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ABSTRACT. In discussions of certain neutral delay differ-
ential equations in Hale’s form, the relationship of the original
problem with an integrated form (an integral equation) proves
to be helpful in considering existence and uniqueness of a so-
lution and sensitivity to initial data. Although the theory is
generally based on the assumption that a solution is continu-
ous, natural solutions of neutral delay differential equations of
the type considered may be discontinuous. This difficulty is
resolved by relating the discontinuous solution to its restric-
tions on appropriate (half-open) subintervals where they are
continuous and can be regarded as solutions of related inte-
gral equations. Existence and unicity theories then follow.
Furthermore, it is seen that the discontinuous solutions can
be regarded as solutions in the sense of Carathéodory (where
this concept is adapted from the theory of ordinary differential
equations, recast as integral equations).

1. The forms of integral equation considered. The integral
equations discussed in this paper are in the form

(1.1) y(t) = g
(
t, y(t), y(t− τ (t))

)
+

∫ t

t0

f
(
s, y(s), y(s− τ (s))

)
ds+ z0

or the form

(1.2) y(t) = γ
(
t, y(t− τ (t)),

∫ t

t0

f
(
s, y(s), y(s− τ (s))

)
ds+ z0

)
.

In either case, the equation holds for t ∈ I0 where I0 is [t0, T ] or
[t0, T ) (for t0 < T ∈ R ∪ ∞), and y(t) is prescribed on a suitable
initial interval [t−1, t0] ⊂ (−∞, t0]. The situations considered can

Received by the editors on June 1, 2005, and in revised form on September 13,
2005.

Copyright c©2006 Rocky Mountain Mathematics Consortium

227



228 C.T.H. BAKER AND P.M. LUMB

give rise to discontinuous solutions. We summarize the main results
in subsection 3.1.

2. Related evolutionary equations. We are motivated by the
use of equations with time-lag (neutral delay differential equations,
“NDDEs”) in certain mathematical models. The equations that lead
us to (1.1) and (1.2) are of the form

(2.1a)
(

d
dt

) {
y(t) − g

(
t, y(t), y(t− τ (t))

)}
= f

(
t, y(t), y(t− τ (t))

)
,

for t ∈ I0. The special case y′(t) = f
(
t, y(t), y(t − τ (t))

)
is a delay

differential equation, or DDE.

With appropriate assumptions, see subsection 3.2, a particular solu-
tion y(t) ≡ y(ϕ, τ ; t) is defined by (2.1a) together with

(2.1b) y(t) = ϕ(t) (t ∈ [t−1, t0], t−1 := inf
t∈I0

t− τ (t) ∈ (−∞, t0)).

We write [t−1, t0]∪I0 as I−1; we regard y(ϕ, τ ; t) as defined for t ∈ I−1.

If g(t, u, v) is not independent of v, e.g., if {∂/∂v}g(t, u, v) exists and
does not vanish identically, this is an example of a form of NDDE often
called “Hale’s form,” see [10, Chapter 12], [14, pp. 9, 118 120].

Throughout, we regard t as representing ‘time,’ and, for convenience,
consider problems (2.1) with a single time-dependent “lag” τ (t).

We seek a solution y(t) ∈ Rn, given ϕ(t) ∈ Rn for t ∈ [t−1, t0] and
appropriate functions f, g : I0 × Rn × Rn → Rn.

Example 2.1. An example of (2.1) taken in [2] to illustrate the class
of problems reads (d/dt) {y(t) − y(t− 1)} = y(t−1) (for t ∈ I0, taking
a right-hand derivative); ϕ(t) = t (t ∈ [−1, 0)), ϕ(0) = 1. Expressions
for a solution on [0, 1], [1, 2], [2, 3] and [3, 4] are given in [2].

Regarding (2.1), we note that (i) the existence of a one- or two-sided
derivative (

d
dt

) {
y(t) − g

(
t, y(t), y(t− τ (t))

)}
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does not imply the continuity of y(t) and that (ii) y(t) inherits disconti-
nuities, for certain t ≥ t0, from discontinuities at earlier times, through
dependency on y(t − τ (t)). Related discussions in the literature re-
fer almost exclusively to continuous, or even differentiable, solutions of
(2.1). For some pathologies see [5, 9 and their citations].

By way of illustration, suppose that y(ϕ, τ ; t) is actually continuous in
t for t ∈ I−1(with y(ϕ, τ ; t) = ϕ(t) for t ∈ [t−1, t0]), and that f(t, u, v)
and g(t, u, v) are continuous for t ∈ I0, |u|, |v| < ∞. Then if y(ϕ, τ ; t)
satisfies the integral equation (1.1) where the integral is interpreted in
the sense of Riemann, it follows that

(2.2)
(

d
dt

){
y(t) − g

(
t, y(t), y(t− τ (t))

)}
= f

(
t, y(t), y(t− τ (t))

)
.

However, y′(t) will not exist for arbitrary g(t, u, v).

Our remarks have been concentrated on the “implicit” form of NDDE,
(2.2). We also refer to the problem

(2.3a) y′(t) = f∗
(
t, y(t), y(t− τ ), y′(t− τ )

)
, t ≥ t0,

(2.3b) y(t) = ϕ(t), t ∈ [t−1, t0]

which is an explicit form of NDDE. Bellen and Zennaro [4, p. 5] note
that, unless the initial function ϕ satisfies an appropriate condition1 at
t0, the solution of (2.3) “remains solely of class C0 and the solution of
(2.3) must be understood in the ‘almost everywhere’ generalized sense.”

Example 2.2. Consider the problem of determining a function y
that has a derivative for almost all t ≥ 0 and satisfies (cf. Example 2.1)

(2.4a) y′(t) = y′(t− 1) + y(t− 1) for almost all t ∈ I0

(2.4b) y(t) = ϕ(t) for all t ∈ [−1, 0].

Suppose that y� satisfies (2.4) for T = N (where N ∈ N), and suppose
that c ∈ R is arbitrary. Then the function yc with yc(t) = y�(t) for
t ∈ [0, N −1) and yc(t) = y�(t)+ c for t ∈ [N −1, N ], also satisfies (2.4)
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for T = N . Observe that a function that has a derivative for almost all
t need not be continuous for all t.

The preceding and similar remarks suggest that one may ask what
interpretation of the problem (2.1) is appropriate, and, allied to this,
in what sense we seek a solution of (2.1), and whether a ‘solution’ is
then unique. Integral equation formulations, of the type (1.1), play a
rôle when we answer such questions, below.

The results presented here require only standard analysis. Some
of the insight on which we rely comes from the special case y(t) =
y(ζ�) +

∫ t

ζ�
f (s, y(s))ds, t ∈ [ζ�, ζ�+1), in which y(t) has a derivative on

[ζ�, ζ�+1). Additional insight comes from the “method of steps” used in
the discussion of certain DDEs [13, 14]; however, the transition from
DDEs to NDDEs in Hale’s form involves some complications.

2.1 Supplementary remarks. We conclude this section with two
additional remarks.

Remark 2.3. Liu [15] considers a simplified form of (2.2):(
d
dt

) {
y(t) − g∗

(
t, y(t− τ (t))

)}
= f

(
t, y(t), y(t− τ (t))

)
, t ∈ I0.

If y′(t) exists, this equation may be converted to explicit form y′(t) =
f∗

(
t, y(t), y(t − τ (t)), y′(t − τ )

)
by differentiating g∗

(
t, y(t − τ (t))

)
,

assuming the derivatives of τ and g∗ are available. However, y′(t)
exists for t ≥ t0 only for a restricted class of initial functions ϕ.

Remark 2.4. As an illuminating diversion, we note that Hale’s
form (2.1) of the NDDE problem can be expressed as a semi-explicit
constrained delay differential equation (CDDE), see [3 and references
therein]. Consider, for t ∈ I0,(

d
dt

)
z(t) = f(t, y(t), y(t− τ (t))),(2.5a)

z(t) = y(t) − g(t, y(t), y(t− τ (t)))(2.5b)

with y(t) = ϕ(t) for t ∈ [t−1, t0]. This formulation is completely
equivalent to (2.1); however, it will be recognized as having the form
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of a CDDE or “delay differential algebraic equation” (DDAE) [1].
(The terminology DDAE has some appeal if the function g(t, u, v) is an
algebraic function of its arguments u and v.) The equation (2.5b) can
be regarded as a constraint.

If f(t, u, v) = f(t, u) and g(t, u, v) = g(t, u), both independent of v,
the problem (2.5) becomes a “differential algebraic equation” (DAE)
[1, 18]. It has been observed that “DAEs are not ODEs” [17].

Extending the observation in Liu [15], there is a variant of (2.5) in
which the problem is written in the completely equivalent form

(2.6a)
(

d
dt

)
z(t) = f

(
t, z(t) + g

(
t, y(t), y(t− τ (t))

)
, y(t− τ (t))

)
,

z(t) = y(t) − g
(
t, y(t), y(t− τ (t))

)
,(2.6b)

for t ∈ I0, with y(t) = ϕ(t) for t ∈ [t−1, t0].

Our discussion will establish, in part, the extent to which one can
claim that DAEs, DDEs, and constrained DDEs and NDDEs, can be
construed as integral equations.

3. Concerning the theory for NDDEs. This section is comprised
of the following: subsection 3.1, the principal results; subsection 3.2,
formal assumptions and subsection 3.3, initial observations. The re-
mainder of the paper is then divided as follows: Section 4, the integral
equation formulation; subsection 4.1, similar problems in ODEs; sub-
section 4.2, a method of steps; subsection 4.3, extension of Peano’s
theorem to the NDDE; subsections 4.3.1 4.3.2, three lemmas and a
theorem; subsection 4.3.3, equicontinuity and uniform boundedness;
subsection 4.4, the extension of Picard iterations to the NDDE; sub-
section 4.5, sensitivity to initial data; subsection 4.6, solutions in the
sense of Carathéodory; Section 5, conclusions; and, finally, references
to the literature.

3.1 The principal results. Any solution y(t) ≡ y(ϕ, τ ; t) of (2.1)
derives its properties from τ and ϕ (and f , g). Two definitions of
the term ‘solution’ are given: in Definition 3.14 (a ‘natural solution’,
based on an interpretation of derivatives as right-hand derivatives)
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and in Definition 4.9 (a solution in the sense of Carathéodory). We
use assumptions, collected in subsection 3.2, concerning our class of
problems. The reader is asked to provide details of the proofs of
lemmata, except Lemma 4.4 for which a reference is cited. The
approach adopted differs from that which is conventional in existing
monographs, e.g., [11, 13, 14]. The principal results are: (a) Theorems
4.5 and 4.6 on the existence of a natural solution; (b) Theorem 4.6 on
the uniqueness of a natural solution; (c) Theorem 4.8 relating to the
dependence of a natural solution on the original data; (d) Theorem 4.11
relating natural solutions to solutions in the sense of Carathéodory.

3.2 Formal assumptions.

Assumption 3.1. Throughout, τ ∈ C(I0), 0 < τ∗ = inft∈I0 τ (t),
−∞ < t−1 = inft∈I0{t− τ (t)} < t0, and supt∈I0

τ (t) ≤ τ∗ <∞.

Assumption 3.2. The initial function ϕ is continuous at points in
[t−1, t0] with the exception of a finite set of (R+ 1) ordered points

(3.1) ζ−R < ζ−R+1 < · · · < ζ−1 < ζ0

in (t−1, t0] where it is continuous from the right but suffers bounded
jump discontinuities ϕ(ζ�) − ϕ(ζ�−), � ∈ {−R, 1 − R, . . . ,−1, 0}. For
convenience, we assume ζ0 = t0.

The next assumption imposes a further restriction on τ (t).

Assumption 3.3. There exists a monotone strictly increasing
sequence {ζ1, ζ2, ζ3 . . . } that has no finite point of accumulation in I0,
and a map �→ k� for � ∈ {0, 1, 2, . . . }, with k� < �− 1, such that

(3.2) t− τ (t) ∈ [ζk�
, ζk�+1) when t ∈ [ζ�, ζ�+1).

If T /∈ {ζ�}, then it should be added to {ζ�} (as ζ�max+1). For
� ∈ {0, 1, 2, · · · }, we use the notation

(3.3) z� := y(ζ�) − g
(
ζ�, y(ζ�), y(ζ� − τ (ζ�))

)
.
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Certain of our conclusions extend to problems with multiple time-
lags. Note that we can replace Assumption 3.3 by the following stronger
hypothesis, which (with Assumption 3.1) guarantees its validity.

Assumption 3.4. We assume that t−τ (t) is monotonic increasing.

We request that the functions f , g satisfy the following.

Assumption 3.5. We suppose the functions f, g assuming values
f(t, u, v) and g(t, u, v) are continuous for t ∈ I0 and ‖u‖, ‖v‖ <∞.

As an additional (weak) condition on g, we assume:

Assumption 3.6. There is a function γ(t, v, w) that is continuous
in v and w for all t ∈ I0, such that if u = γ(t, v, w) then u satisfies the
equation u = g(t, u, v) + w.

Assumption 3.6 can be viewed as an index 1 condition, to evoke the
terminology for DAEs. Assumption 3.6 does not imply uniqueness of
γ and to show uniqueness of y(t) we strengthen the assumption:

Assumption 3.7. There exists a unique function γ(t, v, w) such
that if u = g(t, u, v) +w then u = γ(t, v, w) (for arbitrary t ∈ I0 and
u, v, w ∈ Rn), where γ(t, v, w) satisfies

(3.4) ‖γ(t, v′, w′) − γ(t, v′′, w′′)‖ ≤ K{‖v′ − v′′‖ + ‖w′ − w′′‖}

uniformly for all t ∈ I0 and all v′, v′′, w′, w′′ ∈ Rn, where K > 0.

Example. For g(t, u, v) = v, as in Example 2.1, γ(t, v, w) = v + w.

Additional assumptions, on f and g, follow.

Assumption 3.8. There exist constants Λ1(f),Λ2(f) > 0, such
that, uniformly for all t ∈ I0 and all u1, u2, v1, v2 ∈ Rn,

(3.5) ‖f(t, u1, v1) − f(t, u2, v2)‖ ≤ Λ1(f)‖u1−u2‖ + Λ2(f)‖v1−v2‖.
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Assumption 3.9. There exist constants Λ1(g),Λ2(g) > 0, such that,
uniformly for all t ∈ I0 and all u1, u2, v1, v2 ∈ Rn,

(3.6) ‖g(t, u1, v1) − g(t, u2, v2)‖ ≤ Λ1(g)‖u1−u2‖ + Λ2(g)‖v1−v2‖.

We remark on a possible further strengthening of the conditions on g.

Condition 3.10. For u1, u2, v ∈ Rn,

(3.7)
‖g(t, u1, v) − g(t, u2, v)‖ ≤ λ1(g)‖u1 − u2‖

with λ1(g) ∈ [0, 1).

If (3.6) is strengthened so that (3.7) also holds, then Assumption 3.7
can be omitted, as it follows from (3.6) and (3.7). However, equation
(3.7) is not a necessary condition for Assumption 3.7 (for example,
g(t, u, v) = v as in Example 2.1) and will not be a part of our general
assumptions.

In subsection 4.3, we assume the following condition.

Condition 3.11. There exist constants κ0,1 > 0 such that
‖f(t, u, v)‖ ≤ κ0‖u‖ + κ1 for t ∈ I0 and u, v ∈ Rn.

If f(t, 0, v) is uniformly bounded (for t ∈ I0 and ‖v‖ < ∞) and
Assumption 3.8 is valid, then Condition 3.11 holds.

We adopt all the Assumptions 3.1 3.9 unless we state that we are
dropping stronger hypotheses but retaining weaker ones.

Remark 3.12. Liu [15] considers numerics for the case (see Re-
mark 2.3) where g

(
t, y(t), y(t − τ (t))

)
is replaced by the simpler form

g∗
(
t, y(t− τ (t))

)
. This case lacks an essential feature of our discussion,

because the existence of the function γ in Assumption 3.7 becomes a
trivial issue (in the simplified case, γ(t, v, w) = g∗(t, v) + w).
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3.3 Initial observations. For a function ψ(t) that is continu-
ous from the right on [t′, t′′) (so ψ(t) = limδ↘0 ψ(t + δ) for t ∈
[t′, t′′)), consider, if it exists, the right-hand derivative [12] defined as
(d/dt)+ψ(t) = limδ↘0{ψ(t + δ) − ψ(t)}/δ. If ψ is right-continuous on
the interval [t′, t′′), (d/dt)+

∫ t

t′ ψ(s)ds = ψ(t) for t ∈ [t′, t′′).

Lemma 3.13. (i) Suppose y(t) ≡ y(ϕ, τ ; t) satisfies the integral
equation (1.1) where the integral is interpreted in the sense of Riemann,
and suppose Assumption 3.5 is valid. If y(t) is right continuous and
has a right-hand derivative (d/dt)+y(t), then

(3.8)
(
d

dt

)
+

{y(t) − g
(
t, y(t), y(t− τ (t))

)} = f
(
t, y(t), y(t− τ (t))

)
;

further,(
d

dt

)
+

y(t) =
(
d

dt

)
+

g
(
t, y(t), y(t− τ (t))

)
+ f

(
t, y(t), y(t− τ (t))

)
.

(ii) Alternatively, suppose y(t) possesses the assumed right-continuity
and satisfies (3.8), and suppose that y(t) − g

(
t, y(t), y(t − τ (t))

)
is

continuous. Then y(t) also satisfies (1.1).

Note that a continuous function with a bounded right-hand derivative
is absolutely continuous on compact intervals.

Definition 3.14. A natural solution of (2.1) on I0 is a right-
continuous function satisfying (3.8) (the derivatives being taken as
right-hand derivatives) for t ∈ I0, and such that y(t) − g

(
t, y(t), y(t−

τ (t))
)

is continuous for t ∈ I0.

4. The integral equation formulation. Our concern is to relate
the problem (2.1a) to its integrated form

(4.1a) y(t) = g
(
t, y(t), y(t−τ (t))) +

∫ t

t0

f
(
s, y(s), y(s−τ (s)))ds+z0
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for t ∈ I0, with z0 as in (3.3), with the condition (2.1b), viz.

(4.1b) y(t) = ϕ(t) (t ∈ [t−1, t0]) where t−1 := inf
t∈I0

t− τ (t),

and to exploit (4.1). To develop (4.1a) further, Assumption 3.7 is
convenient, and we deduce, from (4.1a), the new formulation

(4.1c) y(t) = γ
(
t, y(t− τ (t)),

∫ t

t0

f
(
s, y(s), y(s− τ (s))

)
ds+ z0

)
.

Remark 4.1. There are similarities in our approach and the treatment
of Driver [8] of the problem of a system of explicit NDDEs

(4.2) y′(t) = f�

(
t, y(t), y(t− τ1(t)), y′(t− τ2(t))

)
,

where τ1,2(t) > 0, where Driver assumes that the initial function ϕ
is absolutely continuous on the closed initial interval ([t−1, t0] in our
notation) with t− τ1,2(t) ≥ t−1.

4.1 Similar problems for ordinary differential equations. We
pause to place our approach in perspective. Where g vanishes iden-
tically and f(t, u, v) = f (t, u) the problem of relating (2.1a) to the
integrated form reduces to a well-studied problem of the relation be-
tween ordinary differential equations (ODEs) y′(t) = f (t, y(t)) and the
integrated form y(t) = y(t0) +

∫ t

t0
f (s, y(s)) ds. Related are (i) use of

the integral equation to establish existence of a solution (ii) investi-
gation of Picard iteration (or other iterative methods) for the integral
equation and (iii) consideration of the solution of the ODE in the sense
of Carathéodory.

We observe that: (i) the Peano or Cauchy-Peano theory relies on
the Arzelà-Ascoli theorem (stated below as Lemma 4.1); (ii) the Pi-
card or Picard-Lendelöf iteration for solution of the integral equa-
tion form of the ODE y′(t) = f (t, y(t)) has the form yk+1(t) =
y(t0) +

∫ t

t0
f (s, yk(s)) ds; and (iii) a solution of y′(t) = f (t, y(t)) on

I0 in the sense of Carathéodory is a function that is absolutely contin-
uous (see [12]) on compact sub-intervals of I0, and satisfies the integral
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equation y(t) = y(t0) +
∫ t

t0
f (s, y(s)) ds on I0, with the integral taken

in the sense of Lebesgue. See, e.g., [6, 19, 20].

4.2 A method of steps. The method of steps for the solu-
tion of a DDE extends2 to potentially discontinuous ‘natural’ so-
lutions of (2.1) (that is, solutions of (3.8) in the sense of Defini-
tion 3.14). We examine the solution on [ζ�, ζ�+1), taking as hypoth-
esis the existence of a (not necessarily unique) solution y(t) satisfying
(3.8) on the interval [t−1, ζ�). The value of this solution at ζ� is a
solution of the equation y(ζ�) − g

(
ζ�, y(ζ�), y(ζk�

)
)

= limt→ζ�
y(t) −

g
(
ζ�, limt→ζ�

y(t), limt→ζ�
y(t− τ (t))

)
, and it follows from a knowledge

of y(t) on [t−1, ζ�) provided that equations of the form u−g(t, u, v) = w
have some solution u when given t, v, w.

We shall be seeking proofs by induction, so let us assume that a
solution y(t) exists on [t−1, ζ�]. For t ∈ [ζ�, ζ�+1), we have t − τ (t) ∈
[ζk�

, ζk�+1] (by Assumption 3.3, equation (3.2)). We write

(4.3) ϕ�(t) = y(t) for t ∈ [ζk�
, ζk�+1)

and
ϕ�(ζk�+1) = lim

t↗ζk�+1
y(t).

Thus, ϕ�(t) = y(t) on [ζk�
, ζk�+1) but ϕ�(t) lacks a jump that y(t) may

be assumed to possess, at ζk�+1.

If an extension of the solution y(t) to [ζ�, ζ�+1] exists, it agrees on the
half-open interval [ζ�, ζ�+1) with the solution y�(t) of

(4.4a)
(
d

dt

){
y�(t) − g�

(
t, y�(t)

)}
= f�

(
t, y�(t)

)
(t ∈ [ζ�, ζ�+1]),

(4.4b) y�(ζ�) = y(ζ�),

with

(4.4c)
f�

(
t, y�(t)

)
:= f

(
t, y�(t), ϕ�(t− τ (t))

)
g�

(
t, y�(t)

)
:= g

(
t, y�(t), ϕ�(t− τ (t))

)}
, t ∈ [ζ�, ζ�+1).
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If we then require that y�(ζ�+1) satisfies

(4.5) y�(ζ�+1) − g�

(
ζ�+1, y�(ζ�+1)

)
= lim

t↗ζ�+1

{
y(t) − g�

(
t, y(t)

)}
,

we define y(ζ�+1) = y�(ζ�+1). While y�(t) has a jump at ζ�+1, (4.4c)
implies that, for t ∈ [ζ�, ζ�+1), f�

(
t, y�(t)

) ≡ f
(
t, y�(t), yk�

(t − τ (t))
)

and g�

(
t, y�(t)

) ≡ g
(
t, y�(t), yk�

(t − τ (t))
)
. We write z�(t) := y�(t) −

g�

(
t, y�(t)

)
, z(t) = y(t) − g

(
t, y(t), y(t− τ (t))

)
; z�(ζ�) = z(ζ�) is z�.

The literature on ODEs suggests two ways to proceed: the first is
to follow Peano and establish the existence of a solution (not neces-
sarily unique), using Assumption 3.5. The second is to follow Picard
and study suitable iterations using conditions of Lipschitz continuity.
Actually, the nonvanishing of g in (4.4) suggests that we should look to
the theory of DAEs rather than that of ODEs, but we are unaware of
literature that gives extensions of Peano’s or Picard’s theories to DAEs.

4.3 Extension of Peano’s theorem to the NDDE. Condi-
tion 3.11 implies that ‖f�(t, u)‖ ≤ κ0‖u‖ + κ1, and we now require
this condition to be satisfied along with Assumption 3.6. Our theory
echoes that for ODEs detailed in Reid [19, Chapter 1, Section 3]; an
alternative is to assume a uniform bound on ‖f�(t, u)‖ for all possible
arguments.

4.3.1 Three lemmas . . . . We state three lemmas that we use to
establish what follows.

Lemma 4.2. If |νr| ≤ ΔC0

∑r−1
q=0 |νq|+C1 for r = 1, 2, . . . , N where

C0 > 0, C1 > 0, are constants, then

max
r∈{0,1,... ,N}

|νr| ≤ (C1 + ΔC0|ν0|) exp{C0NΔ}.

Now write �ζ� = ζ� − ζ�−1 and pick Δ = �ζ�/N for some positive
integer N . Suppose μ = r+θ ≤ N with r ∈ {0, 1, . . . , N−1}, θ ∈ [0, 1],
so that

∫ ζ�+μΔ

ζ�
ψ(s) ds =

∑r−1
s=0

∫ ζ�+(s+1)Δ

ζ�+sΔ
ψ(σ) dσ +

∫ ζ�+μΔ

ζ�+rΔ
ψ(σ) dσ.

Euler’s rule may be applied to each integral term, and Lemma 4.3,
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below, provides a bound on the error in the resulting approximation,
in terms of the modulus of continuity ω(ψ; Δ) of the integrand.

Lemma 4.3. For ψ ∈ C[ζ�, ζ�+1], μ = r + θ, as above, we have∥∥∥∥ ∫ ζ�+μΔ

ζ�

ψ(s) ds−
{

Δ
r−1∑
s=0

ψ(ζ� + sΔ) + θΔψ(ζ� + rΔ)
}∥∥∥∥

≤ |ζ�+1 − ζ�|ω(ψ; Δ).

Lemma 4.4 (The Arzelà-Ascoli theorem, see [19, p. 527]). Let
F be a set of uniformly bounded and equicontinuous functions defined
on a compact metric space X ; then any sequence {fn} ⊆ F has a
subsequence that is uniformly convergent on X to a continuous function.

4.3.2 . . . and a theorem.

Theorem 4.5. Suppose that Assumptions 3.1 3.6 and Condi-
tion 3.11 hold ; then there exists a natural solution of (2.1).

Proof. Consider the solution of the problem (4.4) on [ζ�−1, ζ�); we
take � = 1, then consider � = 2, 3, etc., in turn.

We construct, for each Δ = �ζ�/N (as above), approximations yΔ(t)
to y�(t) and zΔ(t) to z�(t) where dependencies on � are suppressed in the
notation yΔ, zΔ. For θ ∈ [0, 1], we consider the Euler-type equations

zΔ(ζ�+(r+θ)Δ) = zΔ(ζ�+rΔ)+θΔf�

(
ζ�+rΔ, yΔ(ζ�+rΔ)

)
,

(4.6a)

zΔ(t) = yΔ(t) − g�

(
t, yΔ(t)

) ≡ yΔ(t) − g
(
t, yΔ(t), ϕk�

(t− τ (t))
)
.

(4.6b)

Thus, writing μ = r + θ (for θ ∈ [0, 1], r ∈ {0, 1, · · · , N − 1}),
(4.7a) zΔ(ζ�+μΔ)

= zΔ(ζ�)+Δ
r−1∑
s=0

f�(ζ�+sΔ, yΔ(ζ�+sΔ))+θΔf�(ζ�+rΔ, yΔ(ζ�+rΔ))
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(4.7b) zΔ(ζ� + μΔ) = yΔ(ζ� + μΔ) − g�(ζ� + μΔ, yΔ(ζ� + μΔ)).

This yields

(4.8)

yΔ(ζ� + μΔ) = z(ζ�) + g�(ζ� + μΔ, yΔ(ζ� + μΔ))

+ Δ
r−1∑
s=0

f�(ζ�+sΔ, yΔ(ζ�+sΔ))

+ θΔf�(ζ�+rΔ, yΔ(ζ�+rΔ)).

From the above, we deduce that the functions
{
yΔ(t)

∣∣Δ = �ζ�/N ; N =
1, 2, . . . ,

}
are uniformly bounded and equicontinuous on [ζ�, ζ�+1].

The details of how this conclusion is reached (using Lemma 4.3 and
our stated assumptions) appear in subsection 4.3.3 below. By the
Arzelà-Ascoli theorem (Lemma 4.4), the set of uniformly bounded and
equicontinuous functions {yΔ(t)} on [ζ�, ζ�+1] contains a subsequence
{yΔj

(t)} with a continuous limit limΔj→0 yΔj
(t), on [ζ�, ζ�+1], in the

sense of uniform convergence. We can now appeal to Lemma 4.3 and
the equicontinuity of {yΔk

(t)} and hence of {f�(t, yΔk
(t))}. Since (4.8)

gives

yΔ(t) = z� + g�(t, yΔ(t)) +
∫ t

ζ�

f�(s, yΔ(s))ds+ ε(Δ)

and limΔk→0 ε(Δk) = 0, it follows that limΔk→0 yΔk
(t) exists on the

closed interval [ζ�, ζ�+1] and on the open interval [ζ�, ζ�+1) it satisfies
the integral equation

(4.9) y(t) = z� + g
(
t, y(t), y(t− τ (t))

)
+

∫ t

ζ�

f
(
s, y(s), y(s− τ (s))

)
ds,

and hence (4.4). Equation (4.5) defines a value y(ζ�+1). By induction
on �, there follows the existence of a natural solution y(t) on I0.

4.3.3 Equicontinuity and uniform boundedness. To establish the
equicontinuity and uniform boundedness above, we rely on the discrete
Gronwall inequality in Lemma 4.2.
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• To show uniform boundedness, we could employ (4.8) directly or
recast it in terms of γ as we do here. As a convenient shorthand, write

σμ(Δ) := Δ
r−1∑
s=0

f�(ζ�+sΔ, yΔ(ζ�+sΔ)) + θΔf�(ζ�+rΔ, yΔ(ζ�+rΔ)).

From (4.8),

(4.10) yΔ(ζ� + μΔ) = γ(ζ� + μΔ, ϕk�
(ζ� + μΔ), z(ζ�) + σμ(Δ)).

This is valid for μ ∈ {
r + θ

∣∣ r ∈ {0, 1, . . . , N}; θ ∈ [0, 1]; μ ≤ N
}

and
in particular for μ = 0 (we have yΔ(ζ�) = γ�(ζ�, z(ζ�))). The expression
that we deduce for yΔ(ζ� +μΔ)−yΔ(ζ�) allows us to establish a bound
on yΔ(ζ� + μΔ) (using the assumptions of our theorem, a triangle
inequality, and the fact that yΔ(ζ�) = y(ζ�)). With

(4.11) Γμ(Δ) := ‖γ(ζ� + μΔ, ϕk�
(ζ� + μΔ), z�) − γ(ζ�, ϕk�

(ζ�), z�)‖

(for which a uniform bound exists) we have the result

(4.12)
‖yΔ(ζ� + μΔ)‖

≤ Γμ(Δ) + ‖γ(ζ� + μΔ, ϕk�
(ζ� + μΔ), z� + σμ(Δ))

− γ(ζ� + μΔ, ϕk�
(ζ� + μΔ), z�)‖,

≤ Γμ(Δ) + Λ3(γ)
{
κ0

(
Δ

r−1∑
s=0

‖yΔ(ζ� + sΔ)‖

+ θΔ‖yΔ(ζ� + rΔ)‖
)

+ κ1μΔ
}

using Condition 3.11 for f . If we set θ = 0 in (4.12), the discrete
Gronwall inequality provides a uniform bound for {‖yΔ(ζ� + rΔ)‖}N

r=0.
Now consider θ ∈ (0, 1) and we deduce from (4.12) a uniform bound on
the quantities {‖yΔ(ζ� + μΔ)‖}.
• To show equicontinuity, employ (4.8) with μ = μ′ and μ = μ′′.

Difference the resulting equations3, and use the uniform boundedness
of {yΔ(ζ� + sΔ)}N

s=0 and the continuity of f and g, which is uniform
on compact intervals.
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4.4 Extension of Picard iterations to the NDDE. The iterations
obtained with either rk = k or rk = k + 1 in

yk+1(t) = g
(
t, yrk

(t), yk(t− τ (t))
)

+
∫ t

t0

f
(
s, yk(s), yk(s− τ (s))

)
ds+z0,

are two tentative candidates for the discussion of (4.1a). We amend
these iterations, to reflect ideas underpinning the method of steps. Our
replacements for the above iterations read, respectively,

(4.13a)

yk+1(t) = g
(
t, yk(t), y(t− τ (t))

)
+

∫ ζ�

t0

f
(
s, y(s), y(s− τ (s))

)
ds

+
∫ t

ζ�

f
(
s, yk(s), y(s− τ (s))

)
ds+ z�;

(4.13b)

yk+1(t)−g
(
t, yk+1(t), y(t−τ (t))

)
=

∫ ζ�

t0

f
(
s, y(s), y(s− τ (s))

)
ds

+
∫ t

ζ�

f
(
s, yk(s), y(s−τ (s)))ds+ z�

for t ∈ [ζ�, ζ�+1). These are based on (4.1a), and the last of these
corresponds to an iteration for (4.1d) of the form

(4.13c)
yk+1(t) = γ

(
t, y(t−τ (t)),

∫ ζ�

t0

f
(
s, y(s), y(s−τ (s))) ds

+
∫ t

ζ�

f
(
s, yk(s), y(s−τ (s)))ds+z�

)
for t ∈ [ζ�, ζ�+1). Recall that t − τ (t) < ζ� when t ∈ [ζ�, ζ�+1) and
z�+1 = limt↗ζ�+1

{
y(t) − g

(
t, y(t), y(t − τ (t))

)}
for � ∈ {0, 1, 2, . . . }.

The iteration (4.13a) is less than ideal. When f vanishes identically,
the iteration reads yk+1(t) = g

(
t, yk(t), y(t − τ (t))

)
. Convergence of

this iteration is normally discussed under a condition of the form (3.7),
and we therefore expect4 to have to strengthen this condition for the
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general case. On the other hand, (3.7) is not a necessary condition for
the existence of γ and it therefore seems desirable to consider (4.13b)
or the form (4.13c).

Theorem 4.6. Suppose that Assumptions 3.1 3.8 are valid. Then
there exists a unique natural solution of (2.1), which is obtainable by
Picard iteration based on (4.13b) or (4.13c).

Proof. On writing Δyk(t) := yk+1(t) − yk(t), (3.4) and (4.13c) yield

(4.14) ‖Δyk(t)‖ ≤ KΛ1(f)
∫ t

ζ�

‖Δyk−1(s)‖ ds.

Now yk+1(t) = y0(t) +
∑k

r=0 Δyr(t) and by comparison with the
exponential series and (4.14) it follows that

∑∞
r=0 Δyr(t) converges

absolutely (for t ∈ [ζ�, ζ�+1)). From the continuity of γ and f it follows
that the limit satisfies the integral equation formulation (4.1c), and
hence (4.1a), on [ζ�, ζ�+1). The value y(ζ�+1) follows. Using similar
inequalities to those above, the assumption that there are two such
solutions yields a contradiction.

4.5 Sensitivity to initial data. An approach that can be useful
both for the theory and the practical treatment of (2.1) involves the
replacement of a discontinuous initial function ϕ(t) by a continuous
approximation ϕδ(t) that has the jumps “smoothed out” but retains
the original support [t−1, t0]. One may then analyze the change
y(ϕ, τ ; t)− y(ϕδ, τ ; t). Let us consider the effect of changing the initial
function ϕ(t) to an initial function ϕ̃(t) ∈ {ϕ̃δ(t)}

0<δ<δ̂
where δ̂ > 0.

The functions ϕ̃δ(t) are to be either continuous on [t−1, t0] or to have
possible jumps at the same points (3.1) as does ϕ(t). For t ∈ I−1, we
write

y(t) ≡ y(ϕ, τ ; t), ỹ(t) ≡ y(ϕ̃, τ ; t), δy(t) := ỹ(t) − y(t),
z� = lim

t→ζ�

z(t), z̃� = lim
t→ζ�

z̃(t), δz� = z̃� − z�.

Here z̃(t) :=
{
ỹ(t) − g

(
t, ỹ(t), ỹ(t− τ (t))

)}
but, more conveniently,

(4.15) z̃(t) = z̃� +
∫ t

ζ�

f
(
s, ỹ(s), ỹ(s− τ (s))

)
ds,
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for t ∈ [ζ�, ζ�+1), with an analogous form for z(t). Using (3.5),

(4.16) ‖δz(t)‖ ≤ ‖δz�‖+
∫ t

ζ�

{Λ1(f)‖δy(s)‖+ Λ2(f)‖δy(s−τ (s))‖} ds.

Taking limits in equations of the form (4.16),

(4.17) ‖δz�+1‖ ≤ ‖δz�‖+
∫ ζ�+1

ζ�

{Λ1(f)‖δy(s)‖+Λ2(f)‖δy(s−τ (s))‖} ds,

� = 0, 1, 2, . . . . For t ∈ [ζ�, ζ�+1),

(4.18) ỹ(t) = γ

(
t, ỹ(t− τ (t)),

∫ t

ζ�

f
(
s, ỹ(s), ỹ(s− τ (s))

)
ds+ z̃�

)
,

with a corresponding equation for y(t).

Lemma 4.7. Let Assumptions 3.1 3.9 apply. If t ∈ [ζ�, ζ�+1) ⊂ I0,

(4.19) ‖δy(t)‖ ≤ K

∫ t

ζ�

Λ1(f)‖δy(s)‖ ds+ v�(t)

with v�(t) := K
{‖δz�‖ + ‖δy(t−τ (t))‖ +

∫ t

ζ�
Λ2(f)‖δy(s−τ (s))‖ ds

}
.

The term v�(t) depends on δy(t) for t ≤ ζ�, and (4.19) yields ‖δy(t)‖ ≤
v�(t) + K1

∫ t

ζ�
exp{K1(t − s)}v�(s) ds for t ∈ [ζ�, ζ�+1), with K1 =

KΛ1(f). Thus, there exist positive values c1,2(�) such that ‖δy(t)‖ ≤
v�(t) + c1(�)

∫ ζ�+1

ζ�
v�(s) ds, and

∫ t

ζ�
‖δy(s)‖ ds ≤ c2(�)

∫ ζ�+1

ζ�
‖v(s)‖ ds,

for t ∈ [ζ�, ζ�+1) ⊂ I0. We can now prove the following result by
considering successive intervals [ζ�, ζ�+1) and using induction.

Theorem 4.8. Let Assumptions 3.1 3.9 apply. If ‖ϕ(t)−ϕ̃δ(t)‖ pw→ 0
(pointwise) as δ → 0 for each t ∈ [t−1, t0], and

∫ t0
t−1

‖ϕ(s)−ϕ̃δ(s)‖ ds→
0 as δ → 0, then ‖y(ϕ, τ ; t) − y(ϕ̃δ, τ ; t)‖ pw→ 0, for each t ∈ I0.
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4.6 Solutions in the sense of Carathéodory.

Definition 4.9. A function y(t) = y(ϕ, τ ; y) that satisfies (4.1a) for
t ∈ I0, where y(t) − g(t, y(t), y(t − τ (t))) is absolutely continuous on
compact sub-intervals of I0, where the integral is interpreted in the
sense of Lebesgue, and also satisfies (4.1b) for all t ∈ [t−1, t0], will be
called a solution of (2.1) on I0 in the sense of Carathéodory.

For the extension of the fundamental theorems of calculus in terms
of Riemann integrals to Lebesgue integrals, we recall the following:

Lemma 4.10. If ψ ∈ L[t′, t′′] and Ψ(t) =
∫ t

t0
ψ(s) ds, t ∈ [t′, t′′],

then Ψ is absolutely continuous on [t′, t′′]. If Ψ is absolutely continuous
on [t′, t′′], then Ψ is differentiable almost everywhere on [t′, t′′], Ψ′ ∈
L[t′, t′′] and

∫ t

t′ Ψ′(s) ds = Ψ(t) − Ψ(t′) for all t ∈ [t′, t′′].

Given γ(t, u, v), a solution of (2.1) on I0 in the sense of Carathéodory
also satisfies (4.1c) for almost all t ∈ I0, and vice-versa in the case that
y(t) − g(t, y(t), y(t− τ (t)) is absolutely continuous.

It has long been appreciated that solutions of DDEs and NDDEs
may have discontinuous derivatives, [16]. The discontinuous natural
solutions considered by Baker and Paul [2] (who give some illustrative
examples) have right-hand derivatives everywhere on I0, and conven-
tional derivatives almost everywhere on I0 (the conventional derivative
fails to exist only at the points ζ� where the solution has jump discon-
tinuities).

Theorem 4.11. With the given assumptions, natural solutions of
(2.1), in the sense of Definition 3.14 (with derivatives taken as right-
hand derivatives), are solutions in the sense of Carathéodory as stated
in Definition 4.9.

5. Conclusions. The principal results established here comprise:
(a) a theorem on the existence of a natural solution; (b) a theorem on
the uniqueness of a natural solution; (c) a theorem relating to the de-
pendence of a natural solution on the original data; (d) the relationship
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between natural solutions and solutions in the sense of Carathéodory.
The use of integral equations underpins the discussion. The extension
of our results to NDDEs of a more general type, or not satisfying our
hypotheses, presents opportunities for further investigation.

ENDNOTES

1. See also [13, 14].

2. In the usual method of steps [13, 14] a solution on [t−1, tk] is extended to an
interval [tk, tk+1] such that t − τ(t) < tk for t ∈ [tk, tk+1], k ∈ {0, 1, 2, . . . , }.

3. It is convenient to consider first the case μ′ = r + θ′, μ′′ = r + θ′′.

4. If f vanishes, and if g(t, u, v) is continuously differentiable with respect to its

second argument and the spectral radius of the matrix (∂/∂u)g
(
t, y(t), y(t− τ(t))

)
is greater than unity, convergence does not take place for arbitrary starting values.

REFERENCES

1. U.M. Ascher and L.R. Petzold, The numerical solution of delay-differential-
algebraic equations of retarded and neutral type, SIAM J. Numer. Anal. 32 (1995),
1635 1657.

2. C.T.H.Baker and C.A.H. Paul, Discontinuous solutions of neutral delay dif-
ferential equations, Appl. Numer. Math. 56 (2006), 284 304.

3. C.T.H.Baker, C.A.H. Paul and H. Tian, Differential algebraic equations with
after-effect, J. Comp. Appl. Math. 140 (2002), 63 80.

4. A. Bellen and M. Zennaro, Numerical methods for delay differential equations,
Clarendon Press, Oxford, 2003.

5. S.L. Campbell, Nonregular 2D descriptor delay systems, IMA J. Math. Control
Inform. 12 (1995), 57 67.

6. E.A. Coddington and N.Levinson, Theory of ordinary differential equations,
McGraw-Hill, New York, 1955.

7. O. Diekmann, S.A. van Gils, S.M. Verduyn Lunel and H-O. Walther, Delay
equations. Functional, complex, and nonlinear analysis, Springer, New York, 1995.

8. R.D. Driver, Existence and continuous dependence of solutions of a neutral
functional-differential equation, Arch. Ration. Mech. Anal. 19 (1965), 149 166.

9. L.E. El′sgol′ts and S.B. Norkin, Introduction to the theory and application of
differential equations with deviating arguments, Academic Press, New York, 1973.

10. J.K. Hale, Theory of functional differential equations, Springer, New York,
1977.

11. J.K. Hale and S.M. Verduyn Lunel, Introduction to functional-differential
equations, Springer, New York, 1993.

12. N.B. Hasser and J.A. Sullivan, Real analysis, Dover, New York, 1991.



EVOLUTIONARY EQUATIONS WITH TIME-LAG 247
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