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SOME VOLTERRA-TYPE FRACTIONAL
INTEGRO-DIFFERENTIAL EQUATIONS WITH A

MULTIVARIABLE CONFLUENT HYPERGEOMETRIC
FUNCTION AS THEIR KERNEL

H.M. SRIVASTAVA AND R.K. SAXENA

ABSTRACT. Motivated essentially by several recent works
on interesting generalizations of the first-order Volterra-type
integro-differential equation governing the unsaturated behav-
ior of the free electron laser (FEL) by making use of fractional
calculus, that is, calculus of integrals and derivatives of an ar-
bitrary real or complex order, the authors investigate the solu-
tions of several Cauchy-type and Cauchy problems associated
with some general fractional Volterra-type integro-differential
equations in which the kernel involves the confluent hypergeo-

metric function Φ
(n)
2 in n complex variables. The closed-form

solution of each of these general Cauchy-type problems is de-

rived in terms of the function Φ
(n)
2 itself. Several special cases

of the main results are also shown to yield generalizations of
the results investigated in the aforementioned and other ear-
lier works.

1. Introduction. The unsaturated behavior of the free electron
laser (FEL), when no field mode structures are taken into consideration,
is governed by the following first-order integro-differential equation of
Volterra type, cf. [6, 8]:

(1.1)
d

dτ
h (τ ) = −iπg0

∫ τ

0

ξ exp (iνξ)h (τ − ξ) dξ,

where τ is a dimensionless time variable (0 � τ � 1), g0 is a positive
constant called the small signal gain, and ν is a real constant referred
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to as the detuning parameter. The function h (τ ) is the complex-field
amplitude, which is assumed to be dimensionless, satisfying the initial
condition h (0) = 1. The exact closed-form solution of the integro-
differential equation (1.1) under this initial condition, which is valid
in the whole range of practical interest and suitable for numerical
calculations, was given by Dattoli et al. [7].

Recently, by employing the (Riemann-Liouville) operator Dμ
z of frac-

tional calculus, defined by, cf., e.g., [10, Vol. II, p. 181 et seq.]; see also
[22],

(1.2)

Dμ
z {f (z)}

:=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
Γ (−μ)

∫ z

0

(z−ζ)−μ−1 f (ζ) dζ R (μ) < 0

dm

dzm
Dμ−m

z {f (z)} m − 1 � R (μ) < m;

m ∈ N,

provided that the integral exists, a number of workers (including, pos-
sibly among others, Boyadjiev et al. [5], Al-Shammery et al. [2, 3]
and Saxena and Kalla [23]) introduced and investigated several gener-
alizations of the first-order Volterra-type integro-differential equation
(1.1), N being, as usual, the set of positive integers. In each of the
aforecited recent works on fractional integro-differential equations of
Volterra type ([2, 3, 5, 23]), use is also made of expansion formulas
for the confluent hypergeometric 1F1 function in series of the entire in-
complete gamma function γ∗ (α, z) which is given, in terms of the 1F1

function, by [1, p. 260 et seq.]

(1.3)

γ∗ (α, z) =
e−z

Γ (α+1) 1F1 (1; α+1; z) =
1

Γ (α+1) 1F1 (α; α+1;−z) .

In fact, as already observed by Srivastava [25], these expansion formulas
do not hold true as asserted and applied by Boyadjiev et al. [5, p. 5,
equations (14) and (15)], Al-Shammery et al. [2, p. 504, equation (15);
3, p. 86] and Saxena and Kalla [23, p. 93, equation (2.18)].

A comprehensive account of the various extensions and generaliza-
tions of the FEL equation (1.1) can be found in a survey paper by
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Boyadjiev and Kalla [4]. More recently, Kilbas et al. [13] systemat-
ically investigated a Cauchy-type problem associated essentially with
the following generalization of the FEL equation (1.1):

(1.4)
Dα

τ h (τ ) = λ

∫ τ

0

(τ − ξ)μ−1 Eρ
κ,μ

(
ω (τ − ξ)κ)h (ξ) dξ + f (τ )

τ ∈ [a, b] ⊂ R; κ, λ, μ, ρ ∈ C; R (α) > 0; ω ∈ R,

where f is assumed to be (Lebesgue) integrable over the interval (a, b)
and the function Eρ

κ,μ (z), defined by, cf. [20],

(1.5) Eρ
κ,μ (z) :=

∞∑
l=0

(ρ)l

Γ (κl + μ)
zl

l!
R (κ) > 0; (ρ)l :=

Γ (ρ + l)
Γ (ρ)

,

generalizes the classical Mittag-Leffler functions Eκ (z), for ρ = μ = 1,
and Eκ,μ (z), for ρ = 1, and, ultimately, the exponential function ez,
for ρ = κ = μ = 1. Indeed, in terms of the Fox-Wright generalized
hypergeometric function pΨq with p numerator and q denominator
parameter-pairs, cf., e.g., [11, 30]; see also [27, p. 21, equation 1.2
(38)] and [28, p. 42], we have

(1.6) Eρ
κ,μ (z) =

1
Γ (ρ) 1Ψ1 [(ρ, 1) ; (μ, κ) ; z] .

The subject of fractional calculus, that is, calculus of derivatives and
integrals of any arbitrary real or complex order, has gained importance
and popularity during the past three decades or so (see, for details, [12,
16 19, 22]; see also [29]). With this point in view, we propose here to
investigate the solutions of several Cauchy-type and Cauchy problems
associated with some general Volterra-type integro-differential equa-
tions of fractional order in which the kernel involves the confluent hy-
pergeometric function Φ(n)

2 of n complex variables. The method used
here is based, in part, upon the classical Laplace transform and the
closed-form solution derived in each case is suitable for numerical com-
putations.
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2. Definitions and preliminaries. Some important and useful
multivariable extensions of the classical (Gaussian) hypergeometric 2F1

function include the Lauricella function F
(n)
D and its confluent case Φ(n)

2

in n variables. In terms of the Pochhammer symbol (λ)n used already
in the definition (1.5), we have [27, p. 33, equation 1.4 (4)]

(2.1)

F
(n)
D [a, b1, . . . , bn; c; z1, . . . , zn]

:=
∞∑

m1,... ,mn=0

(a)m1+···+mn
(b1)m1

· · · (bn)mn

(c)m1+···+mn

zm1
1

m1!
· · · zmn

n

mn!

max {|z1| , . . . , |zn|} < 1; c /∈ Z−
0 := {0,−1,−2, . . . }

and [27, p. 34, equation 1.4 (8) and 1.4 (10)]

(2.2)

Φ(n)
2 [b1, . . . , bn; c; z1, . . . , zn]

:=
∞∑

m1,... ,mn=0

(b1)m1
· · · (bn)mn

(c)m1+···+mn

zm1
1

m1!
· · · zmn

n

mn!

= lim
|a|→∞

{
F

(n)
D

[
a, b1, . . . , bn; c;

z1

a
, . . . ,

zn

a

]}
max {|z1| , . . . , |zn|} < ∞; c /∈ Z−

0 .

Each of these multivariable hypergeometric functions can be repre-
sented by a multiple Mellin-Barnes contour integral which, in case of
the function Φ(n)

2 , can be written as follows, cf. [9, p. 232]; see also [27,
pp. 284 285]:

(2.3)

Φ(n)
2 [b1, . . . , bn; c; z1, . . . , zn]

=
Γ (c)

Γ (b1) · · ·Γ (bn)
1

(2πi)n

∫ i∞

−i∞
· · ·

∫ i∞

−i∞

Γ (b1 + ζ1) · · ·Γ (bn + ζn)
Γ (c + ζ1 + · · · + ζn)

· Γ (−ζ1) · · ·Γ (−ζn) (−z1)
ζ1 · · · (−zn)ζn dζ1 · · · dζn

i =
√−1;

max {|arg (−z1)| , . . . , |arg (−zn)|} � π − ε (0 < ε < π) ;
c /∈ Z−

0 .
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It is also readily seen from the definition (2.2) that

(2.4)
Φ(n)

2 [b1, . . . , bn; c; z1, 0, . . . , 0] = Φ(n)
2 [b1, 0, . . . , 0; c; z1, . . . , zn]

= 1F1 (b1; c; z1)

and

(2.5) lim
min{|b1|,... ,|bn|}→∞

{
Φ(n)

2

[
b1, . . . , bn; c;

z1

b1
, . . . ,

zn

bn

]}
= 0F1 ( ; c; z1 + · · · + zn) ,

where the familiar confluent hypergeometric functions 1F1 and 0F1

are connected by Kummer’s second formula [27, p. 322, equation 9.4
(184)]:

(2.6) e−z
1F1 (c; 2c; 2z) = 0F1

(
; c +

1
2
;

1
4

z2

)
.

By applying a method based, in part, upon the classical Laplace
transform:

(2.7)
L{f (t) : s} :=

∫ ∞

0

e−st f (t) dt =: F (s)

R (s) > 0,

which may be written symbolically as follows:

(2.8) F (s) = L{f (t) : s} or f (t) = L−1 {F (s) : t} ,

provided that the function f (t) is continuous for t � 0, it being tacitly
assumed that the integral in (2.7) exists, Srivastava [24] derived an
explicit solution of the Volterra integral equation:

(2.9)
∫ τ

0

(τ−ξ)γ−1

Γ (γ)
eε(τ−ξ) Φ(n)

2 [α1, . . . , αn; γ;

λ1 (τ−ξ) , . . . , λn (τ−ξ)] h (ξ) dξ = f (τ )
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in the following explicit form, see also [26, p. 64 et seq.]:

(2.10)

h (τ ) =
∫ τ

0

(τ−ξ)m−γ−1

Γ (m−γ)
eε(τ−ξ)

· Φ(n)
2 [−α1, . . . ,−αn; m − γ; λ1 (τ−ξ) , . . . , λn (τ−ξ)]

·
{(

d

dξ
− ε

)m

f (ξ)
}

dξ

0 < R (γ) < m; f ∈ Cm [0,∞) ;

f (j) (0) = 0 (j = 0, 1, . . . , m − 1) ; m ∈ N.

The confluent hypergeometric function Φ(n)
2 occurs naturally in the

derivation of moments and density of the trace of a non-central Wishart
matrix, see, for details, [15]. It is useful also in various other practical
problems such as, for example, in storage capacity of a dam, queuing
models, geometric probabilities, and time series analysis, cf. [15, 28].
For this confluent hypergeometric function Φ(n)

2 in n variables, the
following Laplace-transform formula is known [10, Vol. I, p. 222]:

(2.11)

L
{

tγ−1

Γ(γ)
Φ(n)

2 [α1, . . . , αn; γ; λ1t, . . . , λnt] : s

}

= s−γ
n∏

j=1

{(
1 − λj

s

)−αj
}

R (γ) > 0; R (s) > max
j∈{1,... ,n}

{0, R (λj)} ,

so that, by appealing to the familiar convolution theorem for the
Laplace transform, it is not difficult to derive the following integral
addition formula for Φ(n)

2 :

(2.12) ∫ t

0

uγ−1 (t − u)δ−1 Φ(n)
2 [α1, . . . , αn; γ; λ1u, . . . , λnu]

·Φ(n)
2 [β1, . . . , βn; δ; λ1 (t − u) , . . . , λn (t − u)] du

=
Γ (γ) Γ (δ)
Γ (γ+ δ)

tγ+δ−1 Φ(n)
2 [α1+ β1, . . . , αn+ βn; γ+ δ; λ1t, . . . , λnt]

min {R (γ) , R (δ)} > 0; max {|λ1t| , . . . , |λnt|} < ∞.
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It is a special case when

β1 = · · · = βn = 0,

we find from (2.12) that

(2.13)

∫ t

0

uγ−1 (t − u)δ−1 Φ(n)
2 [α1, . . . , αn; γ; λ1u, . . . , λnu] du

=
Γ (γ) Γ (δ)
Γ (γ + δ)

tγ+δ−1 Φ(n)
2 [α1, . . . , αn; γ + δ; λ1t, . . . , λnt]

min {R (γ) , R (δ)} > 0; max {|λ1t| , . . . , |λnt|} < ∞.

Moreover, by virtue of the reduction formula (2.4), (2.12) readily yields
the following known special case [9, p. 271, equation 6.10 (15)]:

(2.14)

∫ t

0

uγ−1 (t − u)δ−1
1F1 (α; γ; λu) 1F1

(
β; δ; λ (t − u)

)
du

=
Γ (γ) Γ (δ)
Γ (γ + δ)

tγ+δ−1
1F1 (α + β; γ + δ; λt)

min {R (γ) , R (δ)} > 0; |λt| < ∞.

In our present investigation, we shall also make use of the following
results for the Laplace transforms of fractional integrals and fractional
derivatives, cf. [16, 17, 19, 22]:

(2.15) L{Dμ
t f (t) : s}

=

⎧⎪⎨
⎪⎩

sμ F (s) R (μ) < 0

sμ F (s) −∑m−1
k=0 sk Dμ−k−1

t f (t)
∣∣∣∣
t=0

m − 1 < R (μ) � m,

where m ∈ N and F (s) is given by (2.7).

3. Solution of a generalized FEL equation. We begin by stating
our solution of the following Cauchy-type problem involving a general
fractional integro-differential equation of Volterra type.
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Theorem 1. Consider the following fractional integro-differential
equation of Volterra type:

(3.1)

Dα
τ h (τ ) =

κ

Γ (γ)

∫ τ

0

ξγ−1 h (τ − ξ)

· Φ(n)
2 [α1, . . . , αn; γ; λ1ξ, . . . , λnξ] dξ + μf (τ )

0 � τ � 1; κ, μ ∈ C; min {R (α) , R (γ)} > 0

together with the initial conditions:

(3.2)
Dα−k

τ h (τ )
∣∣∣
τ=0

= Ak, k = 1, . . . , N

N := − [−R (α)] ; N − 1 < R (α) � N ; N ∈ N,

where A1, . . . , AN are prescribed constants and f (τ ) is assumed to be
continuous on every finite closed interval [0, T ], 0 < T < ∞, and of the
exponential order eητ when τ → ∞.

Then there exists a unique continuous solution of the Cauchy-type
problem (3.1) and (3.2) given by

(3.3) h (τ ) =
N∑

k=1

Ak Λk (τ ) + μ

∫ τ

0

Ω (τ − ξ) f (ξ) dξ,

where
(3.4)

Λk (τ ) := τα−k
∞∑

r=0

κr τ (α+γ)r

Γ
(
α + (α + γ) r − k + 1

)
· Φ(n)

2 [α1r, . . . , αnr; α + (α + γ)r − k + 1; λ1τ, . . . , λnτ ]
k = 1, . . . , N

and

(3.5)
Ω (τ ) := τα−1

∞∑
r=0

κr τ (α+γ)r

Γ
(
α + (α + γ) r

)
· Φ(n)

2 [α1r, . . . , αnr; α + (α + γ) r; λ1τ, . . . , λnτ ] .
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Proof. If we take the Laplace transforms of both sides of the integro-
differential equation (3.1), using the known formulas (2.11) and (2.15),
we obtain

(3.6)

sα H (s) −
N∑

k=1

sk−1 Dα−k
τ h (τ )

∣∣∣∣
τ=0

= κs−γ H (s)
n∏

j=1

{(
1 − λj

s

)−αj
}

+ μF (s)

min {R (α) , R (γ)} > 0; R (s) > max
j∈{1,... ,n}

{0, R (λj) , R (η)} ,

where F (s) is given by (2.7), η is involved in the hypothesis of
Theorem 1 concerning the exponential order of f (τ ) for large τ , and,
as usual, H (s) denotes the Laplace transform of the unknown function
h (τ ).

Solving (3.6) for H (s) under the initial conditions (3.2), we find that

(3.7)

H (s) =

(
N∑

k=1

Ak sk−1 + μF (s)

)⎡
⎣sα − κs−γ

n∏
j=1

{(
1 − λj

s

)−αj
}⎤
⎦
−1

=
N∑

k=1

Ak

∞∑
r=0

κr sk−α−(α+γ)r−1
n∏

j=1

{(
1 − λj

s

)−αjr
}

+ μF (s)
∞∑

r=0

κr s−α−(α+γ)r
n∏

j=1

{(
1 − λj

s

)−αjr
}

,

where we have tacitly assumed that

∣∣∣∣κs−α−γ
n∏

j=1

{(
1 − λj

s

)−αj
}∣∣∣∣ < 1.

By appealing to the formula (2.11) once again, we find from (3.7)
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that
(3.8)

h (τ ) =
N∑

k=1

Ak

∞∑
r=0

κr τα+(α+γ)r−k

Γ
(
α + (α + γ) r − k + 1

)
· Φ(n)

2 [α1r, . . . , αnr; α + (α + γ) r − k + 1; λ1τ, . . . , λnτ ]

+ μ
∞∑

r=0

κr

∫ τ

0

(τ − ξ)α+(α+γ)r−1

Γ
(
α + (α + γ) r

)
· Φ(n)

2 [α1r, . . . , αnr; α + (α + γ) r; λ1 (τ − ξ) , . . . , λn (τ − ξ)]
· f (ξ) dξ,

which, in view of the definitions (3.4) and (3.5), is precisely the solution
(3.3) asserted by Theorem 1.

In order to establish the uniqueness of the solution (3.3), we set

ξ �−→ τ − ξ

in (3.1) and operate upon both sides by D−α
τ , R (α) > 0. Then, after

some calculations using the Eulerian integral for the beta function, (3.1)
is seen to be transformed into the following form:

(3.9)
h (τ ) = μD−α

τ f (τ ) +
κ

Γ (α + γ)

∫ τ

0

h (ξ) (τ − ξ)α+γ−1

· Φ(n)
2 [α1, . . . , αn; α + γ; λ1 (τ− ξ) , . . . , λn (τ− ξ)] dξ.

Since (3.9) is a Volterra integral equation with a continuous kernel, it
does admit a unique continuous solution, see [14].

Remark 1. The solution of the Cauchy-type problem (3.1) and (3.2)
can also be developed by the method of successive approximations (see,
for details, [13, 21]). Furthermore, such a seemingly unnecessary
parameter as μ, which occurs in (3.1) and elsewhere in this paper,
is being retained in this paper for the sake of later convenience in
considering various specialized or limit cases of the problems and
solutions investigated systematically by us.

4. Special cases and consequences of Theorem 1. First of all,
we set

(4.1) λ1 = λ, λ2 = · · · = λn = 0, and α1 = β
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in Theorem 1. Then, in light of the hypergeometric identity (2.4), we
obtain the following result.

Corollary 1. Under the various relevant hypotheses of Theorem 1,
a unique continuous solution of the Cauchy-type problem involving the
Volterra-type integro-differential equation:

(4.2)
Dα

τ h (τ ) =
κ

Γ (γ)

∫ τ

0

ξγ−1 h (τ − ξ) 1F1 (β; γ; λξ) dξ + μf (τ )

0 � τ � 1; κ, μ ∈ C; min {R (α) , R (γ)} > 0

and the initial conditions (3.2) are given by

(4.3) h (τ ) =
N∑

k=1

Ak Θk (τ ) + μ

∫ τ

0

Ξ (τ − ξ) f (ξ) dξ,

where

(4.4)

Θk (τ ) := τα−k
∞∑

r=0

κr τ (α+γ)r

Γ
(
α + (α + γ) r − k + 1

)
· 1F1

(
βr; α + (α + γ) r − k + 1; λτ

)
k = 1, . . . , N

and

(4.5) Ξ (τ ) := τα−1
∞∑

r=0

κr τ (α+γ)r

Γ
(
α + (α + γ) r

) 1F1

(
βr; α + (α + γ) r; λτ

)
.

Remark 2. In its further special case when

(4.6) f (τ ) =
τ δ−1

Γ (δ) 1F1 (ρ; δ; ωτ ) ,

if we apply the integral addition formula (2.14), Corollary 1 would yield
the main result of Saxena and Kalla [23, p. 91, Theorem 1], which itself
is a generalization of the result given earlier by Al-Shammery et al.
[2, p. 504, equation (14)].
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Next, if we set

(4.7) f (τ ) =
τ δ−1

Γ (δ)
Φ(n)

2 [β1, . . . , βn; δ; λ1τ, . . . , λnτ ]

and apply the general (multivariable) integral addition formula (2.12),
Theorem 1 would give us the following result.

Corollary 2. Under the various relevant hypotheses of Theorem 1,
a unique continuous solution of the Cauchy-type problem involving the
Volterra-type integro-differential equation:

(4.8)

Dα
τ h (τ ) =

κ

Γ (γ)

∫ τ

0

ξγ−1 h (τ − ξ)

· Φ(n)
2 [α1, . . . , αn; γ; λ1ξ, . . . , λnξ] dξ

+ μ
τ δ−1

Γ (δ)
Φ(n)

2 [β1, . . . , βn; δ; λ1τ, . . . , λnτ ]

0 � τ � 1; κ, μ ∈ C; min {R (α) , R (γ) , R (δ)} > 0

and the initial conditions (3.2) are given by

(4.9) h (τ ) =
N∑

k=1

Ak Ψk (τ ) + μΔ (τ ) ,

where
(4.10)

Ψk (τ ) := τα−k
∞∑

r=0

κr τ (α+γ)r

Γ
(
α + (α + γ) r − k + 1

)
· Φ(n)

2 [α1r, . . . , αnr; α + (α + γ) r − k + 1; λ1τ, . . . , λnτ ]

and
(4.11)

Δ (τ ) := τα+δ−1
∞∑

r=0

κr τ (α+γ)r

Γ
(
α + δ + (α + γ) r

)
· Φ(n)

2 [α1r+ β1, . . . , αnr+ βn; α+ δ+ (α+ γ) r; λ1τ, . . . , λrτ ] .
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Remark 3. By setting

(4.12) α1 = β, β1 = ρ, and α2 = · · · = αn = β2 = · · · = βn = 0,

and applying the hypergeometric identity (2.4) once again, it is not
difficult to deduce the aforementioned main result of Saxena and Kalla
[23, p. 91, Theorem 1] as a further special case of Corollary 2 as well,
see Remark 2 above.

5. A Cauchy problem involving the Caputo fractional deriva-
tives. Such initial values as those occurring in (2.15) and (3.2) are usu-
ally not interpretable physically in a given initial-value problem. This
situation is overcome at least partially by making use of the so-called
Caputo fractional derivative which arose in several important works,
dated 1969 onwards, by M. Caputo (see, for details, [19, p. 78 et seq.]).

In many recent works, especially in the theory of viscoelasticity
and hereditary solid mechanics, the following (Caputo’s) definition is
adopted for the fractional derivative of order α > 0 of a causal function
f (t), that is, f (t) = 0 for t < 0:

(5.1)
dα

dtα
f (t)

:=

⎧⎪⎨
⎪⎩

f (m) (t) α = m ∈ N0 := N ∪ {0}
1

Γ (m−α)

∫ t

0

f (m) (τ )
(t−τ )α−m+1 dτ m − 1 < α < m; m ∈ N,

where f (m) (t) denotes the usual (ordinary) derivative of f (t) of order
m (m ∈ N0). As a matter of fact, it follows easily from the definitions
(2.7) and (5.1) that

L
{

dα

dtα
f (t) : s

}
= sα F (s) −

m−1∑
k=0

sα−k−1 f (k) (0)

m − 1 < α � m; m ∈ N,

which obviously is more suited for initial-value problems than (2.15),
F (s) being given, as before, by (2.7).
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The method of proof of Theorem 1 can now be applied mutatis
mutandis in order to solve the following Cauchy problem involving the
Caputo fractional derivatives defined by (5.1).

Theorem 2. Consider the following fractional integro-differential
equation of Volterra type:

(5.3)

dα

dτα
h (τ ) =

κ

Γ (γ)

∫ τ

0

ξγ−1 h (τ − ξ)

· Φ(n)
2 [α1, . . . , αn; γ; λ1ξ, . . . , λnξ] dξ + μf (τ )

0 � τ � 1; κ, μ ∈ C; α > 0; R (γ) > 0

together with the initial conditions:

dk

dτk
h (τ )

∣∣∣∣
τ=0

= Bk, k = 0, . . . , N − 1

N := − [−α] ; N − 1 < α � N ; N ∈ N,

where B0, . . . , BN−1 are prescribed constants and f is constrained as
in Theorem 1.

Then there exists a unique continuous solution of the Cauchy problem
(5.3) and (5.4) given by

(5.5) h (τ ) =
N−1∑
k=0

Bk Λ∗
k (τ ) + μ

∫ τ

0

Ω (τ − ξ) f (ξ) dξ,

where

(5.6)

Λ∗
k (τ ) := τk

∞∑
r=0

κr τ (α+γ)r

Γ
(
k + (α + γ) r + 1

)
· Φ(n)

2 [α1r, . . . , αnr; k + (α + γ) r + 1; λ1τ, . . . , λnτ ]
k = 0, . . . , N − 1

and Ω (t) is defined, as in Theorem 1, by (3.5).

Clearly, the assertions of Theorem 1 and Theorem 2 would coincide
when we set

α = N, N ∈ N.
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More interestingly, it is fairly straightforward to apply Theorem 2 in
order to deduce analogues of Corollary 1 and Corollary 2 for the corre-
sponding Cauchy problems involving the Caputo fractional derivatives
defined by (5.1). For example, by making the specializations listed
in (4.1), we obtain the following analogue of Corollary 1 dealing with
a more general Cauchy problem than that associated with the FEL
equation (1.1).

Corollary 3. Under the various relevant hypotheses of Theorem 2,
a unique continuous solution of the Cauchy problem involving the
Volterra-type integro-differential equation:

(5.7)
dα

dτα
h (τ ) =

κ

Γ (γ)

∫ τ

0

ξγ−1 h (τ − ξ) 1F1 (β; γ; λξ) dξ + μf (τ )

0 � τ � 1; κ, μ ∈ C; α > 0; R (γ) > 0

and the initial conditions (5.4) are given by

(5.8) h (τ ) =
N−1∑
k=0

Bk Θ∗
k (τ ) + μ

∫ τ

0

Ξ (τ − ξ) f (ξ) dξ,

where
(5.9)

Θ∗
k (τ ) := τk

∞∑
r=0

κr τ (α+γ)r

Γ
(
k+ (α+ γ) r+ 1

) 1F1

(
βr; k + (α + γ) r + 1; λτ

)
k = 1, . . . , N − 1

and Ξ (τ ) is defined, as in Corollary 1, by (4.5).

6. A fractional-integral generalization of the Volterra inte-
gral equation (2.9). By setting μ = −ν (ν � 0) in the first assertion
of (2.15), it is easily observed that

(6.1) L{
D−ν

t f (t) : s
}

= s−ν F (s) , ν � 0,

where F (s) is given, as before, by (2.7).

By means of the Laplace-transform formula (6.1), we can produce a
fractional-integral generalization of the Volterra integral equation (2.9),
whose solution is given by the following result.
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Theorem 3. The Volterra-type integral equation:

(6.2)

D−ν
τ h (τ ) = κ

∫ τ

0

(τ − ξ)γ−1

Γ (γ)
h (ξ)

· Φ(n)
2 [α1, . . . , αn; γ; λ1 (τ−ξ) , . . . , λn (τ−ξ)] dζ+ μf (τ )

has its solution given explicitly by

(6.3)

h (τ ) = −μ
∞∑

r=0

κ−r−1

∫ τ

0

(τ − ξ)m+(ν−γ)r−γ−1

Γ
(
m + (ν − γ) r − γ

)( dm

dξm
f (ξ)

)

· Φ(n)
2 [−α1 (r+ 1) , . . . ,−αn (r+ 1) ; m + (ν − γ) r − γ;

λ1 (τ − ξ) , . . . , λn (τ − ξ)] dξ

0 < R (γ) < min {m, ν} ;

f ∈ Cm [0,∞) ; f (j) (0) = 0, j = 0, 1, . . . , m − 1;
m ∈ N; κ, μ ∈ C; ν � 0.

Proof. In view of (2.11) and (6.1), we apply the Laplace-transform
operator L on both sides of the Volterra integral equation (6.2), so that
we readily have

(6.4)
H (s) = μF (s)

⎡
⎣s−ν − κs−γ

n∏
j=1

{(
1 − λj

s

)−αj
}⎤
⎦
−1

ν � 0; R (γ) > 0; R (s) > max
j∈{1,... ,n}

{0, R (λj)} ,

where F (s) and H (s) denote the Laplace transforms of f (τ ) and h (τ ),
respectively.

Now, if we assume that

(6.5)
∣∣∣∣κ−1 sγ−ν

n∏
j=1

{(
1 − λj

s

)αj
} ∣∣∣∣ < 1,
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we find from (6.4) that

(6.6)

H (s) = −μ

∞∑
r=0

κ−r−1 sγ−m−(ν−γ)r
n∏

j=1

{(
1 − λj

s

)αj(r+1)
}

· [sm F (s)]
0 < R (γ) < min {m, ν} ; m ∈ N; ν � 0,

which leads us easily to the assertion (6.3) under the constraints stated
already in Theorem 3.

This evidently completes the proof of Theorem 3.

If, in the Volterra-type integral equation (6.2) and its solution (6.3),
we set κ = −μ, divide both sides of the resulting equation by μ, and
then proceed to the limit as |μ| → ∞. Under this limit process, (6.2)
and (6.3) would reduce immediately to the Volterra integral equation
(2.9) and its solution (2.10), respectively, with, of course, ε = 0. Since
eε(τ−ξ) can simply be introduced in the kernels of (2.9) and (2.10), with
ε = 0, by means of the following notational changes:

h (τ ) �−→ e−ετ h (τ ) and f (τ ) �−→ e−ετ f (τ ) ,

Theorem 3 does indeed provide a generalization of Srivastava’s results,
cf. [24], involving (2.9) and (2.10).
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