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ABSTRACT. We study the structure of the C∗-algebra gen-
erated by sequences of generalized convolutions (also called
variable Toeplitz matrices) and derive results on the asymp-
totic behavior of the spectra of elements belonging to this alge-
bra. For instance, we prove the analog of the Se Legue/Szegö
and Avram/Parter theorems.

1. Introduction. Given a sequence {AN}N∈Z+ , Z+ := N ∪ {0},
of quadratic (N + 1)× (N + 1) matrices constituted by some rule, one
of the important questions is about the asymptotic behavior of the
eigenvalues λ

(N)
0 , . . . , λ

(N)
N of the matrices AN .

For example, if AN = (ân−k)N
n,k=0 are Toeplitz matrices given by the

Fourier coefficients of an L∞-function a, defined on the complex unit
circle T, then

1
N + 1

tr f(TN (a)) =
1

N + 1

N∑
j=0

f
(
λ

(N)
j

)
−→ 1

2π

2π∫
0

f
(
a

(
eiθ

))
dθ,

where trB is the trace of the (quadratic) matrix B, f analytic on some
open set Ω ∈ C containing the convex hull of R(a), the essential range
of a. This result is one of the versions of Szegö’s first limit theorem. A
discussion of the topic, including a refinement of Se Legue’s approach
and the Avram/Parter theorem, can be found in [1, Sections 5.4 5.7].

Similar problems were studied for various generalizations of familiar
Toeplitz matrices, especially for locally Toeplitz matrices, [5, 7 9, 12],
and generalized convolutions (variable Toeplitz matrices), [2, 6, 10,
11].
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170 B. SILBERMANN AND O. ZABRODA

In this paper, the case of generalized convolutions is taken up again.
The significant difference to previous work is the consideration of
sequences belonging to the C∗-algebra of all sequences generated by
“smooth” generating functions. We give a full description of this
algebra and derive the mentioned generalizations. Furthermore, results
concerning the convergence of condition numbers, ε-pseudo spectra and
sets of singular values can be obtained by help of the theory developed
in [5]. Because this can easily be done, we omit the details.

Given a continuous (complex-valued) function a on the set [0, 1] ×
[0, 1] × T, assign to a the sequence {AN (a)}N∈N of variable Toeplitz
matrices

AN (a) :=
(

ân−k

(
n

N
,

k

N

))
n,k=0,... ,N

where ân(x, y) are the Fourier-coefficients of a, see Section 1. It can be
shown that there exists a continuous function b ∈ C([0, 1] × [0, 1] × T)
such that the sequence {AN (b)} is not bounded with respect to spectral
norm (S. Grudsky, private communication). So we have to impose some
conditions on the generating functions; this will be done in Section 2,
where also some important strong limits are computed. Sections 3 6 are
devoted to some relations which are important to analyze the structure
of the C∗-algebra under consideration. The papers [4] and [11] are of
special importance for us because some technical equipment is taken
from there. The most important ingredient is however the C∗-technique
introduced by Roch and one of the authors, see for instance [5].

1. Preliminary notations. Let us introduce the following notation:
N, Z, R, C are the sets of natural, integer, real and complex numbers,
respectively, Z+ = N ∪ {0};

C(M) is the space of bounded continuous complex-valued functions,
defined on a Hausdorff compact space M , with the standard norm

||f(z)||C(M) = sup
z∈M

|f(z)|;

lq(Z+), where q � 1, is the standard Banach space of complex
sequences X = {Xn}n∈Z+ with the norm

||X|| =
( ∑

n∈Z+

|Xn|q
)1/q

< ∞;
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PN for N ∈ N is the projector in l2(Z+), acting as

PN : {X0, X1, . . . , XN , XN+1, . . . } �−→ {X0, X1, . . . , XN , 0, 0, . . . };

T is the unit circle in the complex plane;

μ is the Lebesque-measure on T.

For a function a(x, y, t) ∈ C([0, 1] × [0, 1] × T), let us denote by
ân(x, y) its Fourier coefficients, defined by

ân(x, y) =
1
2π

∫
T

a(x, y, t)t−n dμ, x, y ∈ [0, 1], n ∈ Z.

Further, let us denote by AN (a) = AN (a(x, y, t)) the linear operator
acting in the space Im PN which has the following matrix(

ân−k

(
n

N
,

k

N

))
n,k=0,... ,N

with respect to the canonical basis of ImPN . We shall identify opera-
tors in Im PN with matrices in this natural way.

2. The strong convergence of operators AN (a), A∗
N (a),

WNAN (a)WN and WNA∗
N (a)WN in the case of the smooth gener-

ating function. For b ∈ C(T) we designate by T (b) : l2(Z+) → l2(Z+)
the Toeplitz operator which has the following (infinite) matrix(

b̂n−k

)
n,k∈Z+

.

It is well known that

||T (b)|| = ||b||C(T).

Let C∞
t ([0, 1] × [0, 1] × T) be the subspace of C([0, 1] × [0, 1] × T),

consisting of all functions, which are infinitely differentiable in the
variable t ∈ T with derivatives from C([0, 1] × [0, 1] × T).

Let us note one important detail. If the function a(x, y, t) belongs to
C∞

t ([0, 1] × [0, 1] × T), then (this can be shown using its continuity)
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the sum of the series of its Fourier coefficients satisfies the Weierstrass’
criterion of uniform convergence:

(2.1)
∑
n∈Z

sup
x,y∈[0,1]

|ân(x, y)| < ∞.

Proposition 2.1. Let a(x, y, t) ∈ C∞
t ([0, 1] × [0, 1] × T).

Then the operator AN (a) converges strongly to the operator
T (a(0, 0, t)) and the operator A∗

N (a) converges strongly to the opera-
tor T ∗(a(0, 0, t)), respectively.

Proof. Let M =
∑

n∈Z supx,y∈[0,1] |ân(x, y)| < ∞.

It is known, see [1, Lemma 2.22], that the operator PNT (a(0, 0, t))PN

converges strongly to T (a(0, 0, t)) for N → ∞. Therefore, it is enough
to show that

||AN (a)X − PNT (a(0, 0, t))PNX|| −→
N→∞

0

for X = {Xn}n∈Z+ ∈ l2(Z+).

Let us fix an arbitrary ε > 0. Then for N ∈ N large enough we
obtain:

||AN (a)X − PNT (a(0, 0, t))PNX||2

=
N∑

n=0

∣∣∣∣
N∑

k=0

(
ân−k

(
n

N
,

k

N

)
− ân−k(0, 0)

)
Xk

∣∣∣∣2

�
N∑

n=0

( N∑
k=0

∣∣∣∣ân−k

(
n

N
,

k

N

)
− ân−k(0, 0)

∣∣∣∣|Xk|
)2

�
N∑

n=0

{ N∑
k=0

∣∣∣∣ân−k

(
n

N
,

k

N

)
− ân−k(0, 0)

∣∣∣∣
}

×
{ N∑

k=0

∣∣∣∣ân−k

(
n

N
,

k

N

)
− ân−k(0, 0)

∣∣∣∣|Xk|2
}

� 2M
N∑

n=0

N∑
k=0

∣∣∣∣ân−k

(
n

N
,

k

N

)
− ân−k(0, 0)

∣∣∣∣|Xk|2
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= 2M
∑

0�n�β
√

N

∑
0�k�α

√
N

∣∣∣∣ân−k

(
n

N
,

k

N

)
− ân−k(0, 0)

∣∣∣∣|Xk|2

+ 2M
N∑

n=0

∑
α
√

N<k�N

∣∣∣∣ân−k

(
n

N
,

k

N

)
− ân−k(0, 0)

∣∣∣∣|Xk|2

+ 2M
∑

β
√

N<n�N

∑
0�k�α

√
N

∣∣∣∣ân−k

(
n

N
,

k

N

)
− ân−k(0, 0)

∣∣∣∣|Xk|2,

where α and β are arbitrary positive real numbers.

Since the Fourier coefficients of the function a(x, y, t) are continuous
in variables x, y ∈ [0, 1], there exists such a δ > 0 that

∑
n∈Z

sup
x,y∈[0,δ]

|ân(x, y) − ân(0, 0)| <
1
3

ε2

2M||X||2 .

Let us fix further α and β so that 0 < α < β < δ.

So long as X = {Xn}n∈Z+ ∈ l2(Z+), there exists such N0 ∈ N, that
the following inequalities hold for all N > N0:

β√
N

< δ,

∑
|k|>α

√
N

|Xk|2 <
1
3

ε2

4M2

and

∑
|n|>(β−α)

√
N

sup
x,y∈[0,1]

|an(x, y)| <
1
3

ε2

4M||X||2 .

Then, for such α, β and N0, we obtain the following inequality:

||AN (a)X − PNT (a(0, 0, t))PNX||2

� 2M
∑
k∈Z

{ ∑
n∈Z

sup
x,y∈[0,δ]

|ân (x, y) − ân(0, 0)|
}
|Xk|2

+ 2M
∑

|k|>α
√

N

{ ∑
n∈Z

sup
x,y∈[0,1]

|ân(x, y) − ân(0, 0)|
}
|Xk|2
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+ 2M
∑
k∈Z

{ ∑
|n|>(β−α)

√
N

sup
x,y∈[0,1]

|ân(x, y) − ân(0, 0)|
}
|Xk|2

<
1
3

ε2 +
1
3

ε2 +
1
3

ε2 = ε2,

which proves the proposition.

Analogous reasoning holds for the conjugate operator.

We denote by WN the operator of inversion from l2(Z+) into ImPN

which act as follows:

WN : {X0, X1, . . . , XN , XN+1, . . . } �−→{XN , XN−1, . . . , X0, 0, 0, . . . };

Proposition 2.2. Let a(x, y, t) ∈ C∞
t ([0, 1] × [0, 1] × T).

Then the operator WNAN (a)WN converges strongly to the operator
T

(
a

(
1, 1, t−1

))
and the operator WNA∗

N (a)WN converges to the oper-
ator T ∗ (

a
(
1, 1, t−1

))
, accordingly.

Proof. It can be shown easily that

WNAN (a)WN = AN

(
a

(
1 − x, 1 − y, t−1

))
.

Taking into account Proposition 2.1, we obtain what we need. The
reasoning for the conjugated operator is analogous.

3. The structure of the operator AN (a) in the case of the
smooth generating function. The operator H(b) : l2(Z+) → l2(Z+)
with b(t) ∈ C(T) which has the following matrix(

b̂n+k+1

)
n,k∈Z+

is called the Hankel operator, HN (b) = PNH(b)PN . It is known that
H(b) is compact.

The operator HN (a) = HN (a(x, y, t)) with a(x, y, t) ∈ C([0, 1] ×
[0, 1] × T) acting in the space Im PN , which has the following matrix
representation (

ân+k+1

(
n

N
,

k

N

))
n,k=0,... ,N

,
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is called the truncated generalized Hankel operator.

Further we need some additional notations.

For a(x, y, t) ∈ C([0, 1] × [0, 1] × T) and N ∈ N let us denote
by AN (a(x, x, t)), AN (a(y, y, t)), AN (a(y, x, t)), HN (a(x, x, t)) and
HN (a(y, y, t)) linear operators acting in the space ImPN which have
the following matrices:

(
ân−k

(
n

N
,

n

N

))
n,k=0,... ,N

,

(
ân−k

(
k

N
,

k

N

))
n,k=0,... ,N

,

(
ân−k

(
k

N
,

n

N

))
n,k=0,... ,N

,

(
ân+k+1

(
n

N
,

n

N

))
n,k=0,... ,N

,

(
ân+k+1

(
k

N
,

k

N

))
n,k=0,... ,N

,

respectively.

In these notations, for a(x, y, t) ∈ C([0, 1] × [0, 1] × T), b(x, y, t) ∈
C([0, 1]×[0, 1]×T) and N ∈ N we obtain for example that the operator
AN (a(x, x, t)b(y, y, t)) has the following matrix representation:

(
ĉn−k

(
n

N
,

k

N

))
n,k=0,... ,N

,

where ĉn (x, y) =
1
2π

∫
T

a (x, x, t) b (y, y, t) tn dμ, n ∈ N.

For a(x, y, t) ∈ C([0, 1] × [0, 1] × T) we define also ã(x, y, t) =
a(x, y, t−1).

Let the functions a(x, y, t) and b(x, y, t) be infinitely differentiable
in the variable t. Using the result obtained in [2] (the equality (2.3))
and infinite differentiability of symbols, the following equality can be
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shown:

(3.1) AN (a(x, x, t))AN (b(y, y, t))

= AN (a(x, x, t)b(y, y, t))− HN (a(x, x, t))HN (b̃(y, y, t))
− WNHN (ã(x, x, t))HN (b(y, y, t))WN + o(1),

where o(1) is an operator depending on N , the norm of which tends to
zero as N → ∞.

Lemma 3.1. Suppose that for the function a(x, y, t) the condition
(2.1) is fulfilled. Then

||AN (a(x, y, t)) − AN (a(x, x, t))|| −→
N→∞

0,

||AN (a(x, y, t)) − AN (a(y, y, t))|| −→
N→∞

0,

||AN (a(x, y, t))− AN (a(y, x, t))|| −→
N→∞

0.

Proof. We prove the first statement. Let us fix an arbitrary ε > 0.

Let M=
∑

n∈Z supx,y∈[0,1]|ân(x, y)| and R(m)=
∑

|n|>m supx,y∈[0,1]

×|ân(x, y)|, m ∈ N.

The following estimation can be obtained analogously to the proof of
Proposition 2.1:

||AN (a(x, y, t)) − AN (a(x, x, t))||2

� 2M
N∑

n=0

∑
0�k�N
|n−k|�m

∣∣∣∣ân−k

(
n

N
,

k

N

)
− ân−k

(
n

N
,

n

N

)∣∣∣∣|Xk|2

+ 2M
N∑

n=0

∑
0�k�N
|n−k|>m

∣∣∣∣ân−k

(
n

N
,

k

N

)
− ân−k

(
n

N
,

n

N

)∣∣∣∣|Xk|2,

where m ∈ N.
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Since the Fourier coefficients of the function a(x, y, t) are continuous
in variables x, y ∈ [0, 1], there exists such a δ > 0, that

∑
n∈Z

sup
x1,x2,y1,y2∈[0,1]

|x1−x2|<δ, |y1−y2|<δ

|ân(x1, y1) − ân(x2, y2)| <
1
2

ε2

2M .

Let us fix m ∈ N so, that R(m) < 1/2(ε2/2M).

Further, there is such an N0 ∈ N that the inequality

m

N
< δ

holds for any N > N0.

Then, for chosen m and N0, we obtain:

||AN (a(x, y, t))X − AN (a(x, x, t))X||2

� 2M
∑

0�k�N
|n−k|�m

{ N∑
n=0

∣∣∣∣ân−k

(
n

N
,

k

N

)
− ân−k

(
n

N
,

n

N

)∣∣∣∣
}
|Xk|2

+ 2M
∑

0�k�N
|n−k|>m

{ N∑
n=0

∣∣∣∣ân−k

(
n

N
,

k

N

)
− ân−k

(
n

N
,

n

N

)∣∣∣∣
}
|Xk|2

<
1
2

ε2 +
1
2

ε2 = ε2,

which proves the convergence.

The other two statements can be proved analogously.

Lemma 3.2. Let the condition (2.1) hold for the functions a(x, y, t)
and b(x, y, t). Then

||AN (a(x, x, t)[b(y, y, t)− b(x, x, t)])|| −→
N→∞

0.

Proof. For convenience, let c(x, y, t) = a(x, x, t)[b(y, y, t) − b(x, x, t)].



178 B. SILBERMANN AND O. ZABRODA

Then the matrix of the operator AN (a(x, x, t)[b(y, y, t)−b(x, x, t)]) =
AN (c(x, y, t)) has the form:

(
ĉn−k

(
n

N
,

k

N

))
n,k=0,... ,N

,

where ĉn (x, y) =
∫

β

Ta(x, x, t)[b(y, y, t) − b(x, x, t)]t−n dμ, n ∈ N.

It is also clear that, if the functions a(x, y, t) and b(x, y, t) satisfy the
condition (2.1), then the function c(x, y, t) possesses this property too.

Let us fix some ε > 0. Let us denote C =
∑

n∈Z supx,y∈[0,1] |ĉn(x, y)|
< ∞ and R(m) =

∑
|n|>m supx,y∈[0,1] |ĉn(x, y)|, m ∈ N.

By analogy with the previous proofs, we can show that for m ∈ N and
X = {Xn}n∈Z ∈ l2 with ‖X‖ = 1, the following inequality is correct:

||AN (c(x, y, t))||2

� 2C
N∑

n=0

∑
0�k�N
|n−k|�m

∣∣∣∣ĉn−k

(
n

N
,

k

N

)∣∣∣∣|Xk|2

+ 2C
N∑

n=0

∑
0�k�N
|n−k|>m

∣∣∣∣ĉn−k

(
n

N
,

k

N

)∣∣∣∣|Xk|2 for m ∈ N.

We choose m ∈ N so that R(m) < 1/2(ε2/2C).

Taking into account the continuity of the function b(x, y, t), there
exists such a δ > 0, that

∑
n∈Z

sup
x,y∈[0,1]
|x−y|<δ

|ĉn(x, y)| <
1
2

ε2

2C .

Let us further fix N0 ∈ N so that m/N < δ for all N > N0. For fixed
m and N0, we obtain

||AN (c(x, y, t))||2 <
1
2

ε2 +
1
2

ε2 = ε2.
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The following statement can be proved by analogy to previous Lem-
mas 3.1 and 3.2.

Lemma 3.3. Suppose the condition (2.1) is fulfilled for the function
a(x, y, t). Then

||HN (a(x, x, t)) − H(a(0, 0, t))|| −→
N→∞

0,

||HN (a(y, y, t)) − H(a(0, 0, t))|| −→
N→∞

0.

We denote by K the space of all compact operators acting in l2.

Lemma 3.4. From the relation

(3.2) AN (a(x, x, t)) = AN (b(x, x, t)) + PNKPN + WNLWN + BN ,

where a(x, y, t), b(x, y, t) ∈ C∞
t ([0, 1]×[0, 1]×T), K, L ∈ K, ||BN || →

N→∞
0, it follows that K = 0, L = 0, BN = 0 for any N ∈ N and
b(x, x, t) = a(x, x, t).

Remark. It is easy to show, that the operator WNLWN converges
strongly to zero. Indeed, the sequence WNX for an arbitrary X =
{Xn}n∈Z ∈ l2 converges weakly to zero. Then because the operator L
is compact, the sequence WNLWNX converges to zero in the norm of
space l2, which is equivalent to the strong convergence of the operator.

Analogously, the operator PNKPN converges strongly to K (even in
norm).

Proof. Passing in (3.2) to the strong limit when N → ∞, we obtain

T (a(0, 0, t)) = T (b(0, 0, t)) + K.

A Toeplitz operator is compact if and only if it is the zero operator.
Therefore K = T (a(0, 0, t) − b(0, 0, t)) = 0.

Multiplying the relation (3.2) from left and right by the operator WN

(taking into account that WNWN = PN ) and passing to the strong
limit, we get

T (ã(1, 1, t)) = T (b̃(1, 1, t)) + L,

and thus L = T (ã(1, 1, t) − b̃(1, 1, t)) = 0.
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Therefore AN (a(x, x, t)) = AN (b(x, x, t)) + BN and

BN = AN (c(x, x, t)), where c(x, x, t) = a(x, x, t) − b(x, x, t).

Suppose, that the equality a(x, x, t) = b(x, x, t) does not hold. Then
c(x, x, t) = 0 is not identical to zero. This means, that ĉn0(x0, x0) 	= 0
for some x0 ∈ [0, 1] and n0 ∈ Z.

The numbers n/N , where n = 1, . . . , N , N ∈ N, form an everywhere
dense set for N → ∞. So we can find a sequence ni/Ni, ni � Ni,
converging to x0 for i → ∞. Thus for any i ∈ N we can choose also
ni � n0.

Let us consider now the matrix AN (c(x, x, t)). Its element on the
crossing of the nith line and the kith column, where ki = ni − n0, is
equal to ĉn0(ni/Ni, ni/Ni) and

ĉn0

(
ni

Ni
,

ni

Ni

)
−→
i→∞

ĉn0(x0, x0) 	= 0.

But this contradicts the fact that ||ANi
(c(x, x, t))|| →

i→∞
0. Therefore

the assumption is not true and a(x, x, t) = b(x, x, t). From this it
follows that BN = 0 for any N ∈ N.

Obviously, A∗
N (a(x, y, t)) = AN

(
a(y, x, t)

)
.

The correctness of the following proposition follows from the relation
(3.1) and has already proved Lemmas 3.1, 3.2, 3.3 and 3.4.

Proposition 3.1. Let a(x, y, t), b(x, y, t) ∈ C∞
t ([0, 1] × [0, 1] × T).

Then the two following representations hold:

(3.3) AN (a(x, y, t))AN (b(x, y, t))
= AN (a(x, x, t)b(x, x, t)) + PNK1PN + WNL1WN + o(1),

(3.4) AN (a(x, y, t))A∗
N (b(x, y, t))

= AN

(
a(x, x, t)b(x, x, t)

)
+ PNK2PN + WNL2WN + o(1),
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where K1, K2, L1, L2 ∈ K are nonzero operators, o(1) denotes an oper-
ator with the norm converging to zero. Moreover, these representations
are unique.

4. The stability of an operator sequence. The algebras
F, F/N and F/I. In this section we make review of some results
contained in [1], for example, which we will use later.

Let {BN}N∈N be some sequence of operators BN ∈ End (ImPN ).
This sequence is called stable, if there exists such N0 ∈ N that for all
N > N0 the operator BN is invertible and

sup
N>N0

||B−1
N || < ∞.

By F we denote the set of all operator sequences {BN}N∈Z, BN ∈
End(ImPN ) with the following properties:

1) supN∈N ||BN || < ∞,

2) there exist two operators B, B̃ ∈ End (l2(Z+)) such that the
following strong convergences hold (the asterisk refers to the adjoint
operator):

BN −→ B, B∗
N −→ B∗, WNBNWN −→ B̃, WNB∗

NWN −→ B̃∗.

The algebraic operations in F are defined by

{BN} + {CN} = {BN + CN}, {BN}, {CN} ∈ F ,

λ{BN} = {λBN}, {BN} ∈ F , λ ∈ C,

{BN}{CN} = {BNCN}, {BN}, {CN} ∈ F ,

{BN}∗ = {B∗
N}.

It is not difficult to see that F with the norm

||{BN}|| = sup
N∈N

||BN || < ∞

is a C∗-algebra, that is, a Banach algebra with the property

||{BN}||2 = ||{B∗
NBN}||.
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We denote by N the subset of F consisting of all sequences {MN}N∈Z

with ||MN || →
N→∞

0.

Let us denote now by I the subset of the algebra F consisting of all
sequences of the form

{PNKPN + WNLWN + MN} where K, L ∈ K, ||MN || →
n→∞ 0.

One can also check, see [1], that N and I are closed two-sided ideals
in F . Therefore we can consider the factor-algebras F/N and F/I
(which are C∗-algebras too).

The next statement about the connection between the stability and
the invertibility in the factor-algebras F/N and F/I was proved in [1].

Proposition 4.1. Let {BN} ∈ F ; let B and B̃ be the strong limits
of the operators BN and WNBNWN . Then the following statements
are equivalent:

1) the sequence {Bn} is stable,

2) the element {BN} + N is invertible in F/N ,

3) B and B̃ are invertible and the element {BN} + I is invertible in
the factor-algebra F/I.

Remark. It is easy to show that, for a(x, y, t) ∈ C∞
t ([0, 1]× [0, 1]×T),

the estimation

(4.1) sup
n∈N

||AN (a)|| �
∑
n∈Z

sup
x,y∈[0,1]

|ân(x, y)|

holds. Therefore, by Propositions 2.1 and 2.2, the sequence {AN (a)}
belongs to F .

Corollary 4.1. Let a(x, y, t) ∈ C∞
t ([0, 1] × [0, 1] × T). Then the

following statements are equivalent:

1) the sequence {AN (a)} is stable,

2) the element {AN (a)} + N is invertible in F/N ,

3) the operators T (a(0, 0, t)) and T
(
a

(
1, 1, t−1

))
are invertible and

the element {AN (a)} + I is invertible in F/I.
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Proof. This result follows directly from Propositions 2.1, 2.2, 2.3 and
4.1.

5. The norm of {AN (a)} + I in the algebra F/I in case of
a smooth generating function. We consider first an important
lemma.

Lemma 5.1. Let a ∈ C∞
t ([0, 1]× [0, 1]×T). The coset {AN (a)}+I

is invertible in F/I if and only if the function a(x, x, t) does not vanish
on [0, 1] × T.

Proof. The proof of this statement is based on the local principle of
Allan-Douglas, see [1, Theorem 2.29 and Section 2.7].

The sufficiency is obvious and follows directly from Proposition 3.1.
We prove the necessity.

Let {AN (a)} + I be invertible in F/I. Suppose that there exist
x0 ∈ [0, 1] and t0 ∈ T such that a(x0, x0, t0) = 0. Let us consider a
particular case, when the function a has the form

a(x, y, t) =
m∑

n=−m

ân(x, y)tn, m ∈ N.

From the simple representation

a(x, y, t) =
m∑

n=−m

ân(x, y)[(t − t0) + t0]n,

it follows that the local representatives of the coset {AN (a)}+I at It0

is the coset {AN (a(x, x, t0))}+I +It0 , where It0 is a closed two-sided
ideal in F/I which has been defined in [1, Section 2.7]. The matrix of
AN (a(x, x, t0)) is diagonal.

Since the numbers n/N , n = 0, 1, . . . , N are dense in [0,1] as
N → ∞, then it is not hard to show, that the local representative
{AN (a(x, x, t0))} + I + It0 is not invertible in (F/I)/It0 . Therefore,
according to the local principle of Allan-Douglas, the coset {AN (a)}+I
is not invertible in F/I and we get a contradiction.
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The general case, if a(x, y, t) =
∑

n∈Z ân(x, y)tn, can be easily
obtained from one considered above by passing to the limit as n → ∞.

It is well known that, for an element b of a C∗-algebra the following
equality holds:

||b||2 = sup {λ : λ ∈ sp (b∗b)} ,

where sp (b∗b) is the spectrum of the element b∗b.

For {BN} + I ∈ F/I we denote by spF/I ({BN} + I) the spectrum
of the coset {BN} + I in the algebra F/I. According to the remark
above, we have

||{BN} + I||2F/I = sup
{
λ : λ ∈ spF/I({BN} + I)({BN} + I)∗

}
.

Let us consider further the sequence {AN (a)} + I in the case when
a(x, y, t) ∈ C∞

t ([0, 1] × [0, 1] × T).

By Proposition 3.1 (the representation (3.4)), we get

({AN (a)} + I)({AN (a)} + I)∗ = {AN (a)A∗
N(a)} + I

= {AN (a(x, x, t)a(x, x, t))} + I.

So we have to find the supremum of the spectrum points of the
sequence {AN (a(x, x, t)a(x, x, t))} + I in the algebra F/I.

Let us denote by IN the identity operator in ImPN . The number
λ0 ∈ C is in the spectrum of the coset {AN (a(x, x, t)a(x, x, t))} + I if
and only if the sequence

{AN (a(x, x, t)a(x, x, t))−λ0IN}+I = {AN (a(x, x, t)a(x, x, t)−λ0)}+I

is not invertible in F/I.

As it follows from Lemma 5.1, this is possible if and only if λ0 =
(a(x0, x0, t0)a(x0, x0, t0)) = |a(x0, x0, t0)|2 for some x0 ∈ [0, 1], t0 ∈ T.

The spectral radius is equal to supx,y∈[0,1],t∈T |a(x, x, t)|2. Therefore,

||{AN (a)} + I||2F/I = sup
x∈[0,1],t∈T

|a(x, x, t)|2.
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Proposition 5.1. If a(x, y, t) ∈ C∞
t ([0, 1] × [0, 1] × T), then

||{AN (a)} + I||F/I = ||a(x, x, t)||C([0,1]×T).

Let A ⊂ F be the smallest C∗-algebra containing all sequences
{AN (a)} with smooth generating functions. Notice, that I ⊂ A, see
[1, Lemma 2.21] and [7, paragraph 4.2.1].

Proposition 5.2. The C∗-algebras A/I and C([0, 1] × T) are
isomorphic.

Proof. Proposition 3.1 shows that A/I is a commutative C∗-algebra.
Gelfand theory claims that A/I is isometrically isomorphic to C(M),
where M is the space of maximal ideals of A/I.

We immediately prove that A/I is isometrically isomorphic to
C([0, 1] × T). For, introduce the (non-closed) subalgebra

A0 :=
{ k∑

i=1

l∏
j=1

({AN (aij)} + I) , aij smooth, k, l ∈ N
}

.

Consider the map ϕ : A0 �→ C([0, 1] × T) defined by

k∑
i=1

l∏
j=1

({AN (aij)} + I) �−→
k∑

i=1

l∏
j=1

aij .

Because of
∑k

i=1

∏l
j=1 ({AN (aij)} + I) =

{
AN

(∑k
i=1

∏l
j=1 aij

)}
+

I and Lemma 3.4, this map is correctly defined and is clearly an
isometric homomorphism which can be extended by continuity onto
the whole of A. By the Stone-Weierstrass theorem, the image of this
extension coincides with C([0, 1] ×T). The space of maximal ideals of
A/I is therefore homeomorphic to C([0, 1]×T) and we are done.

As a corollary we obtain



186 B. SILBERMANN AND O. ZABRODA

Proposition 5.3. For any element {AN}+I ∈ A/I and the function
a(x, t) = ϕ({AN} + I) ∈ C([0, 1] × T) it holds:

||{AN} + I||A/I = ||a(x, t)||C([0,1]×T).

Remark. The function a(x, t) = ϕ({AN}+I) will be called the symbol
of the sequence {AN} ∈ A.

6. The norm of {AN (a)}+N in the algebra F/N in case of a
smooth generating function. Notice that Proposition 4.1 remains
true if the algebra F is replaced by A. The reason is very simple: C∗-
algebras are inverse closed, that is, in the case at hand the spectrum of
an element a in A coincides with the spectrum of a considered in F .

Assign to an element {AN} ∈ A the triple (A, Ã, {AN}+I), where A

and Ã are strong limits of AN and WNANWN , respectively. Then
Proposition 4.1 tells us that {AN} ∈ A is stable if and only if
(A, Ã, {AN}+I) is invertible in the C∗-algebra B constituted by all el-
ements (B, B̃, {BN}+I), {BN} ∈ A (the algebraic operations are com-
ponentwise defined, ||(B, B̃, {BN} + I)|| := max{||B||, ||B̃||, ||{BN} +
I||)}). It is a feature of C∗-algebras that then A/N and B are isomet-
rically isomorphic. This means especially, that (a is smooth)

||{AN} + N||A/N = ||{AN} + N||F/N

= max
{
||A||, ||Ã||, ||{AN} + I||A/I

}
.

Proposition 6.1. Let {AN} ∈ A. Then

||{AN} + N||A/N = max{||A||, ||Ã||, ||{AN} + I||A/I},

where A and Ã are the strong limits of operators AN and WNANWN

as N → ∞.

Corollary 6.1. Let a(x, y, t) ∈ C∞
t ([0, 1] × [0, 1] × T). Then

||{AN (a)} + N||F/N = ||a(x, x, t)||C([0,1]×T).
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Proof. This statement follows from Propositions 2.1, 2.2, 5.3, 6.1 and
the following well-known equalities:

||T (a(0, 0, t))|| = ||a(0, 0, t)||C(T),

||T (ã(1, 1, t))|| = ||a(1, 1, t−1)||C(T) = ||a(1, 1, t)||C(T).

7. A Szegö-type theorem for the sequence of self-adjoint
operators. The trace of an N × N -matrix A, that is, the sum of its
diagonal elements, will be denoted by trA.

Lemma 7.1. Let a ∈ C∞
t ([0, 1]× [0, 1]×T), p a complex polynomial.

Then

lim
N→∞

1
N + 1

tr p (AN (a)) =
1
2π

∫ 1

0

∫
T

p(a(x, x, t)) dμ dx.

Proof. Obviously, it is enough to prove this statement for polynomials
of the form p(z) = zk, k ∈ N.

By Proposition 3.4, we obtain

p (AN (a)) = Ak
N (a) = AN

(
ak

)
+ PNKPN + WNLWN + BN ,

where K, L ∈ K, ||BN || → 0 for N → ∞.

Since the operators K and L are compact, it is clear that

lim
N→∞

1
N + 1

trPNKPN = 0, lim
N→∞

1
N + 1

trWNLWN = 0.

Analogously, if {BN} is the operator sequence satisfying the condition
||BN || →

N→∞
0, then

lim
N→∞

1
N + 1

trBN = 0.

Finally we have to consider the operator AN (ak).



188 B. SILBERMANN AND O. ZABRODA

The trace of operator is equal to the sum of diagonal elements of the
matrix of this operator. In this case

1
N + 1

trAN (ak) =
1

N + 1

N∑
n=0

âk
0

(
n

N
,

n

N

)

=
1

N + 1

N∑
n=0

1
2π

∫
T

ak

(
n

N
,

n

N
, t

)
dμ.

Further, the right-hand side of the last expression is a Riemann sum
for the continuous function

g(x) =
1
2π

∫
T

ak(x, x, t) dμ.

Hence,

1
N + 1

tr AN (ak) −→
N→∞

1
2π

∫ 1

0

∫
T

ak(x, x, t) dμ dx,

which proves the statement.

Theorem 7.1. Let {AN} ∈ A, and let a(x, t) ∈ C([0, 1] ×T) be the
symbol of {AN} + I. Let also p be a complex polynomial. Then

lim
N→∞

1
N + 1

tr p(AN ) =
1
2π

∫ 1

0

∫
T

p(a(x, t)) dμ dx.

Proof. We prove the statement for p(z) = zk, k ∈ N.

Let us fix ε > 0.

Since a(x, t) ∈ C([0, 1]×T), we can find such a sequence of functions
ai(x, y, t) ∈ C∞

t ([0, 1] × [0, 1] × T), i ∈ N, that

||ai(x, x, t) − a(x, t)||C([0,1]×T) −→
i→∞

0.

It is clear that the sequence {Ak
N (ai)} + I approximates {Ak

N} + I,
i.e.,

||{Ak
N (ai)} − {Ak

N} + I||A/I −→
i→∞

0.
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By the standard definition of the norm in a factor-algebra,

inf
{BN}∈I

||{Ak
N (ai)} − {Ak

N} + {BN}|| −→
i→∞

0,

therefore
inf

{BN}∈I
sup
N

||Ak
N (ai) − Ak

N + BN || −→
i→∞

0.

So there is i′0 such that for all i > i′0 the inequality

inf
{BN}∈I

sup
N

||Ak
N (ai) − Ak

N + BN || <
ε

6

holds.

Then there exists a sequence {B′
N} ∈ I such that

(7.1) sup
N

||Ak
N (ai) − Ak

N + B′
N || <

ε

3
.

Thus,∣∣∣∣ 1
N + 1

trAk
N − 1

2π

∫ 1

0

∫
T

ak(x, t) dμ dx

∣∣∣∣
�

∣∣∣∣ 1
N + 1

tr Ak
N − 1

N + 1
tr

(
Ak

N (ai) − B′
N

)∣∣∣∣
+

∣∣∣∣ 1
N + 1

tr
(
Ak

N (ai) − B′
N

) − 1
2π

∫ 1

0

∫
T

ak
i (x, x, t) dμ dx

∣∣∣∣
+

∣∣∣∣ 1
2π

∫ 1

0

∫
T

ak
i (x, x, t) dμ dx − 1

2π

∫ 1

0

∫
T

ak(x, t)dμ dx

∣∣∣∣ .

Taking into account the inequality (7.1) and the fact that

Ak
N − Ak

N (ai) + B′
N = PN (Ak

N − Ak
N (ai) + B′

N )PN ,

we obtain for every N ∈ N:∣∣∣∣ 1
N + 1

tr Ak
N − 1

N + 1
tr

(
Ak

N (ai) − B′
N

)∣∣∣∣
=

1
N + 1

∣∣tr (
Ak

N − Ak
N (ai) + B′

N

)∣∣
� 1

N + 1

∣∣∣∣PN

(
Ak

N − Ak
N (ai) + B′

N

)∣∣∣∣
tr

� 1
N + 1

||PN ||22
∣∣∣∣Ak

N − Ak
N (ai) + B′

N

∣∣∣∣ <
ε

3
,
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where || · ||tr is the trace norm and || · ||2 the Hilbert-Schmidt norm
(||PN ||2 =

√
N + 1).

Since
1

N + 1
trB′

N −→
N→∞

0,

then, by Lemma 7.1, there exists N0 ∈ N such that for all N > N0∣∣∣∣ 1
N + 1

tr Ak
N (ai) − 1

2π

∫ 1

0

∫
T

ak
i (x, x, t) dμ dx

∣∣∣∣ <
ε

3
.

In addition, because of the convergence of the functions ai to a, we
find i0 > i′0 such that for all i > i0∣∣∣∣ 1

2π

∫ 1

0

∫
T

ak
i (x, x, t) dμ dx − 1

2π

∫ 1

0

∫
T

ak(x, t) dμ dx

∣∣∣∣ <
ε

3
.

Summarizing everything said above, we obtain that∣∣∣∣ 1
N + 1

trAk
N − 1

2π

∫ 1

0

∫
T

ak(x, t) dμ dx

∣∣∣∣ < ε

for N > N0. This proves the statement.

Theorem 7.2. Let {AN} ∈ A be the sequence of self-adjoint
operators, and let the function a(x, t) ∈ C([0, 1] × T) be the symbol
of {AN}. Let further Δ = ||{AN} + N||A/N , and let the real function
f be continuous on the segment [−Δ, Δ]. Then

lim
N→∞

1
N + 1

tr f(AN ) =
1
2π

∫ 1

0

∫
T

f(a(x, t)) dμ dx.

Remark. It follows from Propositions 5.3 and 6.1 that

Δ = max{||A||, ||Ã||, ||{AN} + I||A/I},

where A and Ã are the strong limits of the operators AN and
WNANWN for N → ∞. And thus Δ � ||a(x, t)||C([0,1]×T).
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Proof. Let us fix an arbitrary ε > 0. Since f(x) is continuous on the
segment [−Δ, Δ], then there exists such a polynomial p(x), that

sup
x∈[−Δ,Δ]

|p(x) − f(x)| <
ε

3
.

By Theorem 7.1, we find such N0(∈ N), that for all N > N0∣∣∣∣∣ 1
N + 1

tr p(AN ) − 1
2π

∫ 1

0

∫
T

p(a(x, t)) dμ dx

∣∣∣∣∣ <
ε

3
.

Now consider the following estimation:

∣∣∣∣∣ 1
N + 1

tr f(AN ) − 1
2π

∫ 1

0

∫
T

f(a(x, t)) dμ dx

∣∣∣∣∣
�

∣∣∣∣ 1
N

tr f(AN ) − 1
N + 1

tr p(AN )
∣∣∣∣

+

∣∣∣∣∣ 1
N + 1

tr p(AN) − 1
2π

∫ 1

0

∫
T

p(a(x, t)) dμ dx

∣∣∣∣∣
+

∣∣∣∣∣ 1
2π

∫ 1

0

∫
T

p(a(x, t)) dμ dx − 1
2π

∫ 1

0

∫
T

f(a(x, t)) dμ dx

∣∣∣∣∣
<

ε

3
+

ε

3
+

ε

3
= ε.

Thus, for every ε > 0, there exists such an N0 ∈ N that, for all
N > N0 ∣∣∣∣∣ 1

N + 1
tr f(AN ) − 1

2π

∫ 1

0

∫
T

f (a(x, t)) dμ dx

∣∣∣∣∣< ε,

which proves the statement.

Remark. Putting AN = B∗
NBN , {BN} ∈ A, one gets the announced

generalization of the Avram/Parter theorem, for instance.
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8. A Szegö-type theorem for arbitrary sequences. Theorem
7.1 allows to take as test functions arbitrarily given real and continuous
functions f with compact support. If one is interested in arbitrary
sequences in A, the test functions must have more specific properties.
One of the reasons is the definition of f(AN ), N ∈ N, which is ensured
if f is analytic on the spectrum of AN for any N . By s-lim of a sequence
we understand as usual the strong limit.

Theorem 8.1. Let {AN} ∈ A, and let a ∈ C([0, 1] × T) be the
symbol of {AN}. If f is holomorphic on the open set Ω ⊂ C and

U := sp (s − limAN ) ∪ sp (s − limWNANWN ) ∪ R(a) ⊂ Ω,

then

1
N + 1

tr f(AN ) =
1

N + 1

N∑
i=0

f
(
λ

(N)
i

)
−→

N→∞
1
2π

1∫
0

∫
T

f(a(x, t)) dμ dx,

where λ
(N)
0 , . . . , λ

(N)
N are the eigenvalues of AN .

Proof. First we prove the result for the particular case {AN} ∈ A,
AN = AN (a) + JN , where a ∈ C∞

t ([0, 1] × T), {JN} ∈ I. Let
D ⊂ C be an open set such that U ⊂ D ⊂ Ω and D ⊂ Ω.
For f = gλ, gλ(z) = 1/(z − λ) and λ /∈ D, we obviously have by
Proposition 4.1 that the sequence {AN} − λ{PN} is stable. Hence,
({AN} − λ{PN}) +N is invertible in A/N and the inverse is given by
gλ({AN} + N ) = {AN ((a − λ)−1) + PNKPN + WnLPN} + N , where
K, L ∈ K are uniquely defined.

For N large enough, say for N � N0, we have sp AN ⊂ D (if this
would not be true then using Theorem 3.19 in [5] one easily gets a
contradiction) and for those N the function gλ(AN ) is well-defined and
there is a representant {EN} of gλ({AN}+N ) such that EN = gλ(AN )
for N � N0. Thus we obtain

1
N + 1

tr gλ(AN ) =
1

N + 1

N∑
i=0

g
(
λ

(N)
i

)
→ 1

2π

∫ 1

0

∫
T

gλ(a) dμ dx
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because of 1/N + 1 trJN → 0 for any sequence {JN} ⊂ I. Now we use
that any function f holomorphic on Ω can be on D approximated as
closely as desired (in the supnorm) by functions of the form

γ∑
j=1

cjgλj
, λj /∈ D

where cj are complex numbers, see [4] for instance, and for such
holomorphic functions (in the right-hand side) the result holds. By
approximation the result is clearly true for any function f holomorphic
on Ω. Using the upper continuity of the spectrum in a unital Banach
algebra and the argumentation of the proof of Theorem 7.2, the result
follows in the general case again by approximation.

9. Acknowledgments and remarks. The authors are grateful to
one of the reviewers. He (she) suggested an interesting generalization of
Theorem 7.2 concerning sequences of variable Toeplitz matrices. First
of all he (she) pointed out that sequences of variable Toeplitz matrices
studied in this paper are generalized locally Toeplitz (GLT) sequences
(the Definition can be found in [8, 9, 12]) and therefore the underlying
theory of these sequences applies. Moreover, (unbounded) sequences
of variable Toeplitz matrices can be studied. One set of conditions
(proposed by the reviewer) is the following:

1) a(x, y, t) ∈ L1(T) for every fixed x, y ∈ [0, 1];

2) for any fixed n, the Fourier coefficient ân(x, y) is Riemann inte-
grable;

3) for every ε > 0 and for every x, y ∈ [0, 1], there exists a trigono-
metric polynomial in s, aε(x, y, t), for which a(x, y, t) − aε(x, y, t) has
the norm in L1(T) bounded by ε.

Then the following theorem is valid:

Theorem 9.1. Let the function a defined on [0, 1] × [0, 1] × T
satisfy the conditions 1) 3). Then the sequence {AN} of the operators,
whose (n, k) entry is given by the expression ân−k(n/N, k/N), is a GLT
sequence with symbol κ(x, t) = a(x, x, t), x ∈ [0, 1], t ∈ T.
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A consequence of this theorem is the following asymptotic for singular
values of AN :

1
N + 1

tr f
(
(A∗

NAN )1/2
)

−→
N→∞

1
2π

∫ 1

0

∫
T

f(κ(x, t)) dμ dx,

where f is continuous on a segment containing the singular values of
AN for all N large enough.

Moreover, if the matrices of AN are Hermitian, then

1
N + 1

tr f(AN ) −→
N→∞

1
2π

∫ 1

0

∫
T

f(κ(x, t)) dμ dx,

where f is continuous on a segment containing the eigenvalues of AN

for all N large enough.

Remark. As mentioned before, there are continuous functions defined
on [0, 1]×[0, 1]×T which do not produce a bounded sequence of variable
Toeplitz matrices. But a continuous function on [0, 1] × [0, 1] × T is
obviously subject to the conditions 1) 3). On the other hand, for any
continuous function b on [0, 1]× [0, 1]×T there is a sequence {AN} ∈ A
the symbol of which is b0: b0(x, t) = b(x, x, t).

Question. Is any sequence {AN} ∈ A a generalized locally Toeplitz
sequence?

Appendix

10. Reviewer’s proof of Theorem 9.1.

Step 1. Let a(x, y, t) = α(x, y)tm with Riemann integrable α(x, y)
and m fixed integer (independent of N). Then

AN (a) = DN (α)TN (tm),

(DN (α))n k = α
( n

N
,

n

N
− m

N

)
= α

( n

N
,

n

N
+ o(1)

)
.

{DN (α)} is a basic GLT sequence with symbol α(x, x) by definition
since it is the sampling matrix of the Riemann integrable function
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α(x, x), see [8, Definition 2.3]. {TN (tm)} is also a basic GLT sequence
with symbol tm since, by [8, Theorem 5.2], every Toeplitz sequence
with L1(T) symbol is a GLT sequence with the same symbol. The
GLT class is an algebra and therefore {AN (a) = DN (α)TN (tm)} is also
a GLT sequence with symbol a(x, x, t) = α(x, x)tm.

Step 2. Let a(x, y, t) be a trigonometric polynomial in the variable
t. Therefore a(x, y, t) can be written as a finite linear combination of
monomials as those considered in Step 1, where the parameters m are
independent of N . Consequently,

AN (a) =
∑
m

AN (αm(x, y)tm),

because AN (·) is a linear (matrix-valued) operator. In other words,
our sequence {AN (a)} is a finite linear combination of GLT sequences
with symbols αm(x, y)tm. In conclusion, since the GLT class is an
algebra, see [9], {AN (a)} belongs to the GLT class as well with symbol
a(x, x, t) =

∑
m αm(x, y)tm.

Step 3. Let a(x, y, t) satisfy the conditions 1) 3). For ε > 0, consider
the approximating polynomials aε(x, y, t) as in condition 3). Then the
following facts are immediate or have already been proved:

• {AN (aε)} is a GLT sequence with symbol aε(x, x, t) by Step 2.

• aε(x, x, t) converges in measure to a(x, x, t) on [0, 1] × T by the
third assumption.

Moreover, by the third assumption, we have that |ân(x, y)−âεn(x, y)| �
ε and therefore the Frobenius norm of AN (a) − AN (aε) is bounded
by εN . By exploiting a standard singular value decomposition of
AN (a) − AN (aε), the fact that Frobenius norm is bounded by εN ,
directly implies that {{AN (aε) : ε > 0}} is an approximating class of
sequences (a.c.s.) for {AN (a)} (for the notion of a.c.s., see [8, Definition
2.2]). Therefore putting together the latter information we have:

• {AN (aε)} is a GLT sequence with symbol aε(x, x, t).

• aε(x, x, t) converges in measure to a(x, x, t) on [0, 1] × T.

• {{AN (aε) : ε > 0}} is an a.c.s. for {AN (a)}.
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These three facts, by definition of the GLT sequence (see Definition 2.3
in [8]), tell us that {AN (a)} is a GLT sequence with symbol a(x, x, t).
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