JOURNAL OF INTEGRAL EQUATIONS
AND APPLICATIONS
Volume 17, Number 3, Fall 2005

STABILITY IN LINEAR VOLTERRA
INTEGRODIFFERENTIAL EQUATIONS
WITH NONLINEAR PERTURBATION

M.N. ISLAM AND Y.N. RAFFOUL

ABSTRACT. A Lyapunov functional is employed to obtain
conditions that guarantee stability, uniform stability and uni-
form asymptotic stability of the zero solution of a scalar linear
Volterra integrodifferential equation with nonlinear perturba-
tion.

1. Introduction. In this paper we consider the scalar linear Volterra
integrodifferential equation

(1.1) 2 (8) = h(t)z(t) + /0 Clat — s)a(s) ds

and its perturbed form

(1.2) 2/ (t) = h(t)z(t) + /0 Clat — s)z(s)ds + g(t, z(t))

where a is a constant, a > 1. The function ¢(¢, z(t)) is continuous in
t and z and satisfies |g(t, z(¢))] < A(t)|x(t)], where A(t) is continuous.
Moreover, h(t) is continuous for all ¢ > 0 and C' : R — R is continuous.
We study the stability properties of the zero solution of either (1.1) or
(1.2) and we construct suitable Lyapunov functionals in the analysis.

We point out that if C € L'[0,00), then the equations (1.1) and
(1.2) become fading memory problems. When a > 1, the memory
term fot C(at — s)ds = (Zt_l)tC(u) du tends to zero as t — oo,
that is, the memory fades away completely. On the other hand, if
0 < a < 1, the memory term never fades away completely; it tends to
a constant as t — co. For a = 1, equations (1.1) and (1.2) are the well-

known convolution equations. Many researchers have studied stability
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properties for both convolution and non-convolution cases of (1.1) and
(1.2) by use of the Lyapunov method. For more on the construction of
Lyapunov functionals, in the case a = 1, we refer the reader to [1-3,
5, 7, 8, 10, 12, 13] and the references therein.

As mentioned above, in this article we only address the case a > 1.
In the case 0 < a < 1, we could not obtain meaningful stability results.
We use a modified version of the Lyapunov functional that was used
by Zhang in [13] and the methods that were employed by Burton
and Somolinos in [4] to obtain stability, uniform stability and uniform
asymptotic stability of the zero solutions of equations (1.1) and (1.2).

In the case of C(at — s) = C(t,s), requiring A\(¢) € L'[0,00), the
authors in [9] and [11] obtained conditions for uniform asymptotic
stability of the zero solution of (1.2). In this paper we show that
the zero solution of (1.2) is uniformly asymptotically stable without
requiring A(t) € L'[0,00). Also, when C(at — s) = C(t,s), the
authors in [6] obtained necessary and sufficient conditions for uniform
asymptotic stability of (1.1) using the resolvent.

Normally h(t) of (1.1) and (1.2) is expected to be a negative function
for stability properties of the zero solution. In this paper we do not
require this condition. We use the size of the kernel C(t) to offset the
positive effect of the function h(t). At the end of this paper we provide
an example (Example 3.3) as an application of Theorem 3.2 showing
that the zero solution of (1.1) is uniformly asymptotically stable for
positive constant function h.

For any fixed ¢ > 0, let

B(t) = {6: [0, » R,

¢ is continuous and bounded in the supremum norm}.

For each ¢ € B(ty), to > 0, there is a unique solution x(t) = z(¢, to, ¢)
of equation (1.2) defined on an interval [tg,v) with x(s) = ¢ for
0 < s < tyg. For ¢ € B(tp), the supremum norm of ¢ is given by
[|6]] = sup{|p(t)| : 0 <t < tp}. If the solution remains bounded, then
v = 0.
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Definition 1.1. The zero solution of (1.2) is said to be stable if for
each € > 0 and each to > 0, there exists a § = § (¢,%9) > 0 such that
[¢ € B(to), ||#]| < 6, t > to] imply |x(t,to,d)| < €. The zero of (1.2) is
uniformly stable if it is stable and § is independent of ¢.

Definition 1.2. The zero solution of (1.2) is said to be uniformly
asymptotically stable if it is uniformly stable and if there is ay; > 0 and
for each ¢ > 0 there exists a T' > 0 such that [ty > 0, ¢ € B(to), ||¢] <
v1, t > T + to] imply |z(t, tg, P)| < €.

2. Lyapunov functionals and stability for equation (1.2). For
a <0, let

(2.1) Gu(t) = /too C(u)e™due .

Assuming G, (t) exists and G, (t) € L]0, 00), define V (t) by

(2.2) o= %<x(” e / Galat — s)(s) ds>2

t o0
T / / (G ()] du?(s) ds,
0 Jat—s

where p is a positive constant to be determined in Theorem 2.1. In the
next lemma we calculate V'(t) along solutions of (1.2), V{, ,(t), and
when needed, we can get V(/1.1)(t) simply by letting g(¢, z(t)) = 0. Let

(2.3) ar(t) = 28 % Golat — 1)

(2.4) as(t) = A(¢) (1 + 7)
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Lemma 2.1. If V(t) is given by (2.2), then for some positive
constant L we have

(2.5)

ai —a 2 o]
Vi) < {aal(t) + az(t) + % —|—p/t( . |G o (u)] du] z2(t)

1 L2 a|)/°° ]
+llz+—=+— Go(u)|du—ap
KZ 2 a t(afl)l ()l

Proof. Let x(t) = x(¢, 10, ¢) be a solution of (1.2) and define V'(¢) by
(2.2). Then along solutions of (1.2) we have

Vi (®) = (2(t) + % /0 ' Galat - )a(s) ds ) (h()a () + g(t,2(1))

+ E Gaolat —t)z(t) — a/o Golat — s)x(s) ds)

a

+p/<>° |G o (w)| duz?(t) —ap/o |Go(at — s)|z3(s) ds

— BB () + % Galat — )2 (t) + (ar(t) — a)a(t)
t «a t 2
. /o Gulat — s)x(s)ds — — (/0 Go(at — s)x(s) ds)

a

+alt)glta®) + ;[ Galat = 9a(s) dsg(ta(t)

+p/°° |G o (w)| duz?(t) —ap/o |Golat — s)|z%(s) ds.

t—t

For any real numbers y and z and any nonzero constant k, one has
2yz < (y*/k?) + k?22. Using this inequality along with the Schwarz
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inequality one can verify that for the positive constant L,

x t)/ Gqlat — s)x(s) ds

S(m(t);LO;zzt L2 /G (at—s)a(s) d )

S(al(t>2L2 ®) /|G (at— s|ds/ |Go(at—s)|z?(s) ds

Also,

_% / Go(at—s)xz(s) d8)2
M ‘|/|G ats|ds/|G (at—s)|z>(s) ds,
J2(t)) < e ()] lg(t 2(t)] < M()2*(2),

and

t

% Golat—s)z(s) dsg(t, z(t))

(=)

IN

OO 16 (at-9) (o)

- % + %(/Ot 1Go(at—s)||z(s)| ds)2

2 t t
Vg [ Gatat=9)lds [ [Galat-9)la?(5)ds

Employing the above four inequalities in V(/1_2) (t) we easily obtain (2.5).
This completes the proof of Lemma 2.1.

Theorem 2.1. Let Go(u) € L*0,00) with (1/a) [;° [Ga(u)|du < 1.
Suppose
t) — 2
(2.6) aar(t) +as(t) + LD 4 0 <,

2
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for 3>0,Q = (1/\/af0 |du) nd
2
(2.7) a3 = (;+%+_')

Then the zero solution of (1.2) is stable.

Proof. First notice that if V (¢) is given by (2.2), then
(2.8)

V(t): /G at—s) )ds) +2—/G at—s)x (s)ds)

+p/0/at,s'Ga<“>'d”2(5)dS

2(t)+i/ |Ga(at—s)|ds/ |Go(at—s)|z?(s) ds

+p// |G o (u)| duz?(s)ds

ng(t)—s——/O |du/ G (at—s)|a2(s) ds
+p/t/°° (G)| dua?(s) ds

/\G (at—s)|x?(s ds+p// u)| du x?(s) ds.

Now for L = 1 take p = as/a [, |Ga(u)|du. Then, from (2.5) and
(2.6) we get
(2.9)
ai(t) — a)? >
Vi) < aar(t) +aa(t)+ O 1y [ 6wl au] )
< - B2%(1)

Let J = (1/a) [;° |Ga(u)|du. Given an e > 0 and a fixed g > 0, we
choose § > 0 with 0 < 6 < € such that

(2.10) V2(1+J+ Japtg)/?26 <e(1—1).
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Let z(t) = x(t,t0,¢) be a solution of (1.2) with |[|¢|| < 6. Then for
t > tg, using (2.8) and (2.9) we have

/G (at — )z ))

< V(fo)

< (1+5/0 |Ga(u)|du+pto/ooo|Ga(u)|du)52

< (1+J+Japto)d®.

(2.11)

We claim that |z(t)| < e for all ¢ > to. Note that |z(u)| < § < e for all
0 < wu < ty. If the claim is not true, let ¢ = t, be the first ¢ such that
|z(ts)| = € and |z(s)| < € for tg < s < t.. Then, using (2.11) we obtain

e(l—J):e(l—%/Ooo|Ga(u)|du)

1 [

< ’x(t*) + —/ Go(at, — s)x(s)ds
@ Jo

<V2(1+J+ Japte)/?s,

which contradicts (2.10) and completes the proof. O

Theorem 2.2. Suppose the hypotheses of Theorem 2.1 hold and there
s a positive constant R such that

(2.12) / / u)|dudv < R
(a—1)t
for all t > 0. Then the zero solution of (1.2) is uniformly stable.
Proof. For any ty > 0 we have

/ / |duds—/ / uw)| dudv < R.
atop—s (a—1)t

Given an € > 0 we choose 6 > 0 with 0 < § < € such that

(2.13) V2(1+J+pR)Y25 < e(1—J).
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Let z(t) = x(t,t0,¢) be a solution of (1.2) with ||¢|| < 6. Then for
t > tg, using (2.8) and (2.9) we have

/Gat—s ))

< V < V(to)

§(1+—/ |G (u \du+p// o()] duds ) 6°
a Jo atop—s

< (1+J+pR)s>.

The rest of the proof is similar to the proof of Theorem 2.1. This
completes the proof of Theorem 2.2.

Theorem 2.3. Suppose the hypotheses of Theorem 2.2 hold with
B > 0, where 3 satisfies (2.6). If [ u)| du € L[0,00), then the
zero solution of (1.2) is uniformly asymptotzcally stable.

Proof. By Theorem 2.2 the zero solution is uniformly stable. So,
for ¢ = 1, find the 0 of uniform stability. Let ~v;(¢) > 0 be given.
We will find T > 0 such that [ty > 0,]|¢|| < 6,¢ > to + T] implies
|z(t, to, ¢)| < 71 (t). Since V'(t) <0, if we find a ¢ such that V(tf) < 42
for a given v > 0, then

/G (at — )z )ds) <V() < V(ty) <42

for all ¢ > t;. Then we use the lower bound on V(t) to show that
|z(t, to, #)| < y1(t), (71 is a function of t). We now find a T so that for
any such solution there will be a ¢t € [to,to + 1.

Since G4 (u) € L0, 00), there is a T, such that

o) 2
(2.14) / |G (w)] du < %.
(

a—1)T,

Also from the hypotheses, there is a T} such that for all T' > T,

2
/ / u)| dudv < <X
(a—1)T ~dp
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Thus for t > T we have

at—T
// \duds-/ / u)| dudv
2
/ / u)| du dv
(a—1)t
Fix a Ty > T}. For all t > T, we have
T
/ / u)| duz?(s ds-/ / u)| du x?(s) ds
216 at—s
// u)| dux?(s)ds .
T

Since |z(t)| < 1, the first integral on the right side of (2.16) satisfies

T2 T2
/ / u)| duz?(s)ds < / / w)| duds
at—T5

gTQ/ G ()] du.
at—T5

(2.15)

IN
ok

Also, since G (u) € L, we can pick a T3 > Ty, such that for t > T3

(2.17) /oo G (o) do <

(—Ts 4pTs

Using (2.17), the first integral on the right of (2.16) satisfies

Ts e} 2
/ / )| du22(s )dngz/ |G () du < L=
at—T5 4p

Also, using (2.15), the second integral on the right side of (2.16)
becomes

2
// u)| duz?(s ds<// uw)| duds < —,
T T 4p

for t > Tj.
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Thus, from (2.16) we get

t o} ’72
(2.18) / / G ()] dua?(s) ds < -,
0 Jat—s 2p
for t > T3. Next, we claim that z2(¢) € L'. To see this, let t >ty > 0.
Then by integrating (2.9) from ¢ to ¢ we have

t
V(t)—=V(to) < — [ Ba’(s)ds,
to
from which we get

tﬁxz(s) ds < V(tg) — V() < V(to) < (14 J + pR).

to

Let Ty = (1+ J + pR)/B(v/2)?. Now we claim that every interval of
length T contains a 7 such that |z(7)| < v/2. If the claim is not true,
then |z(t)] > /2 for t € [t1,t1 + Ty] for some t; > ty. By (2.9), we
have

Wu+ﬂhﬂ%n—/ﬁ4mﬁ$%§V%%ﬁmﬂﬂH

t1

— V(to) — (14 J +pR) < 0,

which contradicts V(t) > 0 for all ¢ > 0. For t > tg + T + T3,
observe that both (2.14) and (2.18) hold. Moreover, there is a t; €
[to + Ti+ Ts, to + Ti+ T3 + Ty such that 2?(t;) < ~2/4 since this
interval has length T}. Consequently, by (2.2) and (2.8), for t > ¢t we
have

2

5 (z(t) + l/Ot Golat — s)z(s) dS)

< V(1) < Vity)

sﬁ@n+l/ﬁmamw—@m%@@

a Jo
ty [o%¢)
+p/ / |G o(u)| duz?(s)ds
0 aty—s

=
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1 [
<a(t)+ 5, [ Galats-9)]ds
0

a
tf [e%e]
—|—p/ / Go(u)|duds
0 at
1

=

|
<) +1 [ (Gatu)ldu

@ J(a—1)ts

ty 00
+p/ / |Go(u)| duds
0 aty—s

<Y /A+P /A2 =92
We then have, for ¢ > ¢

‘x(t) + l/Ot Go(at — s)x(s) ds‘ <V27.

a
It follows from the above inequality that

1t
—/0 Golat — s)x(s)ds

(2.19) lz(t)] — .

<\/§”y.

Since ty > Ty, it follows from (2.14) and (2.19) that

lz(t)] < i/o |Galat — s)||z(s)| ds + V2~

IN

1 [t
—/ |Golat — )| ds + V2
aJo

1 (o)
< —/ |G (u)| du + V2

a J(a—1)t
2

% + V27 = (t),

IN

for t > ty. This completes the proof of Theorem 2.3.

269

In the next section we give conditions that guarantee the stability of
the zero solution of (1.1). To do so, we will use the same Lyapunov
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functional defined by (2.2) and set g¢(¢,z(t)) = 0. Note that if
g(t,z(t)) = 0, then the terms (I) and (II) drop out and a3 becomes,

1
as = (—+i|), when L =1.
2 a

3. Stability for equation (1.1). In this section we generalize
the results of [13] to equation (1.1) by displaying different types of
Lyapunov functionals.

Theorem 3.1. Leta} = ((1/2)+(lal/a)), Q@ = ((1/v/a) fooo |Go(u)| du)?

with
1 oo
(3.1) E/o |Go(u)|du < 1.
Suppose
N2
aa(t) + PO g < s
for 8> 0.

(i) If Go(u) € L0, 00), then the zero solution of (1.1) is stable.
(ii) If Go(u) € LY[0,00) and (2.12) holds, then the zero solution of
(1.1) is uniformly stable.
(ili) If Ga(u) € L'0,00), [°|Ga(u)|du € L*0,00) and 3 > 0, then
the zero solution of (1.1) is uniformly asymptotically stable.

The proofs of (i), (ii) and (iii) follow directly from Theorems 2.1, 2.2
and 2.3, respectively.

Theorem 3.2. Let Q be as of Theorem 3.1 with (3.1) holding.
Suppose

(3.2) h@ | L

Golat —1t) +al <0.
a a
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(i) If Go(u) € L'[0,00), then the zero solution of (1.1) is stable.
(ii) If Go(u) € LY[0,00) and (2.12) holds, then the zero solution of
(1.1) is uniformly stable.
(iii) If Ga(u) € L0, 00) and [° |Gq(u)| du € L'[0,00), then the zero
solution of (1.1) is uniformly asymptotically stable.

Proof. Let V(t) and aq(t) be defined by (2.2) and (2.3), respectively.
Then by setting g(t, z(t)) = 0 we obtain from (2.5) that

@25 p [T 1Gatolau] e

Vi (®) < [aoa(t) +
+ K%z + %) /000 |G o (u)] du—ap} /Ot |Go(at—s)|z?(s) ds.

Let L = 2v/5. We will choose the best ¢ and p so that

(3.4) aal(t)—l—w—i—p/ow|(?a(u)|du<0
and

laly [ w)|du —a
(3.5) <(5+ " )/0 |Go(u)|d p < 0.

Since [;° |Go(u)| du > 0, from (3.4) and (3.5) we obtain

<5+ %)2(/000 \Ga(u)|du)2 <p/000 G ()] du

(a1(t) — a)?

<alar(t) -

from which we arrive at
(3.6)  4aQ5* +4(|a|Q — a®|ay(t)]) 6+ a (ar(t) — @) < 0.
The quadratic inequality in (3.6) has its minimum at

@lar(t)] - [alQ

(3.7) 5. = 300
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We claim that &, > 0. Because of (3.1) we get Q < a and hence Q < a?.
Also, since a > 1 and a4 (t) < 0, we have

a®lay ()] — |a| Q > alai(t)] - |ala
= —a(|a] —fax(t)])
2 —a(ja] +a(t))

——4??+7%G4w—ﬂ+mo>o

Next we show that §, satisfies inequality (3.6). Substituting J, for ¢
into (3.6) we obtain

10Q 8% + 4 (1a|Q — a?ar (1)) 8. + alar (t) — a)?

_ (el - a2l (1)) +a(ar(t) — )2

“Q
a? —
29 (0P - o)
<2 (o o)
a? —
=D (ol ln @)l ~ a0
_@-q) M) 1
= o= (ol +la(0)) (7,7 + g3 Galat —1) +1a]) <0
Let 20 (1
and
aq — 2
& = ala ()] - 2=

= @@ Joj) (@ OD* = loFQ+ (@ - Qlar 0]

One can verify that & > 0 and & > 0 by (3.2) and the fact that
Q < a?. Define p by

(@QV/2p=1EE ;62-
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Clearly p is positive. Moreover, after some calculation we have

a(a® — Q)lar (1) + 2a(alar (W)])* — Qa + Q/a)|af?
A(a?lar(t)] = |a|@) '

Substituting d. for ¢ in (3.4), and by noting that

(@a@)*p=

@@= | " |G ()] du,

we obtain after tedious calculations from (3.4) that

(3.8)
ai(t) — a)? 1/2 —a?)(a®|a1(t))? — |a)?
aant) + G+ o0y = i G <o
In a similar manner, we have
[N (uoniiz, — (@=a) (@) —[a?Q)
89 {0+ 50)Q - @ == i <

Next we note that

5o+ |G ()] du—ap = (a/Q)? | ( 8.+ ) Q — (aQ)?p|.
(5] (%) |
Now we define 3 (t) by

(a® — Q)(a®|ar (B)|* — |a*Q)
da(a?|ar(t)] = |a|@)

Thus using (3.8), (3.9), (3.10) and (3.3) we obtain

(3.10)  Bui(t) = min{1, (a/Q)"/?}.

V() < = pu(t)a?(t) — ﬂl(t)/o |Ga(at—s)|z*(s) ds
< = Bi(t)x3(t).

Thus, we have shown that, along solutions of (1.1), V'(t) < 0 and
therefore the rest of the proofs of (i), (ii) and (iii) follow along the lines
of the proofs of Theorems 2.1, 2.2 and 2.3, respectively.
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Next, we give an example as an application of Theorem 3.2, in which
h(t) = h > 0 where h is a constant.

Example 3.3. Consider the scalar Volterra integral equation
t
(3.12) @' (t) = ha(t) — / e kat=9) 1(s) ds
0

where a > 1,k and h are positive constants to be chosen later in the
example. We need to show that (3.1) and (3.2) hold. For o < 0, we
have

o0
Go(t) = —/ e R e du e < oo,
t

Thus,
Ga(at _ t) - _ /OO eu(afk) du efoz(atft) — ; efk(atft).
at—t

Next,

Go(u) = _/OO e2Oh) ggeon — L ook,
u

This implies that

1 [ 1
a/o |Ga(u)| du = ak(k—a)

Thus, in order for (3.1) to be satisfied, we must have

(313) m <a.

On the other hand, to satisfy (3.2) we ask that

1
h —k(at—t)
+a(oz—k;)e +ala] <0,

which is satisfied for

3.14 h< ——m — .
(3.14) — —alal
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If we take k = 1, a = 1.2 and o« = —0.1, then (3.13) and (3.14) are
satisfied for h < 0.8. One can easily check that (iii) of Theorem 3.2 is
satisfied and hence, by Theorem 3.2, the zero solution of

2/ (t) = hx(t) — /0 e~ (12t=5) 1(s) ds

is uniformly asymptotically stable for h < 0.8.

We end this paper with the following open problems:

1) What can be said about the uniform asymptotic stability of the
zero solution of equation (1.2) when 0 < a < 17

2) Can Theorems 3.1 and 3.2 be generalized for equation (1.2)?

Acknowledgments. The authors would like to thank the anony-
mous referee for his or her comments and corrections.
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