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ABSTRACT. The monodromy operator of a linear delay
differential equation with periodic coefficients is formulated
as an integral operator. The kernel of this operator includes
a factor formed from the fundamental solution of the linear
delay differential equation. Although the properties of the
fundamental solutions are known, in general there is no closed
form for the fundamental solution. This paper describes a col-
location procedure to approximate the fundamental solution
before the integral operator is discretized. Using arguments
on collectively compact operators, the eigenvalues of the dis-
cretized monodromy operator are shown to converge to the
eigenvalues of the monodromy operator in integral form. The
eigenvalues of the monodromy operator tell the stability of the
linear delay differential equation. An application to several
cases of the Van der Pol oscillator with delay will be given.

1. Introduction. Delay differential equations have occurred in
many fields from biology [37] to population dynamics [34] to machine
tool dynamics [11, 38, 54]. The study of machine tool dynamics has
led to many problems involving delay differential equations. For exam-
ple, in turning operations a cutting tool passes over a workpiece many
times successively. The forces on the tool depend on chip thickness
which is dependent on the tool’s current position and its position one
previous revolution of the workpiece, thus introducing a delay effect.
Any irregularities in a previous cut produced by the tool can affect
the current cut. The delay effect of the irregularities can introduce
self-sustained oscillations of the tool against the workpiece, called re-
generative chatter. This phenomenon has been studied by Tlusty and
Polacek [48] and Tobias [49] as early as the 1960’s. Mathematically,
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chatter is a stable limit cycle of the delay differential equation that
models the particular machining process. To a machinist it represents
undesirable motions that can damage a good surface finish. Therefore,
being able to determine the nature of the stability of periodic solutions
to delay differential equations is crucial to determining the quality of
the workpiece surface finish. It will be seen that the nature of the sta-
bility is determined by the eigenvalues of a certain integral operator,
called the monodromy operator, associated with the delay differential
equation.

Many of the models of machining operations fall into the class of
autonomous delay differential equations of the form

(1) :'x:X(x(t),x(t—h)),

where z, X € R™, h > 0. A main concern is the question of stability of
periodic solutions of (1). See, for example, [20, 22, 35, 36].

The analysis of the stability of a periodic solution for (1) usually
involves the following considerations. Let p(t), p € R™, be a periodic
function of some period 7' > 0 that may or may not be an exact periodic
solution of (1). This function may, for example, have been developed
by a Galerkin method or harmonic balance. In this paper we will only
consider the case of T > h. Then, the linear variational equation about
the periodic function p(t) can be written

(2) £(t) = A(t)=(t) + B(t)z(t — h),

The subscripts represent the partial derivatives with respect to the first
and second variables, respectively. Since p(t) is periodic with period
T > 0, A(t) and B(t) are clearly periodic, with the same period. Let
L = max (||A(t)]|co, ||B(t)]|oo), where || - || will be used to represent a
matrix norm.

Let C}, denote the space of continuous functions from [—h, 0] to R",
with norm in C}, given by |¢| = max |¢(s)| for —h < s < 0. C} is a
Banach space with respect to this norm.
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We define the period map U : Cj, — C}, with respect to (2) by
(4) Ug) (s) = 2(s + 1),

where z(s) is a solution of (2) satisfying z(s) = ¢(s) for s € [—h, 0].
For T > h, U is a compact operator on C},, whose spectrum is at most
countable with zero as the only possible limit point [27]. Halanay [27]
has also shown that the period operator U, also called the monodromy
operator, can be represented as

0

(5) (Ue)(s) = Z(s+T,0)¢(0)+/7h Z(s+T,a+h)B(a+h)¢(a)da,

where Z(s,«) is the fundamental solution of (2) which satisfies (2) for
s > a, Z(a,a) = I, the n x n identity matrix, and Z(s,a) = 0 for
s < a. A finite monodromy matrix is obtained by discretizing (5). The
specific monodromy matrix used depends on the choice of discretization
method used.

The nature of the stability of the approximate periodic solution p(t) to
(2) depends on the eigenvalues of the period map (4). These eigenvalues
are also referred to as characteristic multipliers, since

(6) s+ T) = (Ug) () = Ap(s) = Az(s)

for some A and some z(s) = ¢(s) not identically zero for s € [—h, 0].
¢(s) in this case will be an eigenfunction of U. Along with its relation
to stability the A can also be thought about as a measure of how close
z(s) is to periodicity with period T > 0. If A = 1, then z(s) is a
periodic solution with period 7" > 0. Although the term characteristic
multiplier and eigenvalue of U are sometimes used interchangeably,
we will maintain the usage of the term eigenvalue when referring to
operators.

The computation of the eigenvalues for (5) generally involves some
form of approximation. In this paper we will use two levels of approxi-
mation. The first level is the discretization of the integral and the next
level is the approximation of the fundamental solution Z(s,a). Only
in very rare cases is the fundamental solution exactly computable. The
discretization of the monodromy operator (5) produces a matrix that
is referred to as a discrete monodromy matrix. However, for simplicity,
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when the context is clear, it is referred to as a monodromy matriz. It,
of course, depends on the quadrature method used. The analysis of
the convergence of the eigenvalues of the discrete monodromy matrices
is the main aim of this paper, but it will first require estimating the
fundamental solution Z(s, &).

In Section 2 we will give a brief discussion of the Floquet theory
related to the period map. It will give the theoretical background to
the properties of the monodromy operator. In Section 3 we will develop
a pseudo-spectral approximation to the fundamental matrix and prove
an error analysis result for the approximation. In Section 4 we will
discretize the monodromy operator and form an eigenvalue problem to
approximate the eigenvalues of the discretized operators. A discussion
of eigenvalue convergence will then be given in Section 5. Finally, in
Section 6 we compute the characteristic multipliers for several cases of
the Van der Pol oscillator with delay.

2. A Floquet theory for delay differential equations. A
Floquet theory for (2) has been developed by Stokes [46]. If o (U)
represents the spectrum of U, then for each A € o (U), Ugp = A\¢ for
some ¢ € Cy, ¢ # 0. That is, the spectrum consists of eigenvalues.
Furthermore, the space C}, can be decomposed as the direct sum of
two invariant subspaces

(7) Ch = EN) @ K(A).

E(A) is finite dimensional and composed of the eigenfunctions with
respect to A of U. If {4;},i=1,... ,d, is a basis for E()\) and we let ¥

be the matrix with columns ¢; for j =1,... ,d, then there is a matrix
M such that
(8) U¥ = WM.

Thus we can think of C, as being a countable direct sum of the invariant
subspaces F(\;) plus a possible remainder subspace, R. That is,

9) Ch =EM)DEMN)® - ®R,

where R is a “remainder” set in which any solution of (2) with initial
condition in R decays faster than any exponential.
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For each of the E();) there is a basis set ¥;, and a matrix M()\;).
If we define an at most countable basis set {U;}, i = 1,2,..., then
we can think about U operating on @2, E(\;) as being represented by
an infinite dimensional matrix M. This matrix is referred to as the
monodromy matrix. Its eigenvalues are the Floquet or characteristic
multipliers. Again we will avoid the term characteristic multiplier for
the rest of this work in favor of the term eigenvalue. The approximate
periodic solution p(t) of (1) is stable if all of the eigenvalues of U
are within the unit circle and unstable if there is at least one with
magnitude greater than unity. We note that if p(¢) is an exact periodic
solution of (1) then one of the eigenvalues is exactly one.

3. Approximating the fundamental matrices by pseudo-
spectral collocation. Numerically approximating a solution to a
delay differential equation has been studied by many authors. See,
for example, [40, 43, 53]. For a spectral method for solving delay
differential equations with constant coefficients, see [31]. In this
paper we will seek a collocation representation for the fundamental
solution. There have been some studies in which representational
solutions to delay differential equations have been sought. In particular,
Engelborghs et al. [22] studied collocation methods for computing
periodic solutions for delay differential equations. There have been
studies of spline approximations by Banks and Kappel [13] and Kemper
[33]. For a symbolic method for computing fundamental solutions for
time-periodic ordinary differential equations, see [44].

In this paper the collocation representation will be used to construct
a sequence of monodromy operators. Each of these in turn will be
discretized to form a family of collectively compact operators. We will
study the convergence of this family to (5) in subsection 5.2.

3.1 The method of steps. Let Cy(a) denote the space of con-
tinuous functions from [a — h, a] to R™, with norm in Cj(a) given by
|¢p| = max |¢(s)] for a — h < s < a. Note that Cj, = Cj(0). We wish to
solve the linear delay differential equation

(10) 2(t) = A(t)z(t) + B(t)z(t — h),

where A(t) and B(t), given by (3), are n x n matrices of continuous
functions, periodic with period T > 0 over the interval [a, b] with
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b finite. The initial condition is given by z(t) = ¢(t) on [a — h, al,
z(a) = z.

The object of the method of steps is to reduce the problem of directly
solving the delay equation (10) to solving a finite sequence of ordinary
differential equations. This method has been used for many years in
delay differential equations, see e.g. [17].

In the present context we begin by first finding the smallest positive
integer ¢ such that a + gh > b. The integer ¢ depends on h, but h is
fixed for a given problem. We now consider the finite set of intervals
[a, a+h], [a+h, a+2h] ..., [a+ (g —a)h, a+ gh], where the point b
falls within the last interval. If b is an exact multiple, then a + gh = b.

At the first step,
(11) 21(t) = A(t)z1(t) + B(t)z1(t — h),

where 21 (t—h) = ¢(s) for some initial function ¢ € Cj,(a) and s = t—h.
Thus the initial problem becomes an ordinary differential equation.
Then, on [a + h, a 4+ 2h] we solve

(12) 9(t) = A(t)z(t) + B(t)za(t — h),

where za(a+h) = z1(a+h), z2(t—h) = z1(s) for s € [a, a+h], s =t—h.
Again, we solve (12) as an ordinary differential equation. The process
is continued so that on [a + (i — 1)h, a +ih], for i =1,2,... ¢,

(13) 54(t) = Az (t) + B#)zi(t — h),

with z;(a + (i — 1)h) = z;—1(a + (i — 1)h). We then define z(¢) on
[a,b] as the concatenation of z;(t) for ¢t € [a + (i — 1)h, a + ih] and
1=1,2,...,q.

3.2 A sequence of differential equations. Since we wish to
use a Chebyshev collocation method to solve each of the differential
equations (13) for i = 1,2, ... , ¢, we will normalize each of the intervals
[a+ (i — 1)h, a + ih] to [-1, 1] as we step through the finite sequence
of differential equations (13).

The unique transformation between [a + (i — 1)h, a + ih], for i =
1,2,...,q, and [—1, 1] is given as follows. For each t € [a + (i — 1)h,
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a+ih] fori=1,2,...,q, there is a unique 7 € [—1, 1] given by

10 n:%t_(QcH—(th—l)h).

For n € [-1, 1] we have the unique ¢ € [a + (i — 1)h, a + ih] given by

h (204 (20— 1)h)
(15) =gt g

We note that the points ¢ € [a + (i — 1)h, a + th] and t — h €
[@+ (i — 2)h, a + (i — 1)h] are translated to the same n € [-1, 1].
This is clear from

(16) %“—h)—w:%t-W-

We can now shift the solving of the sequence of delay problems
(17) zi(t) = A(t)zi(t) + B(t)zi(t — h),

fort € [a+ (i —1)h, a+ih] and i = 1,2,... ,q, into solving a sequence
of ordinary differential equations

(18) i) = 5 Aitmustn) + 5

where, for t € [a+ (¢ — 1)h, a + ih],

ui(—1) = u;—1(1),
ui(n) = z(t),
(19) Ai(n) = AQ),
Bi(n) = B(1),
ui—1(n) = zi(t = h).
The initial function is
(20) ug(n) =zt —h)=¢(t—h), t—hela—h,al

Let the columns of the identity matrix I, be written as e; =
(0,...,1,...,0)T, where one is the jth element and all others are zero.
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We can now approximate the fundamental solution for (2) on [a,b] by
first solving n sequences of ¢ differential equations (18) subject to

ui(—l) = ui,l(l)

(21) up(n) =0, ne€[-1,1]
ul(—l) =€j
where j = 1,... ,n. We can then transform back to the ¢ domain. In

the next section we show how the Lagrange polynomials can be used
to develop a collocation solution to each differential equation in the
sequence (18).

3.3 A pseudo-spectral collocation algorithm. In this section
we follow the pseudo-spectral method used by Bueler [19]. Although
an analysis of the stability of pseudo-spectral methods for partial
differential equations has been given by Gottlieb [25], we will develop a
separate error analysis result in the next section for the pseudo-spectral
method described here.

We first define a sequence of projection operators. Let N be a positive
integer. Let Py be the projection operator that associates a continuous
function f defined on [—1, 1] with the unique Nth degree Lagrange
polynomial interpolating through the N 4+ 1 Chebyshev extreme points

km
(22) Wk:COS<W), k=0,1,...,N.

If the Lagrange interpolation polynomials at these points are given by

(23) Lo =] =0

im0 N3~ Tk
ki)

for j =1,2,..., N and lj(ng) = 0;i, where 0;; =1, §; =0, j # k,
then

(24) (PNF) () =D F (k) 15 (m).
e

0



INTEGRAL OPERATORS, DDE’S AND STABILITY 305

We have that |Py| < P for some P > 0 by the Banach-Steinhaus
theorem.

For n € [-1,1] we set
(25) ain) = 3wy ()

where the subscript i indicates that 7 is associated with the unique
te€a+ (i—1)h, a+1ih], w](z) is an n-vector to be determined, and the
hat is intended to indicate a solution to the problem

(26) () = Py Avtat) + 5 Briaa(n))

subject to the collocation condition described below.

We also need to form
N .
(27) i (n) = w1 (n).
j=0

At the Chebyshev points we will designate

(28) Dyj =1’ ()

The values for these derivatives are given in Gottlieb and Turkel [26]
or Trefethen [50] but we state the values for Dy; here for completeness.

2N2 +1
Doo=T>
Dyn = — Do,
(29) Dy = —— b =12, N-1
37 T o771 2\ J=54L4... -
2(1_77j)
i_1i+]
Dy =SV L =0 N,

Y =)
where

(30) ci—{Z i=0or N;

1 otherwise.
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One of the principal reasons for selecting the Chebyshev points (22) is
that the pseudo-spectral differentiation matrix (29) is known exactly.
Some further advantages are discussed in Salzer [42].

For notation, let

We then write the collocation polynomial elements of 4;(n) as w;-(n),
r=1,...,n, where

N

(32) i (n) = Y wl) Ik(n),
k=0

at the Chebyshev points (22) to get

(@)

ir (0j) = W,y

N
(33) i, () = > w'y Dy,
k=0
N i—1
U1, () = wg ).

The initial conditions for the sequence of differential equations are

(34) Uir (MN) = Qiz1,7 (N0)
or

i i—1
(35) wf«]&/ = wi’O )7
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The discretized differential equations are then given by
(36)

i i ne ng (1)
S wiil Dji A (y) - AN )] [
D) _ b s L o
Zrk Wk Djk - 5 A'rl (77]) e A (77]) Wy
Sk Wi D A ) o ARl \wl)
5 (i q (i—1)
BY () - BY )] [
hil 56y s (1)
+ 2 Byi (mj) -+ B (n)) Wy
B () -+ Bia(m)] \wlD
for j = 0,1,...,N — 1. These provide nN equations in n(N + 1)

unknowns. The other n equations come from the initial conditions.
We can write this system in a more compact form by first defining the
following vectors

(37)
. . . . . . T
_ (1) (), (@) (1) ©) (4)
wi—(ww"'wl wzo"'sz"'wno"'wnN) 5
. . . . . . T
_ (i—1) (i-1)  (i—1) (i—1) (i-1) (i—1)
Wi—1 = (wlo Wy Wy Tt Won T Wy ot WpN ) .
We also define matrices EZ and Ei
(38)
rAf (o) 0 0 - 0 A% 0 0 - 07
0 0 0 0 0 . 0 0
0 0 Aﬁ)(rm_l) 0 0 0 Aﬁ{(mv_l) 0 0
~ 0 0 0 0o .- 0 0 0
AN o) 0 0 0 A (no) 0 0 0
0 0 0 0 0 - 0 0
0 0 AYmN-1) 0 0 0 ANmn-1) 0 0
L o 0 0 0 0 0 0
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B; is structured in a similar manner except every (N+1)th row includes
an element 2/h to take care of the initial condition by canceling the
h/2 in (36). Thus,

(B 0 o 0 0 B(m) 0 0 - 07
0 0 0 0 0 0 - 0
0 0 B{(n-1) 0 o o  Bmn-1) 0 - 0
. 2
Bie| ol 0 0 0 i 0 0 0
Bnl (770) 0 0 0 Bnn(no) 0 o - 0
0 0 0 - 0 0 0 -~ 0
0 0 BU(n-1) 0 - 0 0  B(nn-1) 0 0
L o0 0 0 -+ 0 2 0 0 0.

Then we can write the sequence of differential equations in vector
form as
Biw;_1,

o>
o>

where D is the Kronecker product, D=Dw® I,,, and each D is given
by

Dy Doy
(41) p=| : :
Dy_10 -+ Dn_inN
0 1

The Kronecker product produces n blocks of D arrays down the

diagonal. The unit in the lower right introduces the n initial conditions,

@ . _
woasT=1,...,n.

The linear equation (40) can be solved for w; by setting

-1
(42) M; = (f) _h /TZ-> h g,
2 2

(43) w; = Miwi_l



INTEGRAL OPERATORS, DDE’S AND STABILITY 309

for i = 2,3,...,q. The ability to take the inverse here, for each ¢,
must be determined numerically. There has been some study of the
eigenvalues of the matrix D done by Trefethen and Trummer [51] as
well as small perturbations of matrix eigenvalues by Kato [32], but
there does not seem to be a definitive study of the large perturbations
of the differentiation matrix, D.

To solve for wq, for the fundamental solution, we need the collocation
solution of

(44) i) = & Ay()ia ()
for n € [-1, 1] and
(45) a(—1) = e;.

That is, we solve n problems at each step, one for each of the initial
conditions e;. For the moment we set the initial vector as

(46) wo:(()~-~u010~~-u020-~~u0n)T,

where ug,, 7 = 1,...,n, is placed in each of the (N + 1)th elements
and zero elsewhere. Then from the previous construction of D and A1
we have

~ b ~\!
(47) w1 = <D—§A> wo-

Now, given that we have computed

N
(48) () = wlil ()
k=0
for n € [-1,1], for r = 1,...,n, we can compute the result for
t € [a+ (i — 1)h, a+ ih] by setting
(49) Zir (t) = 1ir ()
forr=1,...,n, where

. (2a+ (2~ Dh)

2
(50) p=gt- e
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or

(51) Zir(t Zw(z)l ( —(2a + (th — Uh)).

The initial condition is
(52) Tir (MN) = Wi—1,r(N0)-

But on [a+ (i—1)h, a+ih], nny = —1 corresponding to t = a+ (i —1)h,
and on [a+(i—2)h, a+(i—1)h], no = 1 corresponding to t = a+(i—1)h,
so that

(53) éir(a + (Z - 1)h) = éifl,r(a + (Z - 1)h)

The fundamental solution is formed as n column vectors. Each jth
column vector, j = 1,... ,n, is formed as follows. The initial condition
e; = (0,...,1,...,0)T is selected. The rth element, r = 1,...,n,
in the column is formed by concatenating the functions z;.(¢) for
i = 1,...,¢q. The final matrix is then denoted by Z\N(t,a) where a
is an initial point, not necessarily zero.

,n

For further discussion of the numerical aspects of computing differ-
entiation matrices, see [12, 14, 23, 45, 52].

3.4 Error estimates. In this section we develop an error estimate
between the pseudospectral collocation of the fundamental solution of
(10) and the exact fundamental solution of (10). In fact we are able
to prove, using a method of Bellen [15], the next theorem, where £
and P have been defined previously in Sections 1 and 3.3, respectively.
Similar methods have been used by de Boor and Swartz [21], Russell
and Shampine [41] and Hulme [30]. See also Bellen and Zennaro [16].

We suppose that N + 1 Chebyshev extreme points (22) are given
n [—1, 1]. Define A = max|n;11 —n;|. Then it is easy to show that
A <7 /N.

Theorem 3.1. Let £; = (h/2)PL. Choose N sufficiently large
so that A < 1/Ly. If Z(t, a) is the exact fundamental solution of
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(10) for t € [a,b], where the right-hand side of (10) is assumed to
have bounded derivatives of sufficiently high order, and Zn(t,a) is

the approzimate fundamental solution developed by the pseudospectral
method of subsection 3.3, then ||Z — Zx |0 = O(ANT2).

Proof. Since each of the ¢ intervals in the method of steps is mapped
to [—1, 1], we will work with the sequence of differential equations (18).
With this in mind we begin the error estimates at the first step, where
the exact equation, in matrix form, is given by

(54) V') = g () Vi),

with the initial condition V;(—1) = I,. In this section the V will
represent the matrix solutions of the differential equations. At this
step we seek the matrix of Lagrange interpolation polynomials that
collocate at the N + 1 Chebyshev extreme points in [—1, 1] and satisfy

(55) Tl = 2 by (Ri)Ti()

Since there exists a unique solution to (54) we can subtract (55) to
form

(56) Vi'(n) = Vi(n) =

)
oS

Vi) — 2 Py (BTim).

For simplicity we will re-index the Chebyshev points so that (; =
nn—i =cos((N—i)r/N)fori=0,1,..., N. We now add and subtract
the projection of the right-hand side of (54) to get

Vi(n) = Vi(n) = Vi (&) — Vi (¢:)
hof -
- +5 | 0= (AW d
h [" ~ ~
+3 /C Py (Ai(s) (Va(s) = Th(9)) ) ds.

where I is the identity operator and we also use the fact that Py is
linear.
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We need to compute some bounds at this point. In particular, from
Lagrange interpolation theory we have

(58) H(I _ Py) (El(s)vl(s)) HOO < KoAN+,

for some Ky. Although Ky in general depends on N, we assume here
that the derivatives of the right-hand side of (54) are bounded. We also

have HA\Z(S)H < L and HEZ(S)H <Lfori=1,2,...,q.

Now let
(59) ¢i=_max Vi(n) — Vl(")Hoo :
Then,

eir1 < e + g /jiﬂ (I - Py) (21(5)‘/1(5))”00 ds

h Cl+1
0
2 Je,

or, letting A = max (¢iy1 — Gi),

(60)

Py (/All(s) (Vl(s) - 171(5))) HOO ds,

h h
(61) cimn<eity KoAN+2 4 o PLAE 1.
If we set K3 = h/2Kg, then (61) becomes
(62) €i+1 S e; + ,ClAN+2 + £1A6i+1.

For A sufficiently small,

1 ’Cl N
63 . < - . 7 A +2
(63) ezﬂ_(l_ﬁlA)eﬁ(l_ﬁlA) ,
fori=0,1,..., N. To simplify a little, let

1 ICl N
4 = = _ A +2
(64) R (1—£1A) ’
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then, by a simple geometric series argument,

N
(65) en < aNeo + (O‘ >ﬂ.
a—1

For the first step eg = 0, so that

(66) en < <a01:[__11)5= [(ﬁ)l\/—l

Now, for A = max ((41—¢) < ©/N < 1/L1, (1/(1 = L1A)N is
a decreasing sequence, so that (1/(1— L1A)N < (1/(1 - L1A)).
Therefore,

ICl N
A +1_
Ly

(67)
1 Ky N K1
< — )1 =A +1 7AN+2<2KAN+2
N = [(1—5@) ]cl {1—£1A} =e
for A sufficiently small. Therefore
(68) Jmax (Vi) - )| =0 (aN2).

We proceed inductively and assume that for the jth step, 7 =
1,2,...,q—-1

(69) max [\ Vi) = V)| < 88N+,

—1<n<1 oo

for some B; > 0. We then have at the (j + 1)th step the exact problem

(70) Vi) = 5 A (Vi () + 5 Bja()Vi(n),

| >
N >

with the initial condition V;11(—1) = V;(1). Proceeding as in the first
step, we seek the collocated solution to

)

(M) Vil = 5 Py (AT () + By )V (m)
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with the initial condition ‘A/Hl(—l) = ‘//\'](1) Now, subtracting (71)
from (70) we have on [(;, iy1]
Vita(n) = Viga(n)

Vi) -Ta(@) + 5 [ =) (A (V39

i

(72) +By11(s)V;(5)) ds

. g/nPN (A'+1(5) (Vj+1(5) —%4—1(8))) ds

<

+5 [P (Bina9) (v - ) ) as.
As before, let
(73) o= max |Via() = Vs (s)] -

From Lagrange interpolation theory, we have
(1) |7 = Pw) (A1 (&)Via () + Bra(s)Vils) )| < K58+,

for some K; > 0. From the definition of £ we have ||A\j+1(S)HOO <L
and ||§j+1(s)||oo < L. Then, from the definitions of £, P, K;,

h h
(75) €i4+1 S €; + 5 (’C] + pﬁAﬂ]) AN+2 + 5 P£A€i+1.

As in the initial case let K41 = h/2(K; + PLAB;) and L4 = L1 =
h/2PL; then for sufficiently small A we have

1 Kj
6) e < _____@+(_;¢_)Aww
(76) i (1—cj+1A> 1— LA

As before, let « =1/(1 — £j41A) and = K;41/(1 — Lj114), then

N1

a
(77) SNSOLNeo—F(a_l

> ﬂAN+2.
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But, from the inductive assumption (69), eg < 3;ANT2 so0 that

N

(78) en <N ANTZ 4 <L _11) BAN+2,
o

Again, for A < 1/L1, oV is decreasing so that o < o and therefore
(79) en < (aB; + B) ANT2
Therefore, the induction shows that

Vi_"}i :O(AN+2).

oo

(80) max ’
1<i<q

But, since Z;(t) = Vi(n) and Z(t) = @(77), we have from (80) and
the fact that the fundamental solution Z(t,a) is the concatenation of
Z;(t,a) = V;(n) and the collocated solution Zn (t,a) is the concatena-
tion of ZNi(t,a) = XZ(n) fort=1,2,...,q, that

(81)

HZ—ZVH — max Hzi—ém ViV,

1<i<q

=0 (AV*?) . o

oo

= max
oo 1<i<q

This theorem implies that Zy (¢, v) converges uniformly to Z(t, v) for
(t, v) € [0, T] x [0, T7.

4. Forming the monodromy matrix eigenvalue problem.
In Section 1 the monodromy operator (5) involved knowledge of the
fundamental matrix of (2). In Section 3 a collocation algorithm to
approximate the fundamental matrix along with an error analysis of
the collocation method was developed. In this section we will define
an approximate monodromy operator and use it to form a matrix
eigenvalue problem to estimate the monodromy operator eigenvalues.

4.1 Discretized operators. To approximate the monodromy
operator (5) we will require a quadrature rule that satisfies

P+1

(52) > uf o) — [ rds

k=1
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as P — oo for each continuous function f € C},. The rule is satisfied if

P+1
(83) Dol <M,
k=1
for some M > 0and P =1, 2,.... This condition is necessary to prove

certain compactness results later.

Let —h =51 <s9 <--- < spy1 =0, and define

(84)
P+1

(Upg) (s) = Z(s+T,006(0) + 3 0 Z (s + T, 5.+ h) B (s + h) 6 (s1)
k=1

for ¢ € C,. From the theory of delay differential equations ([29]) it is
known that Z(t,u) is a continuous function on [0,T] x [0,7] and thus
also uniformly continuous there. Furthermore, B(¢) is continuous and
periodic in [0, T7.

Since the fundamental matrix is seldom known in practice we approx-
imated it in Section 3. In that case we developed a sequence, Zp, of
matrices that converged uniformly to Z, Theorem 3.1. Now define a
double sequence of operators on C}, by

(Upno) (s)
(85) N P+1 N
= Zn(s+T,0)0(0) + > viZy (s+T, 6+ h) B (si+ h) ¢ (si)
k=1

forpeCp, P=1,2,...,N=1,2,....

4.2 The matrix eigenvalue problem. From the discussion in
Section 1, the stability of the approximate periodic solution p(t) of
(1) depends on the eigenvalues of the operator (5). In this section
we will consider the discretized form of (5) given by (85) and point
out some computational simplifications involved with constructing the
approximate eigenvalue problem.

We discretize the interval [—h, 0] into P intervals by

(86) —h:51<82<'-'<8p+1:0.
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Then, from (5), for each s; € [—h, 0], let

(87)
P+1

(UP)9) (s:) = Z(si+T,0)6(0) + Y v;Z(si+ T, 55+ h)B(s;+ h)d(s;)-
j=1

Since spy1 = 0, (87) can be rewritten as

(U(P)¢ ZU] S + T, s+ h)B(Sj‘i‘ h)¢(sj)
j=1

+ (Z(Si—F T, 0)+ Up_;,_lZ(Si—F T, h)B(h)) (25(513_,_1)7

where Z(t,a), for 0 < o <t < T, is the fundamental solution of (2).
Equation (88) can be put in matrix form

(UP)6)(s1)

(88)

(9) | @Pe)(s)

(U(P)&)(SP-H)

P P
Ul(,l) . UIP:J e Ul(,P)-i-l ¢(81)
= Ui(,lf ) . Ui(’ljg ) . Ui(,l; )+1 o(s:) :
H i N :
U}(’*)U o Ul(’Jr)Lj U1(3+)1,P+1 ¢(spt1)

where the block elements fori =1,... ,P+1, j=1,...,P are U( ) =
v;Z(s;+T,s;+h)B(s; + h) The block elements in the last colurn of
the matrix are given by U; P)+1 =Z(s;+T,0)+vp1Z(s; + T,h)B(h)
fori=1,..., P+ 1.
Equation (89) is based on the assumption of an exact representation
of the fundamental solution Z(¢,«) for 0 < a < ¢t < T. However, we
can in general only work with an approximate form for (89). Denote

by ZN(t,a) the collocated approximate fundamental solution for N
Chebyshev points of Z(t, ) such that

(90) Zn(t,a) — Z(t, )



318 D.E. GILSINN AND F.A. POTRA

uniformly as N — oo according to_ Theorem 3.1 for 0 < a <t < T.
From subsection 3.3 the matrix Zn(t,«) is the concatenation of ¢
matrices ZN(t, a)fori=1,2,...,q. Each of these i matrices 7N (t, @)
can be written in the form

N .
PN i 2 200+ (20 — 1)h
(91) Zin(t, ) = ;—0 w1, (E ‘- T) .

where WJ(\;;C is a matrix of collocation coefficients. Equation (88) now
becomes
(92)
P A~
(U(PN)QS) (sq) = ZijN(si +T,sj+ h)B(sj+ h)¢(s;)

J=1

+ (Zn(si +T,0) + vps1Zn(si + T, h) B(h)) $(sp+41).

The matrix in (89) should now be written as

(UM g)(s1)
(93) (U (PN:’¢) (s:)
(U(PN)(;S)(SPJA)
A N AU
N S e |
UL o, ut] \etsen

where Ui(fN) = ijv(si—i—T, sj+h)B(sj+h)fori=1,... ,P+1, j=
1,...,P, and URY) = Zn(si + T,0) + vps1Zn(s; + T,h)B(h) for
i=1,...,P+1.

We note that it is not necessary to compute Zy (s; + T, sj + h) for

every combination of (i,7). The elements Ul-(jN) in each column j
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above U I(DTY)g contain the matrix factor Zy(s; + T, sj + h). Since

0<T—-h<s;+T <T and spy; = 0, we need only develop the
collocation polynomials for Z\N(t,sj +h)for j =1,...,P+1 using
(91) for all ¢t € [s; + h, T]. Then each Zn(si + T, sj + h) in the jth
column is simply an evaluation of the collocation polynomial developed
for Z\z(t, sj + h) at the point s; + T for ¢ =14,... , P+ 1. That is,

(94)
N

N ; 2
ZiN(SZ‘—FT, Sj+h) = Z W](Vl)clk (E (
k=0

Si—I—T)— h

2(sj +h)+ (2i - 1)h>
This means we only need to develop the fundamental solution collo-
cation representation for each element in row P + 1, which involves
P + 1 computations of the approximate fundamental matrices rather
than (P +1)? computations for the full matrix. All other rows involve
interpolated values of the computed collocation polynomials at specific
points in [0, T1.

From (93) the relevant eigenvalue problem becomes
(95)

PN PN PN
Ul(’1 ). Ul(,j ). Ul(,P+)1 (1) 6(51)
Ui(,J;N) . Ui(5N) .. Ui(,IP;J—\ii)l ¢(Sz) -\ ¢(Sz)
Py py PN ' ’
U1(9+1,)1 T U1(9+1,)j e UI(’+1,)P+1 P(sp+1) d(sp+1)

The Matlab program eig can then be used to compute the eigenvalues
and eigenvectors of (95). For some related discussion of the convergence
of eigenvalues of finite matrix representations to operator eigenvalues
see Baker [10].

5. Operator compactness and eigenvalue convergence. In
this section we will establish the compactness properties of U, Up,
and Upy, as well as the convergence properties of Up and Upy to U,
where we have introduced Up and Upy instead of U) and U(PN),
respectively, in order to simplify the notation in the proofs below. We

finally show that the eigenvalues of Upy converge to the eigenvalues
of U.



320 D.E. GILSINN AND F.A. POTRA

5.1 Operator compactness properties. Let Y = {¢ : ¢ €
Ch, |¢| < 1} be the unit ball in C. An operator T acting on Cj
is said to be compact if and only if the set TU is relatively compact. A
family of operators 7 operating on C}, is said to be collectively compact
if and only if the set TU = {T¢ : T € T, ¢ € U} is relatively
compact. In this section we will prove a lemma with respect to the
compactness properties of the operators (5), (84) and (85). Although
Halanay [27] has shown that U is compact on Cj, we will include the
proof for completeness.

Lemma 5.1. The operators U, Up, and Upy from Cp, to Cp are
compact for P=1,2,... and N =1,2,.... The sets{Up} and {Upn}
are collectively compact.

Proof. To show that U defined by (5) is compact, we first note that
the fundamental solution Z is continuous on [0, 7] x [0, T'] and therefore
uniformly continuous. B is continuous on [0,7] and is therefore
bounded, ||B]| < B for some B > 0. Z is also bounded by ||Z]| < Z for
some Z > 0. Then

(96) (Ug)(s)| < Z(1 + h B)|¢|

where s € [—h, 0]. Therefore U is continuous. U will be compact
if we show that it maps the unit ball to a pre-compact set. By the
Arzela-Ascoli theorem we only need to show that Ug¢, for |¢p| < 1,
is uniformly bounded and equicontinuous. The inequality (96) shows
uniform boundedness for |¢| < 1. To show equicontinuity, let s1, so €
[—h, 0] and write

97) |(U@) (s1)—(U¢) (s2)]

0
< {|Z(S1 +T,0) —Z (s2 +T,0)|| +/ |Z (s1+T,a+h)
—h

—Z (sa+T,a+h)| da8}|q5.
Since Z is uniformly continuous on [0, T'] x [0, T'] then, given € > 0,
there is a 0 > 0 such that, if |s; — s2] < ¢ and |¢| < 1, then

(98) [(U¢) (s1) = (US) (s2)| < (1 + h B)e,
proving equicontinuity of U for |¢| < 1.
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To show that {Up} is collectively compact, we first show that Up
is compact for each P. From (84) it is clear that the operators are
uniformly bounded for |¢| < 1, since

P+1

(99) (Upo) (s)|<z(1+BZ|vj|) < Z(1+ BM).

j=1
For equicontinuity, let s1, s2 € [—h, 0] and write

(100) [(Upo) (51)—(Up9) (s2)|

P+1
< { |Z (s1 +T,0)—Z (s2+T,0)|| + Z [v;[|Z (s1 +T,s; +h)

j=1
—Z (sa+T,s; +h)|| da8}|q§|.

By uniform continuity of Z on [0,7] x [0,T], let € > 0; then there is a
0 > 0 such that, if |s1 — s2| < 0 and |¢] < 1,

(101) |(Upd) (51) — (Upo) (s2)| < (1+ BM)e.

Therefore Up is compact for each P. The inequalities (99) and (101)
show that {Up} is a uniformly bounded set of equicontinuous operators
for |¢| < 1, which proves that {Up} is pre-compact and therefore
collectively compact.

Since Zy is uniformly continuous on [0,7] x [0,T], the proof that
{Upn} is collectively compact for each P is similar to the argument
above, where the operator Upy is defined by (85). o

5.2 Operator convergence. In this section we will prove some
lemmas relating the convergence of the operators Up and Upy.

Lemma 5.2. The operators Upyn and Up satisfy
(102) ||UPN_UP|| — 0

uniformly in P for N — oo.
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Proof. By definition,
[Upn — Up|| = sup [Upn¢ —Up9|,
lo|<1

|Upng —Upd| = sup [(Upn9)(s) — (Upo) (s)].
—h<s<0

(103)

But

(104) [[(Upno) (s)=(Upe) (sl

P+1
< { HZN(S—i—T, 0)— Z(s + T, O)H +3 Juyl
j=1

‘ZN (s+T,s;+h)
—Z(s+T,s; +h)||l3}|qb.

By the uniform convergence of Z N to Z, given € > 0, there exists
N; > 0, such that, for N > Ny, H?N(t,v)—Z(t,v)H < ¢ for all
(t,v) € [0, T] x [0, T]. Then

(105) P+1
|Upnd) (s) - Ups) (5)]) < (1 By |vj|)e|¢> < (1+ B,
j=1

which shows pointwise convergence, uniformly in P. But, from (105),
the conclusion follows for |¢| < 1. O

We will say that the double sequence of operators Upy converges
pointwise to U if and only if, given € > 0, there is a positive P; such
that [Upn¢ — U] < ¢ for all (P, N) such that P > P, and N > P;.
We will write Upy — U as (P, N) — oc.

We need two final lemmas.

Lemma 5.3. Up converges pointwise to U.

Proof. This follows from the quadrature rule. o
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Lemma 5.4. Upy converges pointwise to U as (P, N) — oo.
Proof. Write for ¢ € Cj,

(106) \Upn¢ —Ug¢| < |Upn¢d — Upd| + |Upd — U] .

By Lemma 5.2, given & > 0, there exists N1 > 0so that [Upyd — Upg| <
g, for N > Ny, uniformly in P. Also, by Lemma 5.3, there exists P; so
that [Up¢p — Ug¢| < e for P > P;. Select P, = max (N, P;). Then for
P>P,and N > Py, |Upno — Ug| < 2e. o

5.3 Eigenvalue convergence. We will begin this section by
summarizing some known results related to the compact operator U.
In particular, we denote by o(U) and p(U) the spectrum and resolvent
sets, respectively, of U. For any z € p(U), R.(U) = (z — U)~! is
the resolvent operator. o(U) is countable with zero the only possible
accumulation point. The nonzero numbers in o(U) are eigenvalues.

If A € o(U) is nonzero, there is a smallest integer, v, such that
N(A=U)") =N ((A\=U)"), where N denotes the null space. v
is called the ascent of A — U. N ((A—U)¥) is finite dimensional and
if m = dimN (A —U)"), then m is called the algebraic multiplicity
of X\. The vectors in N ((A —U)¥) are the generalized eigenfunctions
of U with respect to A. The geometric multiplicity of A is equal to
dim N (XA — U) and is less than or equal to m.

If XA # 0 is an eigenvector of U with algebraic multiplicity m and T’
is a circle centered at A, lying in p(U), that encloses no other points of
o(U), then the spectral projection associated with A and U is defined
by

(107) BB = - / R.(U) d=.
T

T o

FE is a projection of C} onto the space of generalized eigenfunctions
associated with A and U.

We will need to generalize slightly some known theorems. The first
is



324 D.E. GILSINN AND F.A. POTRA

Theorem 5.5. U, Upy are bounded linear operators from Cy, to C,.
U is compact, Upy — U pointwise, and {Upy }is collectively compact.
Then for each open set Q, with o(U) C Q, there exists a Py such that
oc(Upn) CQ for P> Py and N > Py.

Proof. See the proof of Anselone and Palmer [6, Theorem 5.3]. O

The next theorem says that there are eigenvalues of Up approaching
any eigenvalue of U.

Theorem 5.6. If A\ € o(U), A # 0, then, for sufficiently large P and
N, there exists A\py € 0 (Upn) such that Apny — A as (P, N) — oco.

Proof. See the proof of Theorem 4.16 of Anselone [4]. O

We next show that all eigenvalues of Upy, for P and N sufficiently
large, approach some eigenvalue of U.

Theorem 5.7. Consider the linear operators U, Upyn : Cp, — Ch,
given by (5) and (85). Let Ao # 0 be an eigenvalue of U, and let € > 0
be less than the distance from Ag to the remaining part of the spectrum
of U. Denote by opn the set of eigenvalues of Upy that are within
distance € of Ag. Then for all sufficiently large P and N, the sum of
the multiplicities of the eigenvalues in opy equals the multiplicity of Ao
and all the elements of opn converge to Ag. That is,

(108) max [A—Xg] — 0 as (P, N)— oo.

AEopN

Proof. Let T'y be a circle centered at A\g of radius €. Then, for P, N
sufficiently large I’y C p (Upn) and the spectral projection

1
(109) Epny = Epn (MNo) = 2—/ R. (Upn) dz
To

YY)

exists and dim R (Epy (Ao)) = dim R(E (X\g)) = m for some m, the
algebraic multiplicity of Ag. Epy is the spectral projection associated
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with Upy and the eigenvalues of Upy that are enclosed by I'y. Denote
these eigenvalues by A1(P, N),..., A (P, N). If I'y is another circle
centered at Ag with radius £/2 then again, for P, N sufficiently large
M(P, N),...,An(P, N) are all inside I';. The argument can be
continued. Therefore, maxyegpy |A — Aol — 0 as (P, N) — oc. O

6. Examples. In these examples we will consider the class of
autonomous delay differential equations of the form

(110) i+x=X(at—h),i(t - h)),

where 2, X € R,X(0,0) = 0. We assume that X is sufficiently
differentiable. It is known that the solutions exist and are unique,
if continuous initial condition functions are specified on the delay
interval [—h, 0] (Hale [28]). In order to simplify the notation, we will
normalize the delay to unity. This can be done by substituting th for
t. Furthermore, since the period is unknown in (110) we can introduce
a normalized period of T = 27 by replacing ¢ by ¢/w where w is an
unknown frequency. Then we can put (110) in the form

(111) Wi+ o= X(2(t —w), @(t — w)).

For these examples we will look at various cases of the Van der Pol
equation with

(112) Xzt —w),d(t —w)) = wA1 — z(t — w)?)i(t — w).

A fast algorithm for constructing an approximate solution of (111)
with (112) of the form

(113) Z(t) = ap + Z [agn, cosnt + agy,—1 sin nt)

n=1

along with an approximate frequency ao,+1 = @ has been given by
Gilsinn [24].

The variational equation about the approximate periodic solution is

(114) i = A(t)2(t) + B(t)z(t — @),
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where

(115)

() = 0 0

[—(2)\/@):%(15—&)&@—&;) No(1-a@t-)?) |’

where @ is the computed approximate frequency.

We can now follow the development of the fundamental solution for
(111) with the right-hand side given by (112), as described in Section 3.
At the first step we select the smallest positive integer ¢ such that
21 < gw. We then map each interval [(i — 1)@, iw] to [—1,1] for
i=1,2,...,qby

(2i — 1)@

w
(2i — 1)@
PR

n==t-

(116)

t=—-n+

I ERERIE N

We use the Matlab script cheb.m from [50] to produce N + 1
Chebyshev points, n;, 7 = 0,..., N, as well as the spectral derivative
matrix D (29). We then modify D so that the last row is all zeros except
a one in position D(N + 1, N 4+ 1). We can then form D = D ® I,. In
the case of the Van der Pol equation, the matrix /L- is constant for each
1=1,2,...,q, and is straightforward to construct. The matrix B;, for
t=1,2,...,q, is not difficult to construct. For each n;, j =0,... ,N
compute

@ (2i — 1)@
(117) =g+

The elements of Ei, fori=1,2,...,q,in (39) are then formed by using
(115) where we set t = t;, j = 0,...,N. The matrix M; in (42) can
then be formed for each i = 2,...,q. For the case of i = 1 the matrix
M is formed as

~ b ~\!
(118) Ml_(D—§A1> .



INTEGRAL OPERATORS, DDE’S AND STABILITY 327

There are only two initial conditions to consider: wo(N + 1) =
Lwg(2(N +1)) = 0 and wo(N +1) = 0, wo(2(N + 1)) = 1. The
weights at the first step are then given by (47). The final fundamental
matrix is formed by following the steps from (48) to (51).

We will now examine several cases of the Van der Pol equation with
different values of A\. For the first case we will take A\ = 0.01. For
the approximate solution we will take (115) with seven harmonics. For
collocation we will use 40 Chebyshev points and interpolate over 100
steps in the interval [0, 27].

Figure 1 shows the overlay of the approximate solution to the Van
der Pol equation developed by the Galerkin procedure with seven
harmonics and the numerically integrated Van der Pol equation using
dde23 in Matlab with the seven harmonic approximate solutions as
an initial condition on the interval [—&,0]. Note that the overlay is
such that one cannot distinguish the two solutions. The next figure
shows the successful overlay of the fundamental solution evaluated over
[0, 27] for both the numerically evaluated fundamental solution using
dde23 and the collocated fundamental solution using the pseudospectral
method.

Figure 2 shows the four components of the fundamental solution
evaluated over [0,27] by dde23 and collocation. The collocated fun-
damental solution is marked by z’s on the graphs. Again, the match is
extraordinarily close.

Figure 3 shows the results of plotting the first twenty eigenvalues
of the discretized monodromy operator using dde23 to evaluate the
fundamental solution (left) and the collocation approach (right). Both
figures show two eigenvalues symmetric about the real axis near the
boundary of the unit circle. The other 18 eigenvalues in both cases
are so near the origin that they are all identified by an z at the
origin. The two eigenvalues near the unit circle in the dde23 case are
both of magnitude 0.9882. In the case of pseudospectral collocation
the magnitudes are 0.9952 or approximately a 0.7 percent difference.
The results are consistent with the fact that the approximate periodic
solution is not exact so that none of the eigenvalues of the variational
equation with respect to the approximate solution need be exactly
unity. However, they are sufficiently close to a magnitude of unity
which most likely indicates a sufficiently good approximate solution in
both cases. The quality of the approximate solution is also indicated by
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Overlay Plot of Galerkin Approximate Solution and Integrated Solution
2 T T T T T T

0.5 b

dx/dt
)
T

1k 4

FIGURE 1. Overlay of phase plots of approximate collocated solution and
numerically integrated solution for the Van der Pol equation.

Z(1,1) Z(2,1)
1 1
0.5 0.5
~ 0 9 0
-05 -05
-1 -1
0 2 4 6 8 0 2 4 6 8
tt tt
Z(1,2) Z(2,2)
1.5 15
1 1
0.5 0.5
o o
~ 0 § 0
-05 -05
-1 -1
-15 -15
0 2 4 6 8 0 2 4 6 8
tt tt

FIGURE 2. Four elements of the fundamental solution of the Van der Pol
equation from 0 to 27.
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20 Eigs.— dde23 20 Eigs.—Colloc.

Imaginary Part of Eigenvalue
Imaginary Part of Eigenvalue

. . . . . . . .
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
Real Part of Eigenvalue Real Part of Eigenvalue

FIGURE 3. Twenty eigenvalues of the monodromy operator U by dde23 and
collocation.

the absolute value of the residual, after substituting the approximate
solution into the Van der Pol equation, which is 4.1020x 10~°. Also, the
fact that all of the other eigenvalues are so near the origin is consistent
with the fact that the monodromy operator and its discretizations are
compact operators.

In the next case we let A = 0.1 and performed four subcases. First
we used an approximate solution of seven harmonics and took 40
Chebyshev points for collocation. We then changed the harmonics
to 11 harmonics. For the third subcase we used seven harmonics
but increased the Chebyshev collocation points to 50. For the last
subcase we used 11 harmonics and 50 Chebyshev points. There were
no significant changes in the results. The figures below represent the
subcase of seven harmonics and 50 Chebyshev points. In this case the
absolute value of the residual is given as 5.0481 x 1074,

Figure 4 shows the tight overlay of the approximate solution with
seven harmonics and the numerically integrated solution. Note that
the limit cycle is a slightly skewed form of a circle as expected.
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Overlay Plot of Galerkin Approxi Solution and Solution
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o
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FIGURE 4. Overlay of phase plots of approximate collocated solution and
numerically integrated solution for the Van der Pol equation.

Figure 5 shows the four components of the fundamental solution eval-
uated over [0, 27r] by dde23 and collocation. The collocated fundamen-
tal solution is marked by x’s on the graphs. In this case the numerically
integrated fundamental solution differs from the collocated fundamen-
tal solution. The collocated fundamental solution in Figure 5 is more
consistent with the collocated fundamental solution in Figure 2, which
suggests that dde23 is having a more difficult time constructing the fun-
damental solution in this case. The relative tolerances in dde23 were
set to 1076 and the absolute tolerances to 1078.

Figure 6 again shows the first two eigenvalues symmetric about the
real axis in both cases. For the case using dde23 the magnitude of the
first two eigenvalues is 0.8815 and for the pseudospectral collocation it
is 0.9527. These values represent an approximate 11 percent change in
the case of numerical integration and approximately 4 percent change in
the case of pseudospectral collocation from the eigenvalues for A = 0.01.
In both cases the magnitudes of the eigenvalues are less than unity.
Both of the preceding cases showed that the approximate limit cycle
was stable.
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FIGURE 5. Four elements of the fundamental solution of the Van der Pol
equation from 0 to 2.
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FIGURE 6. Twenty eigenvalues of the monodromy operator U by dde23 and
collocation.
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Overlay Plot of Galerkin Approximate Solution and Integrated Solution
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FIGURE 7. Overlay of phase plots of approximate collocated solution and
numerically integrated solution for the Van der Pol equation.

We now examine an unstable case. In this case we take A = 1.2
again with seven harmonics and 50 Chebyshev points. Figure 7 clearly
shows an instability in the numerical integration by dde23. Figure 8,
for the fundamental solutions, also reflects the instability. Figure 9
shows that there are eigenvalues in both cases with magnitudes greater
than unity. This is consistent with the result that the approximate
solutions are stable limit cycles if all of the characteristic multipliers
of the variational equation with respect to the approximate solution
have magnitudes less than or equal to unity and are unstable if any
one eigenvalue has magnitude greater than unity.

These results for the Van der Pol equation with delay in the non-linear
terms are in contrast with the results of the Van der Pol equation with
no delay. In that case the limit cycle solution is stable for large values
of \.

Disclaimer. Certain trade names and company products are men-
tioned in the text or identified in an illustration in order to adequately
specify the experimental procedure and equipment used. In no case
does such an identification imply recommendation or endorsement by
the National Institute of Standards and Technology, nor does it imply
that the products are necessarily the best available for the purpose.
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FIGURE 8. Four elements of the fundamental solution of the Van der Pol
equation from 0 to 2.
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FIGURE 9. Twenty eigenvalues of the monodromy operator U by dde23 and
collocation.
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