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NONLINEAR EQUATIONS INVOLVING
NONPOSITIVE DEFINITE LINEAR

OPERATORS VIA VARIATIONAL METHODS

GIOVANNI ANELLO AND GIUSEPPE CORDARO

ABSTRACT. In this paper we establish, via variational
methods, some existence results for nonlinear equations of
the type u = Kf(u), where K : Lq0 (Ω) → Lp0 (Ω) is linear
and f : Lp(Ω) → Lq(Ω) is a superposition operator with

p0 > p > 2, p−1 + q−1 = 1 and p−1
0 + q−1

0 = 1. Then
we apply these results to study a Hammerstein equation and
a nonresonant nonlinear Fredholm integral equation. Our
approach allows us to deal with nonpositive definite kernels.
This is a novelty for the application of variational methods
when coercivity fails to hold.

1. Preliminaries and basic definitions. Throughout this paper
p0, q0 are two real numbers with p0 > 2 and 1/p0 + 1/q0 = 1, Ω ⊆ RN

is a bounded Lebesgue measurable set, K : Lq0(Ω) → Lp0(Ω) is
a completely continuous linear operator and f : Ω × R → R is a
Carathéodory function. Consider p and q, with 2 < p < p0 and
1/p + 1/q = 1; we suppose that f(u) ∈ Lq(Ω), for every u ∈ Lp(Ω),
where f(u) = f(·, u(·)) denotes the superposition operator associated to
f . Moreover, ‖·‖m will denote the usual norm in Lm(Ω) for m ≥ 1. We
are interested in finding solutions in Lp(Ω) to the following equation

(1.1) u = Kf(u).

Equation (1.1) has been studied by several authors. One of the reasons
which leads us to consider equation (1.1) concerns the fact that various
boundary value problems for differential equations can be reduced to
an integral equation like (1.1). For example, we refer to the case in
which the operator K is defined by

(1.2) K(u)(·) =
∫

Ω

k(·, y)u(y) dy
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for u ∈ Lq(Ω). The function k is Green’s function of the differential
operator. In this case equation (1.1) is a Hammerstein integral equa-
tion, and k is the kernel of the operator K. A natural way to solve
equations (1.1) is by fixed point methods, the solutions of (1.1) being
the fixed points of the operator Kf . In literature, many authors have
used such an approach, see, for instance, [3, 6, 7] and the references
therein. The compactness of the operator Kf plays a key role in these
kinds of results.

Another way to solve (1.1) is by variational methods. The solution
of (1.1), under suitable conditions, turns out to be the critical points
of a differentiable functional. We point out that, actually, variational
methods are less used to solve equation (1.1) than fixed point meth-
ods. However, among the most recent papers which use a variational
approach, we can cite [1, 2, 8], we refer the reader also to the refer-
ences therein. An incentive in using variational methods was given by
a variational principle established by Ricceri in [9]. On this principle
are based, in particular, the papers [1, 2]. In all of the cited papers, K
is assumed to be positive definite. This implies that all the eigenvalues
of K are positive.

Recall that, in general, if V is a real Hilbert space and K : V → V is
a linear operator, an eigenvalue of K is a real number σ satisfying

Kφ = σφ

for some φ ∈ V \ {0}. In this case, φ is said to be an eigenvector
associated to σ.

K is said to be symmetric if it satisfies

(1.3) (Ku, v) = (u, Kv)

for every u, v ∈ V .

K is positive definite, if

(1.4) (Ku, u) > 0

for all u ∈ V \{0}. As it is well known, these conditions imply that K is
self-adjoint. Moreover, when V = L2(Ω), K has the following splitting
representation

(1.5) K = HH∗
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where H : L2(Ω) → L2(Ω) is continuous and linear and H∗ is the
adjoint of H. Hence, we have

(1.6)
∫

Ω

H(u)v dx =
∫

Ω

uH∗(v) dx,

for all u, v ∈ L2(Ω).

When K acts from Lq0(Ω) into Lp0(Ω), by standard results, it can be
split as in (1.5). More precisely, for each q0 < q ≤ 2, set p = q/(q − 1);
there exists H, which acts from L2(Ω) into Lp(Ω) and H∗, acting from
Lq(Ω) into L2(Ω), such that (1.5) and (1.6), for all u ∈ Lp(Ω) and
v ∈ Lq(Ω), both hold. Furthermore, if K is compact, then operators
H, H∗ are also compact, see Theorem 4.4 [4, p. 59].

From now on, we denote by F the primitive of f :

F (x, ξ) =
∫ ξ

0

f(x, t) dt for (x, t) ∈ Ω × R.

From what is said above, since K is compact, it is easily seen that the
following functional

Ψ(v) =
1
2
‖v‖2

2 −
∫

Ω

F (x, H(v)(x)) dx

is sequentially lower weakly semi-continuous and continuously Gâteaux
differentiable in L2(Ω). Moreover, if v ∈ L2(Ω) is a critical point of Ψ,
then u = H(v) ∈ Lp(Ω) is a solution of equation (1.1), see [4, pp.
304 305].

We observe that, if the linear operator K has only a finite number
of negative eigenvalues in L2(Ω), then a variational approach is also
possible to study equation (1.1). Actually, this situation has been
considered in [4, Chapter VI]. We briefly summarize the arguments
exploited there.

Assume K is self-adjoint compact and has a finite set E of negative
eigenvalues. Let V1 be the linear hull in L2(Ω) of the eigenfunctions of
K corresponding to the eigenvalues in E, and let V2 be the orthogonal
complement of V1 in L2(Ω). Let K+ the positive definite linear operator
associated to K, see [4, Chapter I]. K+ turns out to be completely



4 G. ANELLO AND G. CORDARO

continuous and self-adjoint. So, due to the properties recalled above,
K+ splits as follows

(1.7) K+ = H+H∗
+

with H+ : L2(Ω) → Lp(Ω) and H∗
+ : Lq(Ω) → L2(Ω) linear and

completely continuous operators satisfying (1.6), for all u ∈ Lp(Ω),
v ∈ Lq(Ω). We put ui = PVi

(u), where PVi
denotes the projection of

L2(Ω) on Vi, i = 1, 2. Then, define

J(u) = u1 − u2

for all u ∈ L2(Ω).

The following functional

(1.8) Φ(v) = − 1
2

∫
Ω

J(u)(x)u(x) dx−
∫

Ω

F (x, H+(v)(x)) dx

turns out to be sequentially weakly lower semi-continuous and continu-
ously Gâteaux differentiable in L2(Ω). Moreover, it is easy to see that,
if v ∈ L2(Ω) is a critical point of Φ, then u = H+(v) is a solution of
(1.1). Since every local minimum of Φ is in particular a critical point, a
way to find a solution to (1,1) is to assume a suitable growth condition
on F in order that Φ be coercive. Indeed, in this case Φ admits a global
minimum. As proved in [4, Theorem 1.5, p. 312], a growth condition
on the nonlinearity for the coercivity of Φ is the following one

(1.9) F (x, ξ) ≤ − aξ2 + b(x)|ξ|m + c(x)

where 0 < m < 2, b ∈ L2/(2−m)(Ω), c ∈ L1(Ω) and a|λ−1| > 1 with
λ−1 = max E if E �= ∅ (if E = ∅ then one can choose a = 0). To
the best of our knowledge, this theorem seems to be the only result
in literature where variational methods are used without assuming K
positive definite.

The aim of this paper is to give a contribution in this direction.
We will establish two existence results for operator equation (1.1),
where K has a finite number of negative eigenvalues, assuming on the
nonlinearity a weaker growth condition than (1.9). This leads us to
treat the cases in which the coercivity of Φ does not hold. Finally,
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we apply our result to solve a Hammerstein integral equation and a
nonresonant nonlinear Fredholm integral equation.

2. Main results. In this section and in the next one, in order to
simplify the notation, we make use of these conventions

p

p − m
= ∞, when m = p

and 00 = 1.

Now we can state our first result:

Theorem 2.1. Let K be a self-adjoint, completely continuous linear
operator having a finite set E of negative eigenvalues. Set λ−1 = max E
if E �= ∅. Suppose that there exists a ∈ R, with a > 1/|λ−1| when
E �= ∅ and a = 0 otherwise, such that

α) inf
r>0

sup
‖u‖2=1

∫
Ω

(
F (x, rH+(u)(x))

r2
+ a(H+(u)(x))2

)
dx <

1
2

ρ,

where ρ = a|λ−1| − 1/a|λ−1| + 1 if E �= ∅ and ρ = 1 otherwise. Then,
equation (1.1) has at least a solution in Lp(Ω).

Before the proof, we point out that Theorem 2.1 improves [4, Theo-
rem 1.5, p. 312]. In fact, the growth condition (1.9), with 0 < m < 2,
implies α). The case in which 2 ≤ m ≤ p can also be considered as is
shown by the following corollary.

Corollary 2.1. Assume that the function F satisfies (1.9) with
2 ≤ m ≤ p, b ∈ Lp/(p−m)(Ω) and c ∈ L1(Ω). Put

b0 = sup
‖u‖2=1

∫
Ω

b(x)|H+(u)(x)|m dx

and c0 =
∫
Ω

c(x) dx. If

m(b0)2/m

(
m − 2
2c0

)(2/m)−1

< ρ,
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where a and ρ are as in Theorem 2.1, then equation (1.1) has at least
a solution in Lp(Ω).

Remark 2.1. For the applications of the previous corollary, it is useful
to exploit the following upper estimate of the number b0 which can be
proved by exploiting the embedding of Lp(Ω) in L2(Ω) and the splitting
representation of K+:

b0 ≤ |Ω|m(p−2/2p)‖b‖p/(p−m)|λ1|m/2,

where λ1 is the greatest positive eigenvalue of K and |Ω| is the Lebesgue
measure of Ω.

Proof of Theorem 2.1. As was shown in the introduction, when
E �= ∅, the thesis is achieved if we prove that the functional Φ, defined
by (1.8), admits a local minimum. At first, we rewrite Φ as follows

Φ(u) =
1
2
‖u‖2

2 − ‖u1‖2
2 −

∫
Ω

( ∫ H+(u)(x)

0

f(x, t) dt

)
dx

for u ∈ L2(Ω) (recall that u1 = PV1(u)). Since V1 is of finite dimension
and H+ is a completely continuous linear operator, it is easy to check
that the functional

F (u) = ‖u1‖2 +
∫

Ω

( ∫ H+(u)(x)

0

f(x, t) dt

)
dx

is sequentially weakly continuous in L2(Ω) and so weakly continuous
on every bounded subset of L2(Ω) by Eberlein-Smulian theorem. This
implies that

(2.10) sup
‖u‖2≤r

F (u) = sup
‖u‖2=r

F (u)

for all r > 0. Due to [9, Theorem 2.5], it is enough to show that

(2.11) inf
r>0

inf
‖u‖2<r

sup‖v‖2≤r F (v) − F (u)
r2 − ‖u‖2

2

<
1
2
,
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in order to assure the existence of a local minimum for Φ. Define

μ(t) = sup
‖v‖2≤t

F (v)

for all t ≥ 0; it is easy to see that

(2.12) inf
r>0

(
μ(r) − 1

2
r2

)
< 0,

implies inequality (2.11).

Let α ∈ ]0, 1[, and put Fα = {u ∈ L2(Ω) : ‖u1‖2 ≥ (1 − α)‖u2‖2}.
Consider any u ∈ Fα with ‖u‖2 = r. By [4, Lemma 1.2, p. 308; also
pp. 309 310], we have

‖H+(u)‖2 ≥ |λ−1| 1 − α

2 − α
‖u‖2.

Consequently, one has

(2.13) ‖u1‖2 − a‖H+(u)‖2
2 ≤ r2

(
1 − |λ−1|a 1 − α

2 − α

)
.

Now, suppose u ∈ L2(Ω) \ Fα and ‖u‖2 = r. Then, one has

r2 = ‖u‖2
2 = ‖u1‖2

2 + ‖u2‖2
2 ≥ ‖u1‖2

2

(
1 +

1
1 − α

)

from which it follows that

(2.14) ‖u1‖2
2 − a‖H+(u)‖2

2 ≤ 1 − α

2 − α
r2.

From (2.13) and (2.14), we get

(2.15)

‖u1‖2
2 − a‖H+(u)‖2

2 ≤ r2 inf
α∈]0,1[

max
{

1 − α

2 − α
, 1 − |λ−1|a 1 − α

2 − α

}

=
r2

1 + a|λ−1|
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for all u ∈ L2(Ω), with ‖u‖2 = r. At this point, taking into account
(2.10), (2.15) and condition 2) part i), we obtain

μ(r) ≤ sup
‖u‖2=r

(‖u1‖2
2 − a‖H+(u)‖2

2)

+ sup
‖u‖2=r

(∫
Ω

(
F (x, H+(u)(x)) + a(H+(u)(x))2

)
dx

)

≤ r2

1 + a|λ−1| + sup
‖u‖2=1

∫
Ω

(
F (x, rH+(u)(x)) + ar2(H+(u)(x))2

)
;

hence,

μ(r) − 1
2

r2 ≤ −r2

2
· a|λ−1| − 1
a|λ−1| + 1

+ sup
‖u‖2=1

∫
Ω

(
F (x, rH+(u)(x)) + ar2(H+(u)(x))2

)
dx.

By the previous inequality and condition α) we obtain (2.12). In the
case E = ∅, we can repeat the previous proof with V1 = {0}.

Theorem 2.1 does not exclude that the solution to (1.1) may be trivial
when f(x, 0) = 0, for almost all x ∈ Ω. On the other hand, we obtained
such a solution as a local minimum of the functional Φ. Exploiting this
further information it is possible to guarantee that the solution is not
identically null. This fact is shown by the following result:

Theorem 2.2. Suppose that all the hypotheses of Theorem 2.1 are
satisfied and f(x, 0) = 0, for almost all x ∈ Ω. Moreover, assume that
one of the following conditions hold :

i) E �= ∅, and there exist M, N > 0 with M < 1/(2|λ−1|) such that
F (x, ξ) ≥ −Mξ2 − Nξp for almost all x ∈ Ω and ξ ∈ R.

ii) E = ∅, and there exist M, N > 0 with M < 1/(2λ1), where λ1 is
the first eigenvalue of K such that F (x, ξ) ≥ Mξ2 −Nξp for almost all
x ∈ Ω and ξ ∈ R.

Then, equation (1.1) has at least a nontrivial solution in Lp(Ω).

Proof. We suppose E �= ∅. When E = ∅ the proof is the same with
some straightforward modifications. We have already observed that,
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by using [9, Theorem 2.5], we obtain the existence of a local minimum
v for the functional Φ. This result assures that v is in fact a global
minimum for the restriction of Φ to a ball centered in 0 with radius
r > 0. We claim that v �= 0. To see this, it suffices to show that
inf‖w‖2<r Φ(w) < 0. Let ϕ−1 be an eigenfunction corresponding to the
eigenvalue λ−1, and let ε > 0. Then we have

Φ(εϕ−1) = − ε2

2
‖ϕ−1‖2

2 −
∫

Ω

F (x, H+(εϕ−1)(x)) dx

≤ − ε2

2
‖ϕ−1‖2

2 + Mε2

∫
Ω

|H+(ϕ−1)|2 dx

+ Nεp

∫
Ω

|H+(ϕ−1)|p dx

=
ε2

2

(
‖ϕ−1‖2(−1 + 2Mλ−1) + 2Nεp−2

∫
Ω

|H+(ϕ−1)|p dx

)
.

Consequently, if ε is small enough, we have ‖εϕ−1‖2 < r and Φ(εϕ−1) <
0. Hence, inf‖w‖2<r Φ(w) < 0 and so v �= 0. Now, put u = H+(v), u
is a solution of equation (1.1). Then, to complete the proof we have to
show that u �= 0. Arguing by contradiction, suppose u = 0. Since v is
a critical point of Φ, we have Φ′(v)(u) = 0 for all u ∈ L2(Ω), that is,

Φ′(v)(u) =
∫

Ω

v(x)u(x) dx − 2
∫

Ω

v1(x)u1(x) dx

−
∫

Ω

f(x, H+(v)(x))H+(u)(x) dx

=
∫

Ω

v(x)u(x) dx − 2
∫

Ω

v1(x)u1(x) dx = 0

for all u ∈ L2(Ω). In particular, choosing u = v in the previous equality,
we obtain ∫

Ω

|v(x)|2 dx = 2
∫

Ω

|v1(x)|2 dx.

Hence,

Φ(v) =
1
2

∫
Ω

|v(x)|2 dx −
∫

Ω

|v1(x)|2 dx = 0,

against the fact that Φ(v) = inf‖w‖2<r Φ(w) < 0.
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3. Application to nonlinear Hammerstein and Fredholm
integral equation. In this section we apply Theorems 2.1 and 2.2
to solve the nonlinear Hammerstein and Fredholm integral equations.
As was stated in the introduction, a nonlinear Hammerstein integral
equation is obtained from (1.1) when K is given by (1.2). So, to apply
the main result we have to impose conditions on the kernel k in order
that K is compact and self-adjoint. As it is well known, such conditions
are the following ones, see [4]:

(3.16) k(x, y) = k(y, x) for almost all x, y ∈ Ω

(3.17)
∫

Ω×Ω

|k(x, y)|p0 dx dy < +∞

for some p0 > p. So, we have the following theorem:

Theorem 3.1. Let k : Ω × Ω → R measurable and satisfying
(3.16) and (3.17). Let K, defined by (1.2), have a finite set E of
negative eigenvalues and satisfy condition α) of Theorem 2.1. Then,
the following nonlinear Hammerstein integral equation

u(x) =
∫

Ω

k(x, y)f(y, u(y)) dy

has at least a solution in Lp(Ω) which is nontrivial if, in addition, F
satisfies the conditions of Theorem 2.2.

Now consider the following nonlinear Fredholm integral equation

(Pγ) u(x) = γ

∫
Ω

k(x, y)u(y) dy +
∫

Ω

k(x, y)f(y, u(y)) dy,

where γ ≥ 0 is a real number and k : Ω × Ω → R is measurable and
satisfying (3.16) and (3.17). Moreover, we suppose that the operator
K defined by (1.2) is positive definite, that is, in this case,

(3.18)
∫

Ω

( ∫
Ω

k(x, y)v(x)v(y) dx

)
dy > 0.

for every v ∈ L2(Ω) \ {0}.
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For every i ∈ N, λi denotes the ith eigenvalue of the linear operator
K : L2(Ω) → L2(Ω)

Kv(x) =
∫

Ω

k(x, y)v(y) dy.

Then, we set μi = 1/λi, for each i ∈ N and μ0 = −∞.

In these settings our result is as follows:

Theorem 3.2. Suppose that μi−1 < γ < μi for some i ∈ N. Set

γ̄ = min{γ − μi−1, μi − γ}.

We assume F satisfying (1.9) with m ∈ ]0, p], a ∈ [0, +∞[∩]γ − μ1, +∞[,
b ∈ Lp/(p−m)(Ω) and c ∈ L1(Ω). Moreover, when m ≥ 2, we also as-
sume

m

γ̄m/2
|Ω|m(p−2/2p) ‖b‖p/(p−m)

(
m − 2
2‖c‖1

)(2/m)−1

<

∣∣∣∣a − (μ1 − γ)
a + (μ1 − γ)

∣∣∣∣ .

Then (Pγ) has at least a solution in Lp(Ω) which is nontrivial if, in
addition, F satisfies the conditions of Theorem 2.2.

Proof. Note that, since γ �= μi for every i ∈ N, the operator
(I−γK)−1 : L2(Ω) → L2(Ω) is linear and bounded. Then (I−γK)−1K
turns out to be a completely continuous linear and self-adjoint operator
because it inherits these properties from K [5, Theorem 16.1.1].

Consequently, (Pγ) is equivalent to the following operator equation

(3.19) u = (I − γK)−1K f u.

It is easy to check that, for every 2 ≤ p ≤ p0,

((I − γK)−1K)(Lq(Ω)) ⊆ Lp(Ω), with q = p/(p − 1).

The eigenvalues σi of ((I − γK)−1K) are related to those of K by

σi =
1

μi − γ
for i ∈ N.
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Hence, (I − γK)−1K has a finite number of negative eigenvalues.
The least in absolute magnitude of such negative eigenvalues is σ1.
The greatest positive eigenvalue is 1/γ̄. At this point, the conclusion
follows by Theorems 2.1 and 2.2, taking into account Corollary 2.1 and
Remark 2.1.

Remark 3.1. Theorem 3.1 is directly comparable to [5, Theorem
16.2.4]. Indeed, from this latter one, an existence result for a solution
in L2(Ω) of equation (Pγ) can be obtained. However, the fixed point
method, used there, does not allow to find natural conditions on F ,
like i) and ii) in Theorem 2.2, in order to exclude that such a solution
is trivial when f(x, 0) = 0 for almost all x ∈ Ω.
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