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1. Introduction. In this paper we discuss a new approach and an
extension of the results in [11] regarding transmission boundary value
problems and spectral theory for singular integral operators on Lips-
chitz domains. The main novelty here is the consideration of variable
coefficient operators and systems which, in turn, requires a change in
the strategy employed in [11]. In that paper, an approach based on
the Serrin-Weinberger asymptotic theory, akin to the influential work
of Dahlberg and Kenig [9], has been used. By further building on the
work in [11, 20, 34, 44], here we develop an alternative approach,
based on the regularity of the Neumann function, which is capable of
handling variable coefficient operators of Schrödinger type on Lipschitz
subdomains of Riemannian manifolds. One key feature of this approach
is that it avoids the discussion of the asymptotic behavior at infinity
for solutions of elliptic PDE’s with bounded, measurable coefficients.
In order to be more specific we shall now introduce some notation,
starting with the geometric setting we have in mind.

Assume that M is a compact Riemannian manifold, of real dimension
n := dimM ≥ 2, equipped with a Lipschitz metric tensor g :=∑
gjkdxj ⊗ dxk. Throughout the paper we let dV := g1/2dx1 . . . dxn,

where g := det gjk, be the volume element on M, and denote by

(1.1) Δu := g−1/2
∑
j,k

∂j

(
gjkg1/2 ∂ku

)
, (gjk)jk := (gjk)−1

jk ,

the Laplace-Beltrami operator on M.
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Recall that a domain Ω ⊂ M is called Lipschitz provided its bound-
ary is given in local systems of coordinates by graphs of real-valued
Lipschitz functions. If Ω is a Lipschitz domain in M, we denote by dσ
the surface measure on ∂Ω, and by ν the outward unit conormal defined
almost everywhere (with respect to dσ) on ∂Ω. Also, we set Ω+ := Ω,
Ω− := M\Ω, and pick some V ∈ L∞(M) which satisfies V ≥ 0 on M
and V > 0 on some set of positive measure in each connected compo-
nent of Ω+ and Ω−. In particular, with Lp

s(M), 1 < p <∞, s ∈ [−1, 1],
denoting the usual Sobolev scale on M, the operator

(1.2) Δ − V : L2
1(M) −→ L2

−1(M)

is bounded and, in fact, invertible provided V �= 0. When V = 0, the
inverse Δ−1 should be understood as

(1.3) Δ−1 : {u ∈ L2
−1(M) : 〈u, 1〉 = 0} −→ L2

1(M)/R.

In either case, we denote by EV (x, y) the Schwartz kernel of (Δ−V )−1.
It follows that EV (y, x) = EV (x, y). Next, corresponding to the
Lipschitz domain Ω ⊂ M, we introduce the single and double layer
potential operators, by

SV f(x) :=
∫

∂Ω

EV (x, y) f(y) dσy, x /∈ ∂Ω,(1.4)

DV f(x) :=
∫

∂Ω

∂νy
EV (x, y) f(y) dσy, x /∈ ∂Ω.(1.5)

Here, ∂ν is the conormal derivative associated with the metric g. The
boundary versions of these operators are

SV f(x) :=
∫

∂Ω

EV (x, y) f(y) dσy, x ∈ ∂Ω,(1.6)

KV f(x) := p.v.
∫

∂Ω

∂νy
EV (x, y) f(y) dσy, x ∈ ∂Ω,(1.7)

where p.v. indicates that the integral is taken in the principal value
sense, i.e., removing small geodesic balls and passing to the limit. These
operators have been studied in some detail in [34], where it has been
proved that they satisfy many of the most important properties of
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their ‘flat-space’ Laplacian counterparts. What enables us to make
this extension is a key result proved in [34] to the effect that, in local
coordinates in which the metric tensor g is given by

∑
gjkdxj ⊗ dxk,

the following asymptotic expansion holds:

(1.8) EV (x, y) = [det (gjk(y))]−1/2[e0(x− y, y) + e1(x, y)],

where the main term is given by

(1.9) e0(z, y) := Cn

(∑
gjk(y)zjzk

)−(n−2)/2

,

and the remainder satisfies

(1.10) |∇j
x∇k

ye1(x, y)| ≤ C|x− y|−j−k, 0 ≤ j, k ≤ 1.

As a result, the classical Calderón-Zygmund theory applies and yields:

(1.11)
∂νSV

∣∣
∂Ω±

= ∓1
2I +K∗

V , ∇tanSV

∣∣
∂Ω+

= ∇tanSV

∣∣
∂Ω−

,

DV

∣∣
∂Ω±

= ±1
2 I +KV , SV

∣∣
∂Ω+

= SV

∣∣
∂Ω−

=: SV ,

where I denotes the identity operator and K∗
V is the formal adjoint of

KV . Here and elsewhere, ∇tan := ∇ − ν∂ν stands for the tangential
gradient on ∂Ω.

Fix some κ = κ(∂Ω) > 1 sufficiently large and define the nontangen-
tial maximal operator M acting on an arbitrary u : Ω± → R by

(1.12) M(u)(x) := sup{|u(y)| : y ∈ Γ±(x)}, x ∈ ∂Ω,

where

(1.13) Γ±(x) := {y ∈ Ω± : dist (x, y) < κ dist (y, ∂Ω)}, x ∈ ∂Ω,

are nontangential approach regions (lying in Ω+ and Ω−, respectively).
These cone-like regions also play a role in defining nontangential
restrictions to the boundary, i.e.,

(1.14) u
∣∣
∂Ω

(x) := lim
y∈Γ±(x)

u(y), for a.e. x ∈ ∂Ω,
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the choice of the sign depending on whether the function u is defined
in Ω+ or Ω−.

For 1 < p < ∞ we denote by Lp(∂Ω) the Lebesgue space of the
measurable, pth power integrable functions on ∂Ω, with respect to the
surface measure dσ. The Sobolev space of order one is then defined as

(1.15) Lp
1(∂Ω) := {f ∈ Lp(∂Ω) : |∇tan f | ∈ Lp(∂Ω)}.

We equip it with the natural norm, i.e., ‖f‖Lp
1(∂Ω) := ‖f‖Lp(∂Ω) +

‖∇tan f‖Lp(∂Ω).

The theorem below, dealing with the well-posedness of the transmis-
sion problem for the Laplace-Beltrami operator across Lipschitz inter-
faces, is indicative of the type of results we wish to establish in this
paper. See also Theorem 5.6 in the body of the paper for a related
version.

Theorem 1.1. Assume that the manifold M, the metric g, the
Lipschitz domain Ω ⊂ M and the potential V are as above and fix a
parameter μ ∈ (0, 1). Then there exists ε = ε(g, ∂Ω, V, μ) > 0 such that
the transmission boundary value problem

(1.16)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(Δ − V )u+ = 0 in Ω+,
(Δ − V )u− = 0 in Ω−,
M(∇u±) ∈ Lp(∂Ω),
u+

∣∣
∂Ω

−u−∣∣
∂Ω

= f ∈ Lp
1(∂Ω),

∂νu
+ − μ∂νu

− = g ∈ Lp(∂Ω),

has a unique solution provided that 1 < p < 2 + ε. In addition, this
solution satisfies

(1.17) ‖M(∇u±)‖Lp(∂Ω) ≤ C
(‖f‖Lp

1(∂Ω) + ‖g‖Lp(∂Ω)

)
and has an integral representation formula in terms of the operators
(1.4) (1.7).

The proof of this theorem occupies Sections 2 4 of the paper. At
the heart of the matter is the regularity of the Neumann functions
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naturally associated with the problem (1.16), which is a topic addressed
in Section 2.

In Section 5, the discussion is centered around the issue of Fred-
holmness and invertibility for operators defined by singular integrals of
layer potential type. Our results in this regard cover a wide range of
spaces, including Lebesgue, Sobolev, Hardy and Besov scales defined
on boundaries of Lipschitz domains. This is done via interpolation and
a general functional analytic scheme based on stability and extrapola-
tion. In turn, these Fredholmness/invertibility results are used to treat
inhomogeneous Laplace transmission problems in Lipschitz domains.

Extending the Lp-theory of transmission problems from single equa-
tions to systems of equations presents a whole new set of challenges,
as many of the basic ingredients (most notably, the local Hölder regu-
larity of weak solutions) cease to function in this context. Our second
round of results in this paper deal with the case of three-dimensional
electro-magnetic inverse scattering phenomena. In Section 6 we extend
the scope of our earlier analysis by including systems of differential op-
erators. The starting point is the study of Lp transmission problems
for the Maxwell system. A key ingredient is the so-called magneto-
static operator, cf. (6.19), and we rely on certain operator theoretical
identities linking this vector-valued object to the scalar harmonic layer
potentials (treated in previous sections). Having dealt with the Lp-
theory we also treat inhomogeneous problems for the Maxwell system
with data in Sobolev-Besov spaces.

Most of the transmission problems considered in the literature fall
under several categories, depending on the nature of the domain and so-
lution. First, there is the class of problems in domains with sufficiently
smooth boundaries (so that they can be flattened and/or pseudo-
differential operator techniques, with a limited amount of smoothness,
can be used). See, e.g., [21 23] for scalar equations and [2, 3, 6,
24, 36, 38, 47], for Maxwell’s equations. Second, there is the class
of problems in domains with isolated singularities (in which scenario,
Mellin transforms are applicable); cf. [37, 39]. Weak (variational) so-
lutions for transmission problems in Lipschitz domains are discussed in
[1, 41]. Finally, strong solutions in Dahlberg’s sense [7, 8] for transmis-
sion problems in Lipschitz domains are treated in [10, 12, 29, 42] for
single equations and [12, 29] for systems (such as Lamé and Maxwell).
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Compared to previous work on transmission problems, our results are
the first to establish well-posedness and estimates for optimal ranges of
indices (of Lebesgue, Sobolev and Besov spaces) in arbitrary Lipschitz
domains and for variable coefficient operators.

2. Transmission Neumann functions. We consider here the case
when n = dimM ≥ 3; the situation when n = 2 is analogous, requiring
only minor alterations, of technical character. In each case, we shall
nonetheless specify how our main results should read when n = 2.

Fix a Lipschitz subdomain Ω of the manifold M and consider two
pairs of functions,

(N+,+(x, y), N−,+(x, y))

and
(N+,−(x, y), N−,−(x, y)),

defined as follows. First, for each fixed y ∈ Ω+, the pair (N+,+(x, y),
N−,+(x, y)) is defined as the (unique) solution of

(2.1)

⎧⎪⎪⎨
⎪⎪⎩

(Δx − V (x))N+,+(x, y) = δx(y) x ∈ Ω+,
(μΔx − μV (x))N−,+(x, y) = 0 x ∈ Ω−,
N+,+(·, y)∣∣

∂Ω
= N−,+(·, y)∣∣

∂Ω
,

∂νN
+,+(·, y) = μ∂νN

−,+(·, y) on ∂Ω,

(here δ stands for the Dirac delta function), whereas for each fixed
y ∈ Ω−, the pair (N+,−(x, y), N−,−(x, y)) is defined as the solution of

(2.2)

⎧⎪⎪⎨
⎪⎪⎩

(Δx − V (x))N+,−(x, y) = 0 x ∈ Ω+,
(μΔx − μV (x))N−,−(x, y) = δx(y) x ∈ Ω−,
N+,−(·, y)∣∣

∂Ω
= N−,−(·, y)∣∣

∂Ω
,

∂νN
+,−(·, y) = μ∂νN

−,−(·, y) on ∂Ω.

The existence of such pairs is a consequence of the Lp theory with
p near 2 from [32]. Then the usual integration by parts argument
continues to work in this setting and yields the symmetry conditions

(2.3)

⎧⎨
⎩
N+,+(y, x) = N+,+(x, y) for each x, y ∈ Ω+,
N−,−(y, x) = N−,−(x, y) for each x, y ∈ Ω−,
N+,−(y, x) = N−,+(x, y), for each x ∈ Ω−, y ∈ Ω+.
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For x ∈ M and y ∈ M \ ∂Ω, we then set

(2.4) N(x, y) :=

⎧⎪⎪⎨
⎪⎪⎩
N+,+(x, y) if x ∈ Ω+, y ∈ Ω+,
N+,−(x, y) if x ∈ Ω+, y ∈ Ω−,
N−,+(x, y) if x ∈ Ω−, y ∈ Ω+,
N−,−(x, y) if x ∈ Ω−, y ∈ Ω−,

i.e., with χA denoting the characteristic function of A,

(2.5) N(x, y) =
∑

j,k∈{±}
N j,k(x, y)χΩj

(x)χΩk
(y),

where the summation is performed over all possible choices of the signs
j, k ∈ {±}. From (2.4) it follows that

(2.6) N(y, x) = N(x, y), for all x, y ∈ M \ ∂Ω.

To highlight the importance of this Neumann function in the context
of the transmission problem (1.16) we note that successive integrations
by parts, along with the symmetry formulas (2.4), show that if u± solve

(2.7)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(Δ − V )u+ = 0 in Ω+,
(Δ − V )u− = 0 in Ω−,
M(∇u±) ∈ L2(∂Ω),
u+

∣∣
∂Ω

= u−
∣∣
∂Ω
,

∂νu
+ − μ∂νu

− = f ∈ L2(∂Ω),

then the following integral representation formulas hold:

u+(x) = −
∫

∂Ω

N+,+(x, y) f(y) dσy, x ∈ Ω+,(2.8)

u−(x) = −
∫

∂Ω

N−,−(x, y) f(y) dσy, x ∈ Ω−.(2.9)

Another way of introducing the Neumann kernel is as follows. Con-
sider

(2.10) L := div (A∇ ), A := χΩ+I + μχΩ−I



368 D. MITREA, M. MITREA AND Q. SHI

where the gradient and the divergence are those associated with the
Riemannian metric g on M. It is then not difficult to check that if

(2.11) Ṽ := χΩ+V + μχΩ−V,

then

(2.12) L− Ṽ : L2
1(M) −→ L2

−1(M)

is invertible. A direct calculation then shows that N(x, y) introduced
in (2.4) (2.5) is the Schwartz kernel of (L− Ṽ )−1. In particular,

(2.13)
(L− Ṽ )w = F ⇐⇒ w = (L− Ṽ )−1F

⇐⇒ w(x) =
∫
M
N(x, y)F (y) dVy.

On the other hand, w ∈ L2
1(M) is the unique solution of (L−Ṽ )w = F ,

for a given F ∈ L2
−1(M), if and only if the pair w± := w|Ω± solves

(2.14)

(TBVP-inhomogeneous)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(Δ − V )w+ = F+ in Ω+,
(μΔ − μV )w− = F− in Ω−,
Trw+ = Trw− in L2

1/2(∂Ω),

∂νw
+ = μ∂νu

− in L2
−1/2(∂Ω),

where F± := F |Ω± , Tr denotes the trace operator (in the sense of
Sobolev spaces), and L2

±1/2(∂Ω) are L2-based Sobolev spaces of order
of smoothness ±1/2 on ∂Ω. Consequently, the solution w± of (2.14)
can be represented in the form
(2.15)

w+(x) =
∫
M
N(x, y)F (y) dVy,

=
∫

Ω+

N+,+(x, y)F+(y) dVy+
∫

Ω−
N+,−(x, y)F−(y) dVy, x∈Ω+,

(2.16)

w−(x) =
∫
M
N(x, y)F (y) dVy,

=
∫

Ω+

N−,+(x, y)F+(y) dVy+
∫

Ω−
N−,−(x, y)F−(y) dVy, x∈Ω−.
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We now analyze the behavior of the Neumann kernel near the di-
agonal. The starting point is the following simple but useful esti-
mate on solutions of the inhomogeneous problem. Specifically, given
F ∈ L2(M), the solution w± ∈ L2

1(Ω±) of (L− Ṽ )w = F in M (recall
that w± := w|Ω±), satisfies

(2.17) ‖w+‖L2n/(n−2)(Ω+) + ‖w−‖L2n/(n−2)(Ω−) ≤ C ‖F‖L2n/(n+2)(M).

Indeed, Sobolev’s and Poincaré’s inequalities give
(2.18)

‖w±‖2
L2n/(n−2)(Ω±) ≤ C ‖w±‖2

L2
1(Ω±) ≤ C

∫
Ω±

{|∇w±|2 + V |w±|2} dV .
Thus,

(2.19) ‖w+‖2
L2n/(n−2)(Ω+) + ‖w−‖2

L2n/(n−2)(Ω−)

≤ C

( ∫
Ω+

{|∇w+|2 +V |w+|2} dV +μ

∫
Ω−

{|∇w−|2 +V |w−|2} dV)
.

The variational characterization of w as a solution of (L − Ṽ )w = F
gives that the right-hand side of (2.19) is equal to C

∫
M wF dV so that

(2.20) ‖w‖2
L2n/(n−2)(M) ≤ C

∣∣∣∣
∫
M
wF dV

∣∣∣∣.
From this, (2.17) follows, by Hölder’s inequality.

Next we seek a pointwise estimate on solutions of (L−V )w = F . To
this end, suppose K ⊂ M is a compact set and assume that F ∈ L2(M)
satisfies

(2.21) suppF ⊂ K.

Let w := (L− Ṽ )−1F ∈ L2
1(M) so that (L− Ṽ )w = 0 in M\K. Then,

so we claim,
(2.22)

|w(x)| ≤ C ‖F‖L2n/(n+2)(K) dist (x,K)−(n−2)/2 for x ∈ M \K.
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To see this, we recall the estimate

(2.23) ‖w‖L2n/(n−2)(M) ≤ C ‖F‖L2n/(n+2)(M)

established in the previous discussion. Fix x ∈ M \ K, and set
r0 := dist (x,K). In particular, (with Br(x) denoting the ball of center
x and radius r),

(2.24) (L− Ṽ )w = 0 in Br0(x),

so (2.22) follows from the L∞ estimate of Moser in which we take
p = 2n/(n − 2). Recall that Moser’s L∞ estimate, i.e., the sub-mean
inequality for nonnegative sub-solutions of L, asserts that

(2.25)
sup{w(x) : x ∈ BR/2} ≤ Cμ,n,p

(
R−n

∫
BR

wp dx

)1/p

,

0 < p <∞,

uniformly for any sub-solution w ≥ 0 of L in BR. This is proved in
Theorem 2 [35, pp. 581 582] when 1 < p <∞. The extension to p ≤ 1
uses an argument of Dahlberg and Kenig which may be found in [13,
pp. 1004 1005]. See also [19, Lemma 1.1.8].

We can now use (2.22) to estimate N(x, y). Specifically, we aim to
show that

(2.26)
|N(x, y)| ≤ C dist (x, y)−(n−2),

uniformly for (x, y) ∈ M×M\ diag.

In order to justify this estimate, fix x, y ∈ M, x �= y otherwise arbitrary,
set r := dist (x, y) > 0 and take K := Br(x). Applying (2.22) to F
supported in K, we have by relying on the integral representation
formulas (2.15) (2.17) and Riesz duality the following sequence of
estimates

(2.27)
{ ∫

Br(x)

|N(x, y)|2n/(n−2) dVy

}(n−2)/2n

= sup
{∣∣∣∫

M
N(x, y)F (y) dVy

∣∣∣ : ‖F‖L2n/(n+2)(M) = 1, suppF ⊆Br(x)
}

≤ C r−(n−2)/2.
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Now N(x, y) = N(y, x), so N(x, y) also solves a uniformly elliptic,
divergence-form PDE with L∞ coefficients as a function of y, for
y ∈ Br(x). Hence (2.27) plus another application of Moser’s L∞

estimate (2.25) readily gives (2.26).

The De Giorgi-Nash-Moser theory, in concert with (2.27), also gives
Hölder estimates. Specifically, there exists α ∈ (0, 1) depending only
on the dimension and the ellipticity constant of the operator such that
|u(p) − u(q)| ≤ C|(p − q)/R|α‖u‖L∞(B2R), for p, q ∈ BR, for any u
null-solution in B2R, cf. also [14, Theorem 8.22]. In our case, given
x, y ∈ M, x �= y, we apply this result to the ball centered at y with
radius R := dist (x, y)/2, and to the function u := N(·, y). This and
(2.26) then yield

(2.28)
|N(x, y) −N(x′, y)| ≤ C

dist (x, x′)α

dist (x, y)n−2+α
,

if dist (x, x′) ≤ (1/2) dist (x, y).

Furthermore, from (2.28) and the symmetry property (2.6), we can also
deduce

(2.29)
|N(x, y) −N(x, y′)| ≤ C

dist (y, y′)α

dist (x, y)n−2+α
,

if dist (y, y′) ≤ (1/2) dist (x, y).

3. Hardy and Sobolev-Besov spaces. For the reader’s con-
venience, here we recall some well-known facts and definitions about
Hardy and Sobolev-Besov spaces. For the latter scale, see [5] for the
setting of homogeneous spaces, as well as [45] for an excellent up-to-
date account.

Let Ω be a Lipschitz domain and (n− 1)/n < p ≤ 1. A surface ball
Sr(x) is any set of the form Br(x) ∩ ∂Ω, with x ∈ ∂Ω and 0 < r < ∞.
Call a function a : ∂Ω → R an atom for the Hardy space Hp

at(∂Ω)
(p-atom for short), if either

(i) there exists an Sr-surface ball:

(3.1) supp a ⊆ Sr, ‖a‖L∞(∂Ω) ≤ r−(n−1)/p, and
∫

∂Ω

a dσ = 0,
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or

(ii) there exists an Sr-surface ball, with r ≥ 1, such that

(3.2) supp a ⊆ Sr, ‖a‖L∞(∂Ω) ≤ r−(n−1)/p.

We then set
(3.3)

Hp
at(∂Ω) :=

{∑
j

λjaj : {λj}j ∈ �p, aj satisfies either (3.1) or (3.2)
}
,

and endow it with the natural infimum norm. The series is convergent
in (Cα(∂Ω))∗ with α := (n−1)(1/p−1) ∈ (0, 1) and in L1(∂Ω) if p = 1.
The Hardy space (3.3) is local in the sense that Hp

at(∂Ω) is a module
over the Hölder space Cα(∂Ω) with α > (n− 1)(p−1 − 1).

We shall also work with H1,p
at (∂Ω), (n− 1)/n < p ≤ 1, the �p-span

of ‘regular’ atoms on ∂Ω. More specifically, for 1/q := 1/p− 1/(n− 1)
define

(3.4) H1,p
at (∂Ω)

:=
{∑

j

λjaj convergent in Lq(∂Ω) : (λj)j ∈ �p, aj as in (3.5)
}
,

and set ‖f‖H1,p
at (∂Ω) := inf [

∑ |λj |p]1/p, where the infimum is taken over
all possible representations. Here, for (n − 1)/n < p ≤ 1 and a fixed
max{1, p} < p0 <∞, a function a : ∂Ω → R is called a regular atom if
there exists a surface ball Sr so that

(3.5) supp a ⊆ Sr, ‖∇tana‖Lp0 (∂Ω) ≤ r(n−1)((1/p0)−(1/p))

where ∇tan denotes the tangential gradient on ∂Ω. Different choices
of the parameter p0 above yield the same topology on H1,p

at (∂Ω). This
regular Hardy space is then a module over Lipcomp(∂Ω), the class of
Lipschitz, compactly supported functions on ∂Ω.

Besov spaces, Bp,q
s (∂Ω) with (n− 1)/n < p, q ≤ ∞ and 0 < |s| < 1

on the boundary of a domain Ω can be introduced via localization
involving a smooth partition of unity and pull-back. As such, it suffices
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to consider the case when Ω is an Euclidean domain, lying above the
graph of a Lipschitz function ϕ : Rn−1 → R. In this scenario, we set

(3.6) f ∈ Bp,q
s (∂Ω) ⇐⇒ x′ �−→ f(x′, ϕ(x′)) ∈ Bp,q

s (Rn−1),

whenever (n − 1)/n < p, q ≤ ∞, (n − 1)(1/p − 1)+ < s < 1, where
(a)+ := max{a, 0}. Also, we set

(3.7) f ∈ Bp,q
s−1(∂Ω) ⇐⇒ f(·, ϕ(·))

√
1 + |∇ϕ(·)|2 ∈ Bp,q

s−1(R
n−1),

whenever (n− 1)/n < p, q ≤ ∞ and (n − 1)(1/p − 1)+ < s < 1. In
particular, for −1 < s < 0 and 1 < p, q <∞, there holds

(3.8) Bp,q
s (∂Ω) = (Bp′,q′

−s (∂Ω))∗, 1/p+ 1/p′ = 1, 1/q + 1/q′ = 1,

where the duality pairing between f ∈ Bp,q
s (∂Ω) and g ∈ Bp′,q′

−s (∂Ω) is
(a natural extension of)

∫
∂Ω
fg dσ.

The Hölder class Cs(∂Ω) corresponds to the limiting case p = q = ∞
of the Besov scale. Besov spaces with p > 1 and s ∈ (0, 1) can also be
obtained from Sobolev spaces via real interpolation, i.e.,

(3.9) Bp,q
s (∂Ω) =

(
Lp(∂Ω), Lp

1(∂Ω)
)
s,q
, 1 < p, q <∞, 0 < s < 1.

The standard Sobolev scale Lp
s(M), 1 < p < ∞, s ≥ 0, is obtained

by lifting Lp
s(Rn) := {(I − Δ)s/2f : f ∈ Lp(Rn)} to M via a smooth

partition of unity and pull-back. Let Lp
s(Ω) denote the restriction of

elements in Lp
s(M) to the Lipschitz domain Ω, and Lp

s,0(Ω) stand for
the subspace consisting of restrictions to Ω of elements from Lp

s(M)
with support contained in Ω. Finally, for s > 0 and 1 < p, q <∞ with
1/p+ 1/q = 1, we set Lp

−s(Ω) := (Lq
s,0(Ω))∗.

For a more detailed exposition, the interested reader is referred to
[40, 46].
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4. Proof of Theorem 1.1. We proceed in a series of steps, starting
with

Step I. Here we prove that there exists ε = ε(∂Ω) > 0 such that (1.16)
is well-posed whenever p ∈ (2 − ε, 2 + ε). The key ingredient in this
regard, a proof of which can be found in [32], is the fact that

(4.1)⎧⎪⎨
⎪⎩
λI +K∗

V : Lp(∂Ω) ∼−→ Lp(∂Ω) and
SV : Lp(∂Ω) ∼−→ Lp

1(∂Ω) isomorphically for each λ ∈ R,
|λ| ≥ 1

2 , 2 − ε < p < 2 + ε.

Granted (4.1), the issue of existence for (1.16) when 2 − ε < p < 2 + ε
can be handled as follows. First, pick ψ ∈ Lp(∂Ω) such that Sψ = f
and then take u± := Sh± in Ω± where, with λ := −1/2(1 + μ)/(1 − μ),
the functions h± ∈ Lp(∂Ω) are given by

(4.2)

h+ :=
1

1−μ
(
λI+K∗

V

)−1[
g−μ((1/2)I+K∗

V )ψ
]
, and h− := h+ −ψ.

Finally, uniqueness for (1.16) also follows from (4.1) since, as proved
in [32], any functions u± such that (Δ − V )u± = 0 in Ω± and
M(∇u±) ∈ Lp(∂Ω), |p− 2| < ε can be represented in terms of a single
layer in Ω+ and Ω−, respectively.

Step II. Here we prove certain Rellich estimates for the transmission
problem (1.16). The departure point is a Rellich-type identity proved
in [32]. Specifically, let Ω be a Lipschitz subdomain of M, and suppose
that u ∈ C1

loc(Ω) is well behaved near ∂Ω and has Δu ∈ L2(Ω). Also,
fix a smooth vector field θ on the manifold M, and denote by θtan the
tangential component of θ on ∂Ω. Then,

(4.3)

∫
∂Ω

〈ν, θ〉{|∇tanu|2 − (∂νu)2
}
dσ

= 2
∫

∂Ω

(∇θtanu)(∂νu) dσ − 2
∫

Ω

(∇θu)Δu dV

+
∫

Ω

{
(div θ)|∇u|2 − 2(Lθg)(∇u,∇u)} dV
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where, in the last integral in (4.3), Lθg denotes the Lie derivative of
the metric tensor g with respect to θ.

Next, fix x∗ ∈ ∂Ω, 0 < R < diam Ω, and assume that 〈θ, ν〉 ≥ 0
on ∂Ω, 〈θ, ν〉 ≥ κ > 0 on BR/4(x∗) ∩ ∂Ω, supp (θ) ⊂ BR/2(x∗) ∩ ∂Ω,
and |∇θ| ≤ C/R. Also, fix a potential V as before. It is convenient
to assume that its support is sufficiently small so that θ vanishes on
it. Finally, assume that the functions u±, defined in Ω+ and Ω−,
respectively, are well behaved near ∂Ω and satisfy (Δ − V )u± = 0
in BR(x∗) ∩ Ω± as well as ∇tanu

+|BR(x∗)∩∂Ω = ∇tanu
−|BR(x∗)∩∂Ω and

∂νu
+|BR(x∗)∩∂Ω = μ∂νu

−|BR(x∗)∩∂Ω.

The Rellich identity (4.3) written for u± in Ω+ and Ω−, respectively,
then gives

(4.4)
∫

BR(x∗)∩∂Ω

〈θ, ν〉 [|∇tanu
±|2 − |∂νu

±|2] dσ
= 2

∫
BR(x∗)∩∂Ω

(∇θtanu
±)(∂νu

±) dσ +
∫

BR(x∗)

O(|∇u±|2|∇θ|) dV

+
∫

∂BR(x∗)∩Ω±
O(|∇u±|)2 dσ.

Next, multiplying with μ formula (4.4), written for the choice ‘−’ and
subtracting it from formula (4.4), written for the choice ‘+’ yields

(4.5)
∫

BR/4(x∗)∩∂Ω

[
(1 − μ)|∇tanu

+|2 + ((1/μ) − 1)|∂νu
+|2] dσ

≤ C

{∫
∂BR(x∗)

|∇u|2 dσ +R−1

∫
BR(x∗)

|∇u|2 dV
}
,

where u := u+ in Ω+ and u := u− in Ω−. By suitably averaging both
sides of this estimate in the parameter R, e.g., replacing R by τR and
integrating in τ ∈ [1/2, 2], finally gives

(4.6)
∫

BR/8(x∗)∩∂Ω

[
(1 − μ)|∇tanu

+|2 + ((1/μ) − 1)|∂νu
+|2] dσ

≤ C

R

∫
B2R(x∗)

|∇u|2 dV .
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Step III. Here we begin the process of analyzing (1.16) with atomic
data. For the time being, the goal is to establish a key estimate, to the
effect that if a ∈ L∞(∂Ω) is a 1-atom, then the solution u = (u+, u−)
of (1.16) with f = 0 and g = a satisfies

(4.7) ‖M(∇u+)‖L1(∂Ω) + ‖M(∇u−)‖L1(∂Ω) ≤ C.

In the proof of this result, the following pointwise decay estimate plays
a crucial role. If u± are as above and α ∈ (0, 1) is as in (2.28) (2.29),
then, so we claim,

(4.8) |u±(x)| ≤ C
rα

dist (x, x0)n−2+α
,

for x ∈ Ω±, dist (x, x0) ≥ 4r. Here r and x0 are, respectively, the radius
and the center of the minimal surface ball containing the support of the
atom a. The case r ≥ 1 is elementary and below we assume that r < 1
so that the atom satisfies a vanishing moment condition. In this latter
scenario, as pointed out before, cf. (2.8) (2.9), the solution (u+, u−) to
the transmission problem (1.16) can be written in the form

(4.9) u+(x) = −
∫

∂Ω

{
N+,+(x, y) −N+,+(x, xo)

}
a(y) dσy, x∈Ω+,

(4.10) u−(x) = −
∫

∂Ω

{
N−,−(x, y) −N−,−(x, xo)

}
a(y) dσy, x∈Ω−,

by using
∫

∂Ω
a dσ = 0. Then the estimate (4.8) follows from this and

(2.29), given the hypotheses on the support, size and oscillations of the
atom a.

After this preamble, we turn our attention to the proof of (4.7). Let
S1 := B4r(x0) ∩ ∂Ω, and for � ≥ 2 (and 2�r ≤ diam Ω), set

(4.11) B� := B2�+1r(x0) \B2�r(x0), S� := B� ∩ ∂Ω.

We will estimate M(∇u±) on each set S�. First, the contribution
coming from S1 can be readily controlled using Hölder’s inequality and
the L2-theory from Step I.
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Handling the contribution from S� for � ≥ 2 will involve several
ingredients, including (4.8), Caccioppoli’s inequality and the local
Rellich estimate from Step II. To proceed, for each point x ∈ ∂Ω and
R > 0, we introduce some ‘truncated’ maximal operators, i.e.,

(4.12) Mj,R(u)(x) := sup
{|u(y)| : y ∈ Γ±

j,R(x)
}
, j = 1, 2,

where

Γ±
1,R(x) := {y ∈ Γ±(x) : |x− y| > R},(4.13)

Γ±
2,R(x) := {y ∈ Γ±(x) : |x− y| ≤ R}.(4.14)

Accordingly, we then set

(4.15) Ij,� :=
∫

S�

[Mj,r(∇u+) +Mj,r(∇u−)] dσ, j = 1, 2,

for � ≥ 2, if 2�r is not large; say 2�r ≤ A. Also, pick A so that there
is a set Q of positive measure in M, disjoint from all the sets B� with
2�r ≤ A, such that V > 0 on Q. The expressions I1,�, I2,� will now be
analyzed separately.

Step IV. Here we deal with estimates away from the boundary. As
regards the contribution from M1,r(∇u±), if Δj := B(x0, 2jr)∩∂Ω and
if the points x ∈ Δj+1\Δj and z ∈ Γ±(x) are such that dist (z, x) ≥ 2jr,
then interior estimates give

(4.16) δ(z)|∇u±(z)| ≤ C r−n/2

( ∫
Bδ(z)/2(z)

|u±(y)|2 dVy

)1/2

,

where δ is the distance function to ∂Ω. Note that y ∈ Bδ(z)/2(z)
forces |u±(y)| ≤ Crαdist (x, x0)−n+2−α, by the decay estimate (4.8).
Therefore, keeping also in mind that δ(z) ≥ C2jr ≥ Cdist (x, x0), we
have

(4.17) |∇u±(z)| ≤ C
rα

dist(x, x0)n−1+α
.

This, in turn, allows us to write

(4.18) M1,r(∇u±)(x) ≤ C
rα

dist(x, x0)n−1+α
, for x ∈ Δj+1 \ Δj ,
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so that, ultimately,

(4.19)
∫

∂Ω\Δ1

[M1,r(∇u+) +M1,r(∇u−)] dσ ≤ C,

as desired. The missing piece, i.e., ‖M1,r(∇u±)‖L1(Δ1), is easily
estimated using the L2-theory from Step I, and this finishes the proof
of (4.7) with M1,r in place of M .

Step V. Here we deal with estimates near the boundary. Much as in
[11], the contribution from M2,r can be estimated as follows:

(4.20)

I2,� ≤ C(2�r)(n−1)/2

{∫
S�

[
|M2,r(∇u+)|2 + |M2,r(∇u−)|2

]
dσ

}1/2

≤ C(2�r)(n−1)/2(2�r)−3/2

{∫
c12�r≤dist (x,x0)≤c22�r

|u(x)|2 dVx

}1/2

where the first inequality is just Hölder’s, and the second relies on
the well-posedness of the L2 Neumann problem from [32], the Rellich
estimate (4.6) and Caccioppoli’s inequality, cf., e.g., [19, p. 2].

At this stage, we invoke the estimate (4.8) on u to deduce

(4.21) I2,� ≤ C(2�r)(n−4)/2(2�r)n/2 rα

(2�r)n−2+α
= C 2−α�,

for some α ∈ (0, 1); note that all the r’s cancel above. From this we
conclude that

(4.22)
N∑

�=1

[
‖M2,r(∇u+)‖L1(S�) + ‖M2,r(∇u−)‖L1(S�)

]
≤ C,

where N is chosen so that 2Nr ≈ A. The estimate of M2,r(∇u±) on the
remainder of ∂Ω follows from the same analysis as that for M(∇u±)
on SN just done. Thus, the estimate (4.7) is proven.
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Step VI. Here we finish the proof of the well-posedness of (1.16)
with atomic data. Concretely, consider the existence issue for the
transmission problem (1.16) when f ∈ H1,1

at (∂Ω) and g ∈ H1
at(∂Ω).

Since, as proved in [34], SV : H1
at(∂Ω) ∼→ H1,1

at (∂Ω) isomorphically,
matters can easily be reduced to the case when f = 0, by subtracting
from u+ a suitable single layer potential. On the other hand, when
f = 0 and g =

∑
j λjaj ∈ H1

at(∂Ω), existence and L1-estimates for
(1.16) follow from Steps I IV by treating one atom at a time.

To prove uniqueness, let u± ∈ C1
loc(Ω±) solve (1.16) with p = 1 and

f = g = 0. The claim is that u± ≡ 0 in Ω± (recall that we are assuming
that V > 0 on a set of positive measure in each component of Ω+ and
Ω−). Fix an arbitrary point x0 ∈ Ω+. By the De Giorgi-Nash-Moser
theory and our assumptions,

(4.23)
u± ∈ Cα(Ω̄±), M(∇u±) ∈ L1(∂Ω),

M(∇N±,+(·, x0)) ∈ L2(∂Ω),
N±,+(·, x0) ∈ L∞ near ∂Ω.

These suffice to justify (via a limiting process which involves two
suitable sequences of smooth subdomains Ω±

j ↗ Ω±) the integral
representations

(4.24)
u+(x0) =

∫
∂Ω

∂νy
N+,+(y, x0)u+(y) dσy

−
∫

∂Ω

N+,+(y, x0)∂νu
+(y) dσy

(4.25)
0 = −

∫
∂Ω

∂νy
N−,+(y, x0)u−(y) dσy

+
∫

∂Ω

N−,+(y, x0)∂νu
−(y) dσy.

In concert with the transmission boundary conditions satisfied by the
pairs (u+, u−) and (N+,+(·, x0), N−,+(·, x0)), the above identities yield
u+(x0) = 0, after some minor algebra. Since x0 ∈ Ω+ was arbitrary,
it follows that u+ ≡ 0 in Ω+; similarly, u− ≡ 0 in Ω−. This finishes
the proof of the fact that (1.16) is well-posed when p = 1 (with the
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understanding that, in this case, the boundary data (f, g) are selected
from H1,1

at (∂Ω) ⊕H1
at(∂Ω)).

Step VII. Here we prove the well-posedness of (1.16) for 1 < p < 2.
Existence follows by interpolating between the results in Step I and
Step VI, while uniqueness is proved much as in Step VI.

This finishes the proof of Theorem 1.1, modulo the claim about the
integral representation of the solution. This, in turn, is obtained a
posteriori, from the Lp theory for the Neumann problem from [34] and
the invertibility results established in the next section.

5. The invertibility of singular integral operators. Based on
the fact that (1.16) is well-posed the same type of argument as in [11]
proves the following.

Corollary 5.1. Under the assumptions of Theorem 1.1, there exists
ε > 0 such that

λI +K∗
V : Lp(∂Ω) −→Lp(∂Ω),(5.1)

λI +KV : Lp
1(∂Ω) −→Lp

1(∂Ω),(5.2)
λI +K∗

V : H1
at(∂Ω) −→H1

at(∂Ω),(5.3)

λI +KV : H1,1
at (∂Ω)−→H1,1

at (∂Ω),(5.4)

are Fredholm with index zero for any potential V and any λ ∈ R with
|λ| ≥ 1/2, provided 1 < p < 2 + ε. In fact, these operators are genuine
isomorphisms when the potential V is a positive constant, say V ≡ ω,
for some ω ∈ R, ω > 0.

Our goal is to extend the above Fredholmness/invertibility results to
other function spaces of interest via stability and extrapolation. To set
the stage, we recall an abstract result from [17].

Proposition 5.2. Let {Xp}p∈I , I open interval, be quasi-Banach
spaces forming a complex interpolation scale, i.e., for any p0, p1 ∈ I

(5.5) [Xp0 , Xp1 ]θ = Xp, if θ ∈ (0, 1) and 1/p = (1−θ)/p0+θ/p1,
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and assume that

(5.6) T : Xp −→ Xp

is a linear operator, bounded for each p ∈ I. Call a certain property of
(5.6) stable if the collection of p’s for which it holds is open.

Then being Fredholm and being an isomorphism are stable states.

Furthermore, if J ⊂ I is an open interval such that T is an isomor-
phism of Xp for each p ∈ J , then T−1

p0
agrees with T−1

p1
on Xp0 ∩Xp1

for any p0, p1 ∈ J (where T−1
p stands for the inverse of T on Xp).

Two such scales of quasi-Banach spaces are going to be of importance
for us. First,

(5.7) Hp(∂Ω) :=
{
Lp(∂Ω) if p > 1,
Hp

at(∂Ω) if (n−1)/n < p ≤ 1,

is known to be a complex interpolation scale, see [4, 15, 26]. Second,

(5.8) H1,p(∂Ω) :=
{
Lp

1(∂Ω) if p > 1,
H1,p

at (∂Ω) if (n−1)/n < p ≤ 1,

has also been shown to be a complex interpolation scale in [26].

We continue to review the functional analytic tools we are going to
rely upon in our analysis of the operators λI +KV and λI +K∗

V . This
time, fix X a complete, metrizable, locally bounded, linear space. We
say that X∗ separates the points in X if x = 0 ⇔ f(x) = 0, for all
f ∈ X∗. All quasi-Banach spaces considered in this paper are assumed
to have duals which separate their points, i.e., dual rich.

Let 0 < p ≤ 1. A set S ⊆ X is called absolutely p-convex if S
coincides with its absolutely p-convex hull, defined as

(5.9)
{ ∑

finite

λjaj : aj ∈ S,
∑

|λj |p ≤ 1
}
.

For each 0 < p ≤ 1, let WX,p be the absolutely p-convex hull of the
unit ball in X and set

(5.10) ‖|x|‖p := inf
{
λ > 0 : x/λ ∈WX,p

}
.
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The above formula defines a p-norm, that is, ‖|x|‖p = 0 if and only if
x = 0, for every λ ∈ C it holds that ‖|λx|‖p = |λ| ‖|x|‖p, and

(5.11) ‖|x+ y|‖p
p ≤ ‖|x|‖p

p + ‖|y|‖p
p, for all x, y ∈ X.

The ‖| · |‖p “norm” generates a locally p-convex topology, weaker than
the original topology on X.

Recall that, according to the classical Aoki-Rolewicz theorem, cf.,
e.g., [18], any locally bounded linear space is p-convex, for some
0 < p ≤ 1; i.e., its topology comes from a suitable p-norm. Call X
a p-Banach space if its topology is given by a p-norm, with respect to
which X is complete.

For each X as above, we denote by Ep(X) the p-envelope of X, i.e.,
the completion of X in the quasi-norm ‖| · |‖p. It follows that Ep(X)
is a p-Banach space, which should be thought of as the “smallest”
locally p-convex topological space containing X. In fact, if X is locally
bounded, then Ep(X) is the “smallest” p-Banach space containing X.
In particular, if X is a p-Banach space to begin with, then Ep(X) = X.
When p = 1, Ep(X) corresponds to the so-called Banach envelope of
X, i.e., the “smallest” Banach space containing X. See [26].

Next we record a useful abstract extrapolation result from [25].

Proposition 5.3. Let X be as above and fix 0 < p ≤ 1. Any
isomorphism of X extends uniquely to an isomorphism of Ep(X).
Furthermore, any endomorphism onto X extends to an endomorphism
onto Ep(X).

Some specific calculations of p-envelopes are as follows; cf. [25].

Proposition 5.4. If Ω is a Lipschitz domain and (n− 1)/n < q <
p ≤ 1, then

Ep(H
1,q
at (∂Ω)) = Bp,p

1−(n−1)(1/q−1/p)(∂Ω),(5.12)

Ep(H
q
at(∂Ω)) = Bp,p

−(n−1)(1/q−1/p)(∂Ω).(5.13)
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We are now ready to discuss the main result of this section. Fix
a Lipschitz domain Ω in M and assume that (n− 1)/n < p ≤ ∞,
(n − 1)((1/p) − 1)+ < s < 1. Then, for each ε ∈ (0, 1] consider the
following four conditions
(5.14)

(I) :
n−1

n−1+ ε
< p ≤ 1 and (n−1)

(
1
p
− 1

)
+ 1 − ε < s < 1;

(II) : 1 ≤ p ≤ 2
1+ε

and
2
p
− 1 − ε < s < 1;

(III) :
2

1+ε
≤ p ≤ 2

1−ε and 0 < s < 1;

(IV) :
2

1−ε ≤ p ≤ ∞ and 0 < s <
2
p

+ ε,

if n ≥ 3, and the following three conditions

(5.15)

(I′) :
2

1+ε
≤ p ≤ 2

1−ε and 0 < s < 1;

(II′) :
2

3+ε
< p <

2
1+ε

and
1
p
− 1+ε

2
< s < 1;

(III′) :
2

1−ε < p ≤ ∞ and 0 < s <
1
p

+
1+ε

2
,

if n = 2. It is illuminating to point out that the conditions (5.14)
amount to the membership of the point with coordinates (s, 1/p) to
the two-dimensional region depicted in Figure 1. An appropriate
interpretation applies to the set of conditions (5.15).
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Theorem 5.5. Retain the same geometrical assumptions as in
Theorem 1.1 and recall the layer potential operators (1.4) (1.7). For
any Ω Lipschitz subdomain of the manifold M, n ≥ 2, there exists
ε = ε(∂Ω) > 0 so that whenever λ ∈ R has |λ| > 1/2, the operators

λI +KV : Bp,p
s (∂Ω) ∼−→ Bp,p

s (∂Ω)(5.16)

λI +K∗
V : Bq,q

−s(∂Ω) ∼−→ Bq,q
−s(∂Ω)(5.17)

are isomorphisms provided (s, 1/p) and (1 − s, 1/q) satisfy (5.15) if
n = 2 and (5.14) if n ≥ 3.

Proof. For simplicity, assume that n ≥ 3, and fix λ ∈ R with
|λ| > 1/2. The idea is to start with the fact that λI + KV is an
isomorphism of H1,1

at (∂Ω) if V is a positive constant and then conclude
that λI + KV is an isomorphism of H1,p

at (∂Ω) for 1 − ε < p ≤ 1, for
some ε = ε(∂Ω) > 0, by virtue of Proposition 5.2. With this in hand,
Propositions 5.3 5.4 then prove (5.16) if 0 ≤ (n−1)(1/p−1) < 1−s < ε.

A similar approach, starting with the fact that λI + K∗
V is an

isomorphism of H1
at(∂Ω) if V is a positive constant, yields that λI+K∗

V

is an isomorphism of the space Bp′,p′
−s (∂Ω) whenever 0 ≤ (n− 1) ·

(1/p− 1) < s < ε. Since (B1,1
−s (∂Ω))∗ = Cs(∂Ω), this also gives that

(5.18)

λI +KV is an isomorphism of Cs(∂Ω) if 0 < s < ε, |λ| > 1
2
.

The final result, when n ≥ 3, is then obtained by interpolation.
The case n = 2 is similar, except that we start perturbing the case
p = 2/3 (rather than p = 1). Passing from constant potentials to the
general case when V ∈ L∞(M) is then done by noticing that, for any
V1, V2 ∈ L∞(M), the differences KV1−KV2 and K∗

V1
−K∗

V2
are compact

operators on the corresponding Besov spaces. This finishes the proof
of the theorem.

Incidentally, the above reasoning also proves that

λI +K∗
V : Hp

at(∂Ω) −→ Hp
at(∂Ω),(5.19)

λI +KV : H1,p
at (∂Ω) −→ H1,p

at (∂Ω),(5.20)
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are Fredholm with index zero for any potential V and any number
λ ∈ R with |λ| ≥ 1/2, granted that 1 − ε < p ≤ 1 when n ≥ 3 and
2/3 − ε < p ≤ 1 when n = 2. As before, these operators are genuine
isomorphisms when the potential V is a positive constant.

The conclusions in Theorem 5.5 are particularly relevant in the
context of transmission boundary problems with boundary data in
Besov spaces. Here is such an example, dealing with the inhomogeneous
version of (1.16).

Theorem 5.6. Let M be a compact Riemannian manifold, of real
dimension ≥ 3, with a Lipschitz metric tensor. Denote by Δ the
associated Laplace-Beltrami operator and fix Ω a connected Lipschitz
domain in M. Finally, pick some V ∈ L∞(M) such that V ≥ 0 on M
and V > 0 on some set of positive measure in each connected component
of Ω+ and Ω−.

Then there exists ε = ε(∂Ω) > 0 such that the inhomogeneous
transmission problem
(5.21)

(TBVP-inhomogeneous)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(Δ − V )u+ = f+ ∈ Lp
s+1/p−2,0(Ω+),

(Δ − V )u− = f− ∈ Lp
s+1/p−2,0(Ω−),

u± ∈ Lp
s+1/p(Ω±),

Tru+ − Tru− = g ∈ Bp,p
s (∂Ω),

∂νu
+ − μ∂νu

− = h ∈ Bp,p
s−1(∂Ω),

is well-posed whenever the pair (s, 1/p) satisfies either of the conditions
in (5.14) if n ≥ 3 and (5.15) if n = 2.

Proof. Subtracting appropriate volume potentials from u+ and u−, cf.
[33] for details in similar circumstances, matters are readily reduced to
the case when f+ = 0 and f− = 0. In this situation, the result follows
from Theorem 5.5 and the mapping properties of single and double
layer potentials (1.4) (1.5) on Besov scales from [25, 28, 33].

6. The magnetostatic integral operator. Throughout this sec-
tion, M is assumed to be a smooth, oriented, compact, boundaryless,
Riemannian manifold of real dimension three. We debut by discussing
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the surface divergence operator. Consider Ω ⊂ M an arbitrary Lip-
schitz domain. First, at the Lp-level with 1 < p <∞, we set

(6.1) Lp
tan(∂Ω) := {f ∈ Lp(∂Ω, TM) : 〈ν, f〉 = 0 a.e. on ∂Ω},

where TM stands for the tangent bundle to M (whose sections are
vector fields), and introduce

(6.2) Div : Lp
tan(∂Ω) → Lp

−1(∂Ω),

by requiring

(6.3)
∫

∂Ω

gDiv f dσ = −
∫

∂Ω

〈f,∇tang〉 dσ,

for each f ∈ Lp
tan(∂Ω), and g ∈ Lp′

1 (∂Ω) = (Lp
−1(∂Ω))∗, 1/p+1/p′ = 1.

A space which is going to be important for us in the sequel is

(6.4) Lp,Div
tan (∂Ω) :=

{
f ∈ Lp

tan(∂Ω) : Div f ∈ Lp(∂Ω)
}
,

1 < p <∞, which we equip with the natural norm

(6.5) ‖f‖Lp,Div
tan (∂Ω) := ‖f‖Lp(∂Ω,TM) + ‖Div f‖Lp(∂Ω).

A closed subspace of (6.5) is

(6.6) Lp,0
tan(∂Ω) :=

{
f ∈ Lp,Div

tan (∂Ω) : Div f = 0
}
.

Following [28], we introduce the class of tangential Besov spaces

(6.7)
THp

s(∂Ω) := the completion of ν × C∞(M, TM)|∂Ω in the norm
f �−→ ‖f‖Bp,p

(s−1)/p
(∂Ω,TM) + ‖Div f‖Bp,p

(s−1)/p
(∂Ω),

assuming that 1 < p <∞, −1 + 1/p < s < 1/p. In particular,

(6.8)
Div : THp

s(∂Ω) −→ Bp,p
s−(1/p)(∂Ω),

1 < p <∞, −1 + 1/p < s < 1/p,



VARIABLE COEFFICIENT TRANSMISSION PROBLEMS 387

is well-defined and bounded. A convenient way to extend the definition
of ν ×∇tan is via (6.2) and the identity

(6.9) 〈 (ν ×∇tan)g, ν × f〉 = 〈g,Div f〉

if g ∈ Bp,p
1−(1/p)+s(∂Ω) and f ∈ THp

s(∂Ω). Then

(6.10)
ν ×∇tan : Bp,p

1−(1/p)+s(∂Ω) −→ THp
s(∂Ω),

1 < p <∞, −1 + 1/p < s < 1/p,

is well-defined and bounded. The kernel of the operator (6.9) (6.10) is
the space

(6.11) THp,0
s (∂Ω) :=

{
f ∈ THp

s(∂Ω) : Div f = 0
}
.

Next we observe that, when considered between appropriate spaces,
Div and ν × ∇tan are Fredholm operators (with indices depending
exclusively on the topology of Ω and its boundary). This is made
precise in the following proposition proved in [28].

Proposition 6.1. Assume that Ω is an arbitrary Lipschitz domain
in M, and suppose that 1 < p <∞, −1 + 1/p < s < 1/p. Then

Div :
THp

s(∂Ω)
THp,0

s (∂Ω)
−→ Bp,p

s−(1/p)(∂Ω),(6.12)

ν ×∇tan : Bp,p
1+s−(1/p)(∂Ω) −→ THp,0

s (∂Ω),(6.13)

Div :
Lp,Div

tan (∂Ω)
Lp,0

tan(∂Ω)
−→ Lp(∂Ω),(6.14)

ν ×∇tan : Lp
1(∂Ω) −→ Lp,0

tan(∂Ω)(6.15)

are Fredholm operators.

Denote by Δ the Hodge-Laplacian on 1-forms, and let V ≥ 0 be a
bounded, scalar-valued function. Under the current assumptions,

(6.16) Δ − V : L2
1(M, TM) −→ L2

−1(M, TM)
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is a bounded, negative, formally self-adjoint operator, which is invert-
ible whenever V is not identically zero. In fact, the same is true for
V ≡ 0 if and only if the first Betti number of M vanishes, i.e.,

(6.17) H1
sing (M : R) = 0.

From now on, unless specifically mentioned otherwise, we shall assume
that V �= 0. In particular, Δ − V in (6.16) has an inverse, (Δ − V )−1,
whose Schwartz kernel, ΓV (x, y), is a symmetric double form of bidegree
(1, 1). In local coordinates ΓV (x, y) satisfies, cf. [31],

(6.18) ΓV (x, y) =
−1

4π
√

det(gjk(y))

( ∑
j,k

gjk(y)(xj− yj)(xk− yk)
)−1/2

×
∑
α,β

gαβ(y) dxα ⊗ dyβ + a less singular term.

We shall now concern ourselves with the principal value, singular
(magnetostatic) integral operator

(6.19) MV f(x) := p.v.
∫

∂Ω

〈ν(x) × curlxΓV (x, y), f(y)〉 dσy, x ∈ ∂Ω.

From [27, 28, 30], we know that

(6.20) MV is bounded on Lp
tan(∂Ω), Lp,Div

tan (∂Ω) and THp
s(∂Ω),

for each 1 < p < ∞, −1 + 1/p < s < 1/p. This is most transparent in
the case when the potential V is constant, say V ≡ ω, for some non-
negative ω ∈ R. In this case, it has been shown in the aforementioned
papers that

(6.21) DivMωf = −ω 〈ν, Sωf〉 −K∗
ω(Div f)

for each f ∈ THp
s(∂Ω), and

(6.22) (ν ×∇tan)Kωf = −ω ν × Sω(νf) +Mω(ν ×∇tan f)

for each f ∈ Bp,p
s+1−1/p(∂Ω). Here we are assuming that 1 < p < ∞,

−1 + 1/p < s < 1/p, and Sω, Kω, K∗
ω are the scalar integral operators

from (1.4) (1.7) associated with the constant potential V ≡ ω.
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To state our first theorem, for each fixed ε > 0 consider the following
three conditions:

(6.23)

2
1+ε

< p <
2

1−ε and − 1 +
1
p
< s <

1
p
;

1 < p <
2

1+ε
and

3
p
− 2 − ε < s <

1
p
;

2
1−ε < p <∞ and − 1 +

1
p
< s <

3
p
− 1 + ε.

Theorem 6.2. Fix a nonnegative potential V ∈ L∞(M) and a
Lipschitz domain Ω ⊆ M. Then there exists ε = ε(∂Ω) > 0 such that
for each λ ∈ R, |λ| ≥ 1/2, the operator

(6.24) λI +MV : THp
s(∂Ω) −→ THp

s(∂Ω)

is Fredholm with index zero for all s, p satisfying any of the three
conditions in (6.23).

Furthermore, for each λ ∈ R, |λ| ≥ 1/2, the operator

(6.25) λI +MV : Lp,Div
tan (∂Ω) −→ Lp,Div

tan (∂Ω)

is also Fredholm with index zero for each 1 < p < 2 + ε.

In each case, for a constant, positive potential V , λI + MV is an
isomorphism.

Proof. We shall first assume that M is such that (6.17) holds.
Dispensing with this extra topological hypothesis can then be achieved
as in [28]. We proceed in a series of steps starting with

Step I. The topological assumption (6.17) guarantees the absence
of global monogenic 1-forms on M. Consequently, the unperturbed
Hodge-Laplacian Δ has a global fundamental solution, i.e., (6.16)
remains invertible when V ≡ 0. In particular, (6.21) (6.22) become
genuine intertwining identities when ω = 0, i.e.,

(6.26) DivM0 = −K∗
0 Div on THp

s(∂Ω),
and
(6.27) (ν ×∇tan)K0 = M0(ν ×∇tan) on Bp,p

s+1−1/p(∂Ω).
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In turn, (6.26) (6.27) imply that the diagrams

(6.28)

Bp,p
s+1−1/p(∂Ω) �

λI+K0

�

ν×∇tan

Bp,p
s+1−1/p(∂Ω)

�

ν×∇tan

THp,0
s (∂Ω) �

λI+M0 THp,0
s (∂Ω)

and

(6.29)

THp
s(∂Ω)

/
THp,0

s (∂Ω) �

λI+M0

�

Div

THp
s(∂Ω)

/
THp,0

s (∂Ω)

�

Div

Bp,p
s−1/p(∂Ω) �

λI−K∗
0 Bp,p

s−1/p(∂Ω)

are commutative. From these and the fact that the operators (5.16)
(5.17) are Fredholm with index zero on the spaces at hand, it follows
that
(6.30)

λI +M0 is Fredholm with index zero on the spaces
THp,0

s (∂Ω) and THp
s(∂Ω)

/
THp,0

s (∂Ω), for each s, p as in (6.23).

In order to continue, we need the following general fact from the theory
of Fredholm operators: Let A, B, C be Banach spaces and consider the
commutative diagram

(6.31)

0 � A

�

� B

�

� C

�

� 0

0 � A � B � C � 0

where the two horizontal sequences are exact. Then, if two vertical
arrows are Fredholm operators then so is the third one. Furthermore,
the index of the middle arrow is the sum of the indexes of the other two
vertical arrows.

To implement this result we take

(6.32)
A := THp,0

s (∂Ω), B := THp
s(∂Ω),

C := THp
s(∂Ω)

/
THp,0

s (∂Ω).
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Also, take the first two horizontal arrows to be inclusions and the next
two to be projections (in each short sequence), while all vertical arrows
are taken to be natural manifestations of the operator λI +M0 on the
spaces listed above.

Thus, at this stage, we have proved the claim made about (6.24) for
the choice V ≡ 0. In fact the same conclusion remains valid when
V �≡ 0 as well since, thanks to (6.18), the difference MV1 − MV2 is
compact on THp

s(∂Ω) for each 1 < p <∞, 0 ≤ s ≤ 1.

Step II. The claim made about the operator (6.25) is proved by
following a program similar in spirit to our approach in Step I. This
time, the important intertwining identities are

DivM0 = −K∗
0 Div on Lp

tan(∂Ω),(6.33)
and

(ν ×∇tan)K0 = M0(ν ×∇tan) on Lp
1(∂Ω),(6.34)

whereas the relevant commutative diagrams read (with 1 < q <∞):

(6.35)

Lq
1(∂Ω) �

λI+K0

�

ν×∇tan

Lq
1(∂Ω)

�

ν×∇tan

Lq,0
tan(∂Ω) �

λI+M0 Lq,0
tan(∂Ω)

and

(6.36)

Lq,Div
tan (∂Ω)

/
Lq,0

tan(∂Ω) �

λI+M0

�

Div

Lq,Div
tan (∂Ω)

/
Lq,0

tan(∂Ω)

�

Div

Lq(∂Ω) �

λI−K∗
0 Lq(∂Ω).

Also, this time, we use the fact that the operators (5.1) (5.2) are
Fredholm. The conclusion is that the operator λI + M0 is Fredholm
with index zero on Lq,Div

tan (∂Ω) for each 1 < q < 2 + ε. Passing to
nonzero potentials is then done as before.

Step III. Assume that λ ∈ R, |λ| ≥ 1/2, and that V is a constant,
positive potential. Then the operator (6.25) is an isomorphism for each
1 < p < 2 + ε.
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When 2 − ε < p < 2 + ε, this can be established as in [30], where the
Euclidean case was considered. That the same conclusion holds for the
full range 1 < p < 2 + ε then follows easily from this and Step II.

Step IV. For each λ ∈ R, |λ| ≥ 1/2, the operator (6.24) is in fact an
isomorphism provided s, p are as in (6.23) and V is a constant, positive
potential.

In order to prove that the operator in (6.24) is in fact invertible when V
is a positive constant, say V ≡ ω, it suffices to show that this operator
has a dense range for each s, p as in (6.23). This, in turn, will be a
consequence of Step III in concert with the observation, proved in [28],
that
(6.37)⋂

1<q<2+ε

Lq,Div
tan (∂Ω) ↪→ THp

s(∂Ω) densely for each s, p as in (6.23).

Clearly, with these at hand, the desired conclusion follows. This finishes
the proof of the theorem.

Let k ∈ R+ and μ ∈ (0, 1) be two positive constants, and fix
a bounded Lipschitz domain Ω ⊂ R3. Then the Lp-transmission
problem for the Maxwell equations consists of finding four vector fields,
Ei, Hi : Ω+ → R3 and Ee, He : Ω− → R3, satisfying the following
boundary value problem:

(6.38) (TBVP-Maxwell)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

curlEi − ikHi = 0 in Ω+,

curlHi + ikEi = 0 in Ω+,

curlEe − ikHe = 0 in Ω−,

curlHe + ikEe = 0 in Ω−,

M(Ei), M(Hi), M(Ee), M(He) ∈ Lp(∂Ω),

ν × Ee

∣∣
∂Ω

−ν × Ei

∣∣
∂Ω

= �f ∈ Lp,Div
tan (∂Ω),

ν ×He

∣∣
∂Ω

−μ ν ×Hi

∣∣
∂Ω

= �g ∈ Lp,Div
tan (∂Ω),

x/|x| ×He + Ee = o
(
1/|x|) as |x| → ∞.
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The above problem models the scattering of electromagnetic waves by
a penetrable bounded obstacle Ω in which case k is the wave number
and μ is the transmission parameter. See, e.g., [2, 24, 29, 36].

Our main result in this regard is the following.

Theorem 6.3. For any bounded Lipschitz domain Ω ⊂ R3 there
exists ε = ε(∂Ω, k, μ) > 0 such that the boundary value problem (6.38)
has a unique solution for any 1 < p < 2 + ε. Also, integral represen-
tation formulas for the solution in terms of vector layer potentials, as
well as natural accompanying estimates hold.

Proof. The case when 2 − ε < p < 2 + ε has been proved in [29],
via layer potential techniques. The same approach works in the more
general case discussed here, thanks to Theorem 6.2.

As a further application, for 1 < p < ∞, −1+1/p < s < 1/p, and
Ω ⊂ M Lipschitz, we can now consider the inhomogeneous transmis-
sion boundary value problem for the Maxwell system for a Lipschitz
interface on the Riemannian manifold M:

(6.39) (TBVP Maxwell-inhomogeneous)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ei, Hi ∈ Lp
s(Ω+, TM),

Ee, He ∈ Lp
s(Ω−, TM),

curlEi − ikHi = Ki ∈ Lp
s(Ω+, TM),

curlHi + ikEi = Ji ∈ Lp
s(Ω+, TM),

curlEe − ikHe = Ke ∈ Lp
s(Ω−, TM),

curlHe + ikEe = Je ∈ Lp
s(Ω−, TM),

ν × Ee − ν × Ei = �f ∈ THp
s(∂Ω),

ν ×He − μν ×Hi = �g ∈ THp
s(∂Ω),

where, as before, k ∈ R+ and μ ∈ (0, 1) are fixed constants.

Theorem 6.4. For any bounded Lipschitz domain Ω ⊂ M there
exists a positive constant ε = ε(∂Ω, k, μ) such that the boundary value
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problem (6.39) has a unique solution for any s, p as in (6.23). Also, a
naturally accompanying estimate is valid.

Proof. Subtracting suitable volume potentials, as in [28], matters can
be reduced to the case when Ki = Ji = 0 in Ω+ and Ke = Je = 0 in
Ω−. At this stage, we may proceed in a fashion similar to [29] where
the Euclidean case of a similar problem has been dealt with.

We conclude with an application to the spectral theory of the mag-
netostatic operator introduced in (6.19). First, if X is a Banach space
and T : X → X is linear and bounded, we denote by σ(T ;X) the
spectrum of T and by r(T ;X), the spectral radius of T on X, i.e. the
radius of the smallest disk (centered at the origin) containing σ(T ;X).
Alternatively,

(6.40) r(T ;X) = lim
n→∞

n
√
‖Tn‖.

Corollary 6.5. For any convex bounded domain Ω ⊂ R3, there
exists ε = ε(∂Ω) > 0 with the following significance. For any constant
potential V ≡ ω ∈ R+,

(6.41) r
(
Mω; THp

s(∂Ω)
)
<

1
2

if 0 < s < 1, 1 < p <∞, satisfy

(6.42)
(

1 − ε

2

)
s <

1
p
<

(
1 − ε

2

)
s+

(
1 + ε

2

)
.

Moreover,

(6.43) r
(
Mω; Lp,Div

tan (∂Ω)
)
<

1
2

if 1 < p < 2 + ε.

Proof. This follows from the corresponding results for the (scalar)
harmonic layer potentials from [11] and (the proof of) Theorem 6.2.
See [11] for more details.
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21. A. Kirsch and L. Päivärinta, On recovering obstacles inside inhomogeneities,
Math. Meth. Appl. Sci. 21 (1998), 619 651.

22. R.E. Kleinman and P.A. Martin, On single integral equations for the trans-
mission problem of acoustics, SIAM J. Appl. Math. 48 (1988), 307 325.
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