Q, with Q the Jackson polynomial (Lemma
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3.1) corresponding to the function k. Then by (3.6), we have

[(K − Km)vm](x) =
∫ 1

−1

(rmk)(x, t)vm(t)w(α,β)(t) dt

−
m−χ∑
j=1

lm−χ,j(x)

[ m∑
k=1

λm,k(w(α,β))(rmk)(xj , tk)vm(tk)
]

=
∫ 1

−1

(rmk)(x, t)vm(t)w(α,β)(t) dt

−
m−χ∑
j=1

lm−χ,j(x)Gm(xj),

where

Gm(x) =
m∑

k=1

λm,k(w(α,β))(rmk)(x, tk)vm(tk).

Since

|Gm(x)| ≤ ||rmk||∞

√√√√ m∑
k=1

λm,k(w(α,β))

√√√√ m∑
k=1

λm,k(w(α,β))v2
m(tk)

and vm ∈ Pm−1, we can write

(3.8) |Gm(x)| ≤ ||rmk||∞||vm||w(α,β)

[ ∫ 1

−1

w(α,β)(x) dx

]1/2

.

On the other hand, we also have

(3.9)
∣∣∣∣
∫ 1

−1

(rmk)(x, t)vm(t)w(α,β) dt

∣∣∣∣
≤ ||rmk||∞||vm||w(α,β)

[ ∫ 1

−1

w(α,β)(x) dx

]1/2

.
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Therefore,

||(K − Km)vm||2w(−α,−β) ≤ 2
∫ 1

−1

[ ∫ 1

−1

(rmk)(x, t)vm(t)w(α,β)(t) dt

]2

· w(−α,−β)(x) dx

+ 2
∫ 1

−1

(L(2)
m−χGm)2(x)w(−α,−β)(x) dx(3.10)

=: I1 + I2.

In view of (3.9) we deduce
(3.11)

I1 ≤ 2
∫ 1

−1

w(α,β)(x) dx

∫ 1

−1

w(−α,−β)(x) dx||vm||2w(α,β) ||rmk||2∞.

In order to estimate I2, we use the Gaussian formula corresponding to
the weight w(−α,−β). So, by (3.8),

I2 = 2
m−χ∑
j=1

λm−χ,j(w(−α,−β))G2
m(xj)

≤ 2||rmk||2∞||vm||2w(α,β)

∫ 1

−1

w(α,β)(x) dx

m∑
j=1

λm,j(w(−α,−β))

≤ 2
∫ 1

−1

w(α,β)(x) dx

∫ 1

−1

w(−α,−β)(x) dx||vm||2w(α,β) ||rmk||2∞.

(3.12)

Finally, combining (3.11) and (3.12) with (3.10), we obtain (3.7).

In order to state a lemma similar to the previous one with k(x, t)
replaced by k(x, t) = [h(x, t)−h(x, x)]/(t−x), where h ∈ Cr([−1, 1]2),
we need some other preliminary results.

Lemma 3.3. Let {p(α,β)
m }, {p(−α,−β)

m }, α, β ∈ (−1, 1), be the se-
quences of Jacobi polynomials corresponding to the weights w(α,β)

and w(−α,−β), respectively. Denote by tk = tm,k = cos τm,k, k =
1, 2, . . . , m, and xj = xm,j = cos θm,j , j = 1, 2, . . . , m, the zeros of
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p
(α,β)
m and p

(−α,−β)
m , respectively. If α + β = 0, then

(3.13) min
j,k

|τm,k − θm,j | ∼ m−1.

Furthermore, if α + β = −1, then

(3.14) min
j,k

|τm+1,k − θm,j | ∼ m−1.

The proof of the previous lemma is due to the authors and it can be
found in [17]. Now, assume that k(x, t) = [h(x, t) − h(x, x)]/(t − x).
Then the function Gm in (3.3) becomes

(3.15) Gm(x) =
m∑

k=1

λm,k(w(α,β))
h(x, tk) − h(x, x)

tk − x
vm(tk),

and, by retaining the previous notations, (3.4) becomes

(Kmvm)(x) = (L(2)
m−χGm)(x) =

m−χ∑
j=1

lm−χ,j(x)Gm(xj)

=
m−χ∑
j=1

lm−χ,j(x)
[ m∑

k=1

λm,k(w(α,β))

· h(xj , tk) − h(xj , xj)
tk − xj

vm(tk)
]
,

for any vm ∈ Pm−1.

Similarly,

(Kvm)(x) =
∫ 1

−1

h(x, t) − h(x, x)
t − x

vm(t)w(α,β)(t) dt.

On the other hand, we remark that if h(x, t) is a polynomial of degree
[m/2]− 1 in the variables t and x separately, then by (3.15) and (2.4),

Gm(x) =
∫ 1

−1

h(x, t) − h(x, x)
t − x

vm(t)w(α,β)(t) dt = (Kvm)(x).
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Since Gm is a polynomial of degree m − 2 at most in x, we get
(L(2)

m−χGm)(x) = Gm(x). Thus,

(K − Km)vm = 0

in the case when h(x, t) is a polynomial of degree [m/2] − 1 in the
variables x and t separately.

Therefore, denoting by P (x, t) the Jackson polynomial (Lemma 3.1)
corresponding to the function h(x, t) of degree n = [m/2] − 1 in the
variables x and t separately and setting (rnh)(x, t) = h(x, t) − P (x, t),
we can write

[(K − Km)vm](x) =
∫ 1

−1

(rnh)(x, t) − (rnh)(x, x)
t − x

vm(t)w(α,β)(t) dt

−
m−χ∑
j=1

lm−χ,j(x)
m∑

k=1

λm,k(w(α,β))

· (rnh)(xj , tk) − (rnh)(xj , xj)
tk − xj

vm(tk).

Finally, denoting by (Hg)(x) the finite Hilbert transform on [−1, 1] of
the given function g, i.e.,

(Hg)(x) = lim
ε→0+

∫
|x−t|≥ε

g(t)
t − x

dt, −1 < x < 1,

and setting
(3.16)

Fm(x) =
m∑

k=1

λm,k(w(α,β))
(rnh)(x, tk) − (rnh)(x, x)

tk − x
vm(tk), x �= tk,

we come to the more convenient formula,

[(K−Km)vm](x) = (H(rnh)vmw(α,β))(x)−(rnh)(x, x)(Hvmw(α,β))(x)

− (L(2)
m−χFm)(x).(3.17)

We also recall some inequalities which are useful in the following. The
Christoffel numbers defined by (2.4) can be expressed for any α, β > −1
as

λm,k(w(α,β)) = λm(w(α,β), tk),
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where

(3.18) λm(w(α,β), t) =
( m−1∑

j=0

[p(α,β)
j (t)]2

)−1

.

The following properties hold (see [21, p. 673])
(3.19){

λm(w(α,β), t) ∼ (1/m)(
√

1 − t + m−1)2α+1(
√

1 + t + m−1)2β+1,

λm,k(w(α,β)) ∼ (
√

1 − t2k/m)w(α,β)(tk).

Let

(3.20) σm(w(α,β); x) =
∑

|θ−τk|∼m−1

λm,k(w(α,β))
|x − tk| ,

where |x| ≤ 1, x = cos θ, and tk = cos τk, k = 1, 2, . . . , m, are the zeros
of p

(α,β)
m . Then,

(3.21) σm(w(α,β); x) ≤ Cw(ρ,σ)(x) log m, |x| ≤ 1,

where ρ = min(0, α), σ = min(0, β), α, β > −1. (See [4].)

Finally, we shall use the following inequality

(3.22)
∑

|θ−τk|∼m−1

(1 ± tk)a

m|x − tk| ≤ C(
√

1 ± x + m−1)2a−1 log m,

where |a| ≤ 1/2, |x| ≤ 1 and θ, τk, tk are defined as above. (See [3].)
Now we are able to prove the following

Lemma 3.4. Assume −(α + β) = χ = 0 and |α| ≤ 1/2 or χ = 1
with −1 < α < 0, and let h ∈ Cr([−1, 1]2). Then

(3.23) ||(K − Km)vm||w(−α,−β) ≤ C||rnh||∞||vm||w(α,β) log m,

where vm ∈ Pm−1, rnh is the error corresponding to the function h of
the Jackson polynomial of degree n = [m/2] − 1, and the constant C is
independent of m and h.
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Proof. In view of (3.17), we have

(3.24)

||(K − Km)vm||w(−α,−β) ≤ {||rn||∞||Hvmw(α,β)||w(−α,−β)

+ ||Hvmrnw(α,β)||w(−α,−β)}
+ ||L(2)

m−χFm||w(−α,−β)

=: I1 + Iw,

where rn = rnh.

To bound I1 we recall that for any continuous function g it results

(3.25) ||Hw(α,β)g||w(−α,−β) ≤ C||g||w(α,β) , −1 < α, β < 1.

Inequality (3.25) follows from Theorem 3.1 in [18, p. 53]. Then we get

(3.26) I1 ≤ 2C||rn||∞||vm||w(α,β) .

To bound I2 we make use of the Gaussian rule and write

I2
2 = ||L(2)

m−χFm||2w(−α,−β) =
m−χ∑
j=1

λm−χ,j(w(−α,−β))F 2
m(xj).

Recalling (3.16), we have

|Fm(x)| ≤ 2||rn||∞
[ m∑

k=1

λm,k(w(α,β))
v2

m(tk)
|x − tk|

]1/2[ m∑
k=1

λm,k(w(α,β))
|x − tk|

]1/2

,

x �= tk.

Then, by Lemma 3.3 and the definition of σm(w(α,β); x) (cf. (3.20)), we
deduce

I2
2 ≤4||rn||2∞

m−χ∑
j=1

λm−χ,j(w(−α,−β))
m∑

k=1

λm,k(w(α,β))
σm(w(α,β); xj)

|xj − tk| v2
m(tk)

= 4||rn||2∞
m∑

k=1

λm,k(w(α,β))v2
m(tk)

m−χ∑
j=1

λm−χ,j(w(−α,−β))
σm(w(α,β); xj)

|xj − tk|

= 4||rn||2∞||v2
m||2w(α,β)

m−χ∑
j=1

λm−χ,j(w(−α,−β))
σm(w(α,β); xj)

|xj − tk| .
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Therefore, it remains to prove that the behavior of the sum in the last
inequality is O(log2 m).

At first, assume that χ = 1 with −1 < α, β < 0. In this case, because
of (3.21), we have

σm(w(α,β); xj) ≤ Cw(α,β)(xj) log m.

Further, taking into account that

λm−1,j(w(−α,−β)) ∼ (1/m)w(−α,−β)(xj)
√

1 − x2
j

(cf. (3.19)), we get

m−1∑
j=1

λm−1,j(w(−α,−β))
σm(w(α,β); xj)

|xj − tk| ≤ C
m−1∑
j=1

√
1 − x2

j

m|xj − tk| log m

≤ C log2 m.

The last inequality follows from (3.14) and (3.22).

So, if χ = 1 with −1 < α, β < 0, then

(3.27) I2 ≤ C log m||rn||∞||vm||w(α,β) .

Now, let χ = 0 and −1/2 ≤ α ≤ 1/2. In this case, −α = β. Assume for
instance 0 ≤ α ≤ 1/2. Inequalities (3.13) and (3.21) allow us to write

σm(w(α,−α); xj) ≤ C(1 + xj)−α log m.

Moreover, since (cf. (3.19))

λm,j(w(−α,α)) ∼ (1/m)(1 − xj)−α+1/2(1 + xj)α+1/2,

and since 0 ≤ α ≤ 1/2, we also have

λm,j(w(−α,α))σm(w(α,−α); xj) ≤ (C/m)
√

1 + xj log m.

Thus,

m∑
j=1

λm,j(w(−α,α))
σm(w(α,−α); xj)

|xj − tk| ≤ C
m∑

j=1

√
1 + xj

m|xj − tk| log m

≤ C log2 m,
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where the last inequality follows from (3.13) and (3.22). Similar
computations can be done in the case −1/2 ≤ α < 0. Therefore,
inequality (3.27) is still true when χ = 0 with |α| ≤ 1/2.

Finally, combining (3.26) and (3.27) with (3.24), we deduce (3.23).

Proof of Theorems 2.1 and 2.2. Equation (2.1) can be written in the
form

(3.28) Dv + Kv = f,

where K is the operator defined by (3.2). Assume first χ = 1.

We recall that L
(1)
m f denotes the Lagrange interpolation polynomial

of degree m − 1 with the nodes tk, k = 1, 2, . . . , m, and L
(2)
m−1f

denotes the interpolation polynomial of degree m − 2 with the nodes
xj , j = 1, 2, . . . , m−1. By virtue of (2.5) the system (2.6) is equivalent
to the operator equation

(3.29) Dvm + Kmvm = L
(2)
m−1f,

where

(Kmvm)(x) = L
(2)
m−1

∫ 1

−1

L
(1)
m,t{k(x, t)vm(t)}w(t) dt,

and L
(1)
m,t stands for the interpolation operator L

(1)
m applied to the

function k(x, t)vm(t) with respect to the variable t.

Since the solution of (3.28) is unique in L2
w,0 := {v ∈ L2

w : (v, 1)w = 0}
and the operator D : L2

w,0 → L2
1/w is invertible, we conclude that

the operator D + K : L2
w,0 → L2

1/w has a bounded inverse, because
K : L2

w,0 → L2
1/w is a compact operator (see, e.g., [18]). Provided

(3.29) has a solution vm, then

(D + K)vm = (K − Km)vm + L
(2)
m−1f.

Thus,

||vm||w ≤ ||(D + K)−1||[||(K − Km)vm||1/w + ||L(2)
m−1f ||1/w]

≤ ||(D + K)−1||[εm||vm||w + ||(D + Km)vm||1/w],
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where εm = O(m−r−λ) as m → ∞ in the case of Theorem 2.1 and
εm = O(m−r−λ log m) → 0 in the case of Theorem 2.2 (see Lemmas
3.1, 3.2 and 3.4). Consequently, for all sufficiently large m, the estimate

(3.30) C||vm||w ≤ ||(D + Km)vm||1/w,

holds with a positive constant C ≤ ||(D + K)−1||−1 − εm. Since
(D + Km)vm ∈ im L

(2)
m−1 for all vm ∈ im L

(1)
m , the estimate (3.30)

implies the invertibility of the finite dimensional operator D + Km :
im L

(1)
m → im L

(2)
m−1. Hence, (3.29) has a solution vm ∈ im L

(1)
m for all

sufficiently large m and ||vm||w ≤ C−1||L(2)
m−1f ||1/w ≤ const, because

of the well-known estimate

(3.31) ||f − L
(2)
m−1f ||1/w ≤ C(f)m−r−λ,

(see, e.g., [20, Chap. VI, Section 2], [14, Conclusion 4.4]).

Estimates (2.9) and (2.10) are an immediate consequence of (3.31),
Lemmas 3.1, 3.2, 3.4 and the equation

v − vm = (D + K)−1{(K − Km)vm + (L(2)
m−1f − f)}.

Replacing L
(2)
m−1 by L

(2)
m and L2

w,0 by L2
w and repeating the preceding

argumentations we prove the assertions of Theorems 2.1 and 2.2 for
χ = 0.

Proof of Theorem 2.3. At first, we consider the expansion of the
polynomial vm of degree m − 1 in the system {p(α,β)

m }

vm(t) =
m−1∑
k=0

ckp
(α,β)
k (t), |t| ≤ 1,

ck =
∫ 1

−1

vm(x)p(α,β)
k (x)w(α,β)(x) dx.

Recalling (3.18), we get

|vm(t)| ≤
√√√√m−1∑

k=0

c2
k

√√√√m−1∑
k=0

[p(α,β)
k (t)]2

= ||vm||w(α,β)

√
λ−1

m (w(α,β); t).



222 G. MASTROIANNI AND S. PRÖSSDORF

Then, in virtue of (3.19), we can write

|vm(t)| ≤ C√m||vm||w(α,β)(
√

1 − t+m−1)−α−1/2(
√

1 + t+m−1)−β−1/2.

Therefore,

(3.32) ||vm||∞ ≤ C||vm||w(α,β)mγ , γ = 1 + max(α, β).

If Δ denotes a closed subset of (−1, 1), then

(3.33) max
t∈Δ

|vm(t)| ≤ C√m||vm||w(α,β) .

That being stated, if the assumptions of Theorem 2.2 are verified the
estimate (2.10) holds and we have

(3.34) v − vm =
∞∑

k=0

(v2k+1m − v2km)

almost everywhere in [−1, 1].

On the other hand, applying (3.32) and (2.10), we obtain

||v2k+1m − v2km||∞ ≤ Cmγ2γ(k+1)||v2k+1m − v2km||w(α,β)

≤ C log m

mr+λ−γ

log 2k+1

2(r+λ−γ)(k+1)
.

Therefore, if r + λ − γ > 0 the series
∑∞

k=0 2−(r+λ−γ)(k+1) log 2k+1

converges. Consequently, the series in (3.34) converges uniformly in
[−1, 1]. Thus, we deduce that v is continuous and the estimate (2.11)
holds.

Making use of (3.33), by similar computations we deduce that v is
continuous in any closed subset Δ of (−1, 1) and the estimate (2.12) is
valid provided r + λ > 1/2.

4. Singular integral equations with variable coefficients. In
this section a and b are assumed to be real-valued Hölder continuous
functions on [−1, 1] satisfying

[r(x)]2 := [a(x)]2 + [b(x)]2 > 0, x ∈ [−1, 1].
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Define the continuous function α0(x), x ∈ [−1, 1], by

a(x) − ib(x) = r(x)eiπα0(x), −1 < α0(1) ≤ 1.

Further, we choose integers μ and ν such that

−1 < α := μ + α0(1), β := ν − α0(−1) < 1.

Define now χ := −(μ + ν) and w̃(t) = X(t)/r(t), where

X(t) := (1 − t)μ(1 + t)ν exp
∫ 1

−1

α0(x)(x − t)−1 dx.

Since a, b ∈ Lipλ[−1, 1], 0 < λ < 1, the function w̃ admits the
representation

(4.1) w̃(t) = (1 − t)α(1 + t)βw0(t),

where w0 ∈ Lipλ[−1, 1] is a positive (nonvanishing) function (see [19,
Sections 26, 27], cf. also [15, Lemma 1.4]).

Following [5, 6], we shall assume that we can find a nonnegative
function c defined on [−1, 1] such that

10. B(x) := c(x)b(x) is a polynomial of degree R, say,

20. The functions w := w̃/c and ω(t) := [X(t)r(t)c(t)]−1 are
integrable,

30. If B(x0) = 0, −1 ≤ x0 ≤ 1, then b(x0) = 0.

Multiplying Equation (1.1) by c(x), we obtain the following equation

(4.2) (D + K)v = f0,

where

Dv = aw̃v + BSwv, (Su)(x) =
1
π

∫ 1

−1

u(t)
t − x

dt,

(Kv)(x) =
∫ 1

−1

k0(x, t)w(t)v(t) dt,

and
u = wv, f0 = cf, k0(x, t) = c(x)k(x, t).
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The analysis of the quadrature method for the approximate solution of
Equation (4.2) is essentially based on the following statement.

Lemma 4.1 (cf. [5, 6, 15]). Let pm be a polynomial of degree m.
Then qm := Dpm is a polynomial of degree ≤ max(m − χ, R − 1) (of
degree m − χ if m − χ > R − 1). If pw

m is an orthogonal polynomial
with respect to the weight w of degree m and if m − χ > R − 1, then
qω
m = Dpw

m is an orthogonal polynomial with respect to ω of degree
m − χ. Moreover, the relation ||pw

m||ω = ||qw
m||w holds.

The following properties of the operator D : L2
w → L2

ω are well known
(see, e.g., [18, 6, Section 2, 15, Theorem 1.13]):

(i) dim ker D = max(0, χ), dim kerD∗ = max(0,−χ), where D∗ =
acωI − SBωI.

(ii) ker D = span {B, Bt, . . . , Btχ−1} if χ > 0.

(iii) Let χ < 0 and f ∈ L2
ω. Then the equation Dv = f has a solution

v ∈ L2
w if and only if (tj , f)ω = 0, j = 0, 1, . . . ,−χ − 1.

(iv) D(−1)D = I if χ ≤ 0 and DD(−1) = I if χ ≥ 0 where
D(−1) = acωI − BSωI.

Given two sequences {an}∞n=1 and {bn}∞n=1 of real numbers with
bn ≤ 0, n = 1, 2, . . . , define the polynomials pn, n = 0, 1, . . . , by

(4.3) pn(t) = pw
n (t) + anpw

n−1(t) + bnpw
n−2(t),

where pw
−1 = pw

−2 = 0. Assuming that all zeros tk,n of pn(t) lie on
[−1, 1], we conclude that −1 ≤ tn,n < tn−1,n < · · · < t1,n ≤ 1 (see
[10]). For qn = Dpn, we have by Lemma 4.1,

(4.4) qn(x) = qω
n (x) + anqω

n−1(x) + bnqω
n−2(x),

if n > χ + R + 1 (which will be assumed in the sequel). Thus, the
zeros xj,n, j = 1, 2, . . . , n − χ, of qn(t) are simple and real (cf. [10]).
Again suppose all zeros xj,n lie on [−1, 1]. Under these conditions we
associate to the polynomials (4.3) and (4.4) the Gauss-type quadrature
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rules Pn and Qn defined by

Pn(v) =
1
π

∫ 1

−1

w(t)Lw
n v(t) dt =

n∑
k=1

Aw
k,nv(tk,n),

Qn(f) =
1
π

∫ 1

−1

ω(x)Lω
n−χf(x) dx =

n−χ∑
j=1

Aω
j,nf(xj,n),

where Lw
n and Lω

n−χ are the corresponding interpolation operators, i.e.,

Lw
n v(t) =

n∑
k=1

pn(t)v(tk,n)
(t − tk,n)p′n(tk,n)

,

Lω
n−χf(x) =

n−χ∑
j=1

qn(x)f(xj,n)
(x − xj,n)q′n(xj,n)

.

Notice that (cf. [10]) Aw
k,n > 0, k = 1, 2, . . . , n, Aω

j,n > 0, j =
1, 2, . . . , n − χ. The explicit form of Dvn, vn ∈ Pn−1, at the points
xj,n, is given in the next lemma.

Lemma 4.2 (cf. [5, 6, 15]). Let vn ∈ Pn−1. Then

(Dvn)(xj,n) =

⎧⎪⎪⎨
⎪⎪⎩

B(xj,n)
∑n

k=1 Aw
k,nvn(tk,n)/(tk,n − xj,n),

if xj,n �= tk,n, k = 1, 2, . . . , n,

a(xj,n)w̃(xj,n)vn(tl,n),
if xj,n = tl,n.

We now consider the following quadrature method for the approxi-
mate solution of (4.2): Find ξk = ξ

(n)
k , k = 1, 2, . . . , n, such that

(4.5)
n∑

k=1

Aw
k,n

[
B(xj,n)

tk,n − xj,n
+k0(xj,n, tk,n)

]
ξk =f0(xj,n), j = 0, 1, . . . , n−χ.

In the case χ > 0 one needs the additional conditions

(4.6)
∫ 1

−1

w(t)tmv(t) dt = 0, m = 0, 1, . . . , χ − 1,
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in order to define the solution of (4.2) uniquely (cf. property (ii)). Let
L2

w,χ denote the subspace of all functions v ∈ L2
w satisfying (4.6)

(L2
w,0 = L2

w). By property (iv), the operator D : L2
w,χ → L2

ω is
invertible if χ ≥ 0, where the inverse is given by D−1 = D(−1).
Condition (4.6) will be approximated by

(4.7)
n∑

k=1

Aw
k,ntmk,nξk = 0, m = 0, 1, . . . , χ − 1.

In view of Lemmas 4.1 and 4.2, Equations (4.5) and (4.7) can be
rewritten as

(4.8) Dvn + Knvn = Lω
n−χf0,

where

vn(t) =
n∑

k=1

ξk

n∏
j=1,j 
=k

t − tj,n
tk,n − tj,n

∈ L2
w,χ

and

Knvn = Lω
n−χ

∫ 1

−1

Lw
n,t[k0(x, t)vn(t)]w(t) dt.

Thus, we have the same situation as in the preceding section.

To apply the proof of Theorem 2.1 to (4.8), we suppose that the
function c, involved in conditions 10 and 20, is of the form

(4.9) c(t) =
N∏

j=1

|sj − t|−γj d(t), −1 ≤ t ≤ 1,

where −1 = sN < sN−1 < · · · < s2 < s1 = 1, and d is both positive
and continuous on [−1, 1]. Then w̃(t) can be written as (4.1) where
−1 < α, β ≤ 0 and w0 is a positive Hölder continuous function on
[−1, 1] (see [5, (2.14), (2.15)]). Combining (4.9) and (4.1), it follows
that

w(t) = (1 − t)γ1+α(1 + t)γN+β
N−1∏
j=2

|sj − t|γj w1(t),

ω(t) = (1 − t)γ1−α(1 + t)γN−β
N−1∏
j=2

|sj − t|γj ω1(t),
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where w1, ω1 are positive and Hölder continuous on [−1, 1]. In what
follows we assume that

(4.10) χ = 0 and |α| ≤ 1
2

or χ = 1 and |α|, |β| < 1,

and

(4.11) γ1 > −1+α, γN > −1+β, γj > −1, j = 2, 3, . . . , N −1.

Then w and ω are generalized Jacobi weight functions satisfying

w(t) = (1 − t)α(1 + t)βω(t).

Repeating the proofs of Theorems 2.1 through 2.3, we obtain the
following result.

Theorem 4.1. Assume χ ≥ 0, (4.10) and (4.11). Suppose the
conditions of Theorems 2.1, 2.2 or 2.3 are fulfilled with k, h, f replaced
by ck, ch, cf . If (1.1) has a unique solution u ∈ L2

w,χ, then the system
of equations (4.5), (4.7) is uniquely solvable for all sufficiently large n
and the estimates (2.9), (2.10) or (2.11), respectively, hold.

Remark . In order to determine an approximate solution of (1.1) in
the case χ < 0, one can apply the modified method studied in [14,
Section 6, 15, Section 2.2].
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18. S.G. Mikhlin and S. Prössdord, Singular integral operators, Akademi-Verlag,
Berlin, 1986, and Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1986.

19. N.I. Muskhelishvili, Singular integral equations, P. Noordhoff, Groningen,
1953.

20. I.P. Natanson, Konstruktive Funktionentheorie, Akademie-Verlag, Berlin,
1955.

21. P. Nevai, Mean convergence of Lagrange interpolation III, Trans. Amer.
Math. Soc. 282 (1984), 669 698.
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